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Abstract: Engineering benchmark problems with specific characteristics have been used to compare
the performance and reliability of metaheuristic algorithms, and water distribution system design
benchmarks are also widely used. However, only a few benchmark design problems have been
considered in the research community. Due to the limited set of previous benchmarks, it is challenging
to identify the algorithm with the best performance and the highest reliability among a group of
algorithms. Therefore, in this study, a new water distribution system design benchmark problem
generation method is proposed considering problem size and complexity modifications of a reference
benchmark. The water distribution system design benchmark problems are used for performance and
reliability comparison among several reported metaheuristic optimization algorithms. The optimal
design results are able to quantify the performance and reliability of the compared algorithms
which shows each metaheuristic algorithm has its own strengths and weaknesses. Finally, using the
proposed method in this study, guidelines are derived for selecting an appropriate metaheuristic
algorithm for water distribution system design.

Keywords: metaheuristic algorithms; performance measurement; water distribution systems;
design benchmarks

1. Introduction

Optimization can be defined as the process of finding the best fitting solution to a given problem.
Various metaheuristic algorithms have been developed and applied to find optimal solutions for
real-world engineering problems, such as truss structure design [1–3], dam operation [4,5], parameter
estimation [6–8], and traffic engineering [9,10]. Mathematical benchmark problems have been used to
compare the performance and reliability of metaheuristic algorithms [11–15]. However, engineering
optimization problems have their own unique characteristics. Therefore, a metaheuristic algorithm
with good performance and reliability in mathematical benchmark problems does not guarantee
suitable results in real-world engineering problems. Consequently, the performance and reliability of
metaheuristic algorithms for real-life problems should be verified by applying them to engineering
design problems with specific characteristics [16].

The water distribution system design problem is a widely used benchmark problem in the
field of engineering. Several metaheuristic algorithms have been applied to the optimal design of
water distribution systems with various characteristics. For instance, Simpson et al. [17] applied
genetic algorithms (GAs), Cunha and Sousa [18] applied simulated annealing, Maier et al. [19] applied
ant colony optimization (ACO), Montalvo et al. [20] applied particle swarm optimization (PSO),
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and Geem [21] applied the harmony search algorithm (HSA). More recently, Sadollah et al. [22,23]
employed the water cycle algorithm (WCA) and the mine blast algorithm (MBA) for the optimal design
of water distribution systems.

However, previous water distribution system design problems in the literature have a disadvantage
in that their characteristics cannot be freely assigned. In the previous benchmark problems, the layout
and constraints of the problem were fixed, therefore the size and complexity could not be freely
changed. Thus, it is difficult to quantitatively evaluate which metaheuristic algorithm is effective,
because the results are dependent on the characteristics of a given design problem. Therefore, in
this study, engineering design benchmark problems are generated by modifying existing water
distribution system design benchmarks and applying them to measure the performance and reliability
of metaheuristic algorithms.

2. Methodology

Water distribution systems are one of the basic infrastructure facilities that are essential for human
activity. They are needed to ensure a safe and reliable water supply. The main purpose of water
distribution systems is to supply the end-user with their desired amount of water, while ensuring
appropriate water quality and pressure from the water source [24]. The objective of an optimal water
distribution system design is to find the most cost-effective design among various potential designs,
while satisfying hydraulic requirements.

The objective function for determining the lowest cost design of a water distribution system with
nodal pressure constraints is calculated from the diameter and length of the pipes as given follows [24]:

Min.Cost =
N∑

i=1

Cc(Di) × Li +
M∑

j=1

P j (1)

where Cc (Di) is the construction cost according to pipe diameter per unit length, Li is the pipe length,
Di is the pipe diameter, Pj is the penalty function for ensuring that the pressure constraints are satisfied,
N is the number of pipes, and M is the number of nodes. If a design solution does not meet the nodal
pressure requirements, a penalty function is added to the objective function as given follows [24]:

P j = α(hmin − h j) + β if h j < hmin (2)

where hj is the nodal pressure at node j, hmin is the minimum pressure requirement at node j, and α and
β are penalty function constants. Note that other hydraulic or water quality requirements, such as
allowable flow velocity, water age, and residual chlorine concentration, can also be considered in water
distribution system design [25].

Difficulties in designing an optimal water distribution system include the relation between the pipe
diameter (decision variables of the problem) and the cost (problem’s objective function) being nonlinear,
the energy equation (hydraulic constraint) for the head loss calculation includes nonlinear terms,
and the pipe flow direction is not fixed for looped-type water distribution systems [24]. Therefore,
the optimal design problems of water distribution systems are a complex nonlinear constrained
problem, and the mathematical approaches cannot be applied efficiently.

Optimally designing a water distribution system is a widely used benchmark problem for
measuring the performance of optimization methods. Several benchmark water distribution systems
have been introduced in previous studies. The two-loop network problem is one of the simplest
problems and was suggested by Alperovits and Shamir [26]. The Anytown network was introduced
by Walski et al. [27]. The Hanoi network and the GoYang network problems, which are medium-scale
problems, were introduced by Fujiwara and Khang [28] and Kim et al. [29], respectively. Reca and
Martinez [30] introduced the Balerma network, which is a large irrigation network. More recently,
Bragalli et al. [31] conducted a study using three benchmark networks: Fossolo, Pescara, and Modena.



Water 2019, 11, 1637 3 of 15

However, in a previous water distribution system design benchmark in the literature, the network
layout, objective function, candidate pipe diameter option, and hydraulic constraints are all fixed.
Therefore, previous water distribution system design benchmarks in the literature have limited ability
to measure the performance and reliability of optimization methods, because each problem has its own
unique characteristics. Thus, in this study, water distribution system design problems are generated
using characteristic modifications, such as the number of pipes, the number of candidate pipe diameter
options, the pressure constraint, roughness coefficient, and nodal demand multiplier, of previous water
distribution system design benchmarks, and the generated problems are applied to measuring the
performance of metaheuristic algorithms. Such benchmark problems have several advantages. Firstly,
the number of alternative designs, which is represented by problem size, can be easily altered by a user.
In addition, the complexity and difficulty of the optimization problems can be changed.

The benchmark water distribution system problems in this study were generated by modifying
five individual characteristics of a reference water distribution system design benchmark. The factors
that were modified are shown in Table 1. The number of pipes (n) and the number of candidate
pipe diameter options (m) are used as problem size modification factors. The pressure constraint
(p), roughness coefficient (c), and nodal demand multiplier (d) are potential problem complexity
modification factors.

Table 1. Factors that were altered in the generation of engineering benchmark problems.

Factor Definition

n Number of pipes
m Number of candidate pipe diameter options
p Pressure constraint
c Roughness coefficient
d Nodal demand multiplier

If k values are considered for each factor, then 5 × k cases of the benchmark water distribution
system design problems will be generated—each one changing a single factor for each problem—with
a reference design benchmark as the default problem. Note that, there are interactions among problem
modification factors. For instance, if the pressure constraint is stringent, then the effect of changes in
roughness coefficient would be more significant. However, the purpose of this study is to generate
a variety of design benchmarks based on a change in the size and complexity of the reference benchmark
problem. Therefore, in this study, when one problem characteristic factor changes, the other factors are
fixed to the default value.

In this study, a simple water distribution system, which is a modified form of the two-loop
network design problem introduced by Alperovits and Shamir [26] is used as an example to estimate
the relative influence of each factor. This system consists of a single water source (i.e., junction 1), six
demand nodes (i.e., junctions 2–7), eight pipes, and two loops. In our example, each factor takes three
values (k = 3). The layout of the example network and the values assigned to each factor are shown in
Figure 1 and Table 2, respectively; the default factors are in a bold font. In this research, fifteen (5 × 3)
benchmark design problems were generated.
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Figure 1. The layout of the two-loop example network (junction ID and water demand in m3/hour).

Table 2. Factors applied in engineering benchmarks modified from the two-loop network
design problem.

Figure Values Used

n [8, 16, 24]
m [5, 6, 7]
p [30, 35, 40]
C [130, 100, 70]
D [1.0, 1.5, 2.0]

A complete enumeration for each generated design problem was performed and the results are
shown in Table 3. The size of the two-loop example network was very small, so all the candidate designs
for the modified two-loop networks which were generated in this study with various characteristics
can be checked. The global optimum cost increases linearly, and the number of candidate designs and
feasible designs increase exponentially as the number of pipes increases. The ratio of feasible designs
decreases as the number of pipes increases. The global optimum cost decreases, and the number of
candidate designs and the number of feasible solutions increase as the number of candidate pipe
diameter options increases. The feasible design ratio varies as the number of candidate pipe diameter
options increases. Therefore, the parameters n and m control the size of the benchmark problems.

Meanwhile, the global optimum costs increase, and the numbers of feasible solutions and feasible
design ratios decrease as the pressure constraint and nodal demand multiplier increase and also as the
roughness coefficient decreases. It is worth mentioning that the total number of candidate designs
was not changed by variations of the factors p, c, and d. Therefore, these factors are considered to be
problem complexity modification factors.
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Table 3. Complete enumeration for the modified two-loop network design problems.

Modified factor n

Used value 8 16 24
Global optimum ($) 882,000 1,764,000 2,646,000

No. of candidate designs 390,625 1.53E + 11 5.96E + 16
No. of feasible designs 9956 9.91E + 07 9.87E + 11

Ratio of feasible designs (%) 2.5487 0.0650 0.0017

Modified factor m

Used value 5 6 7
Global optimum ($) 882,000 841,000 474,000

No. of candidate designs 390,625 1,679,616 5,764,801
No. of feasible designs 9956 38,721 389,145

Ratio of feasible designs (%) 2.5487 2.3053 6.7504

Modified factor p

Used value 30 35 40
Global optimum ($) 882,000 949,000 1,354,000

No. of candidate designs 390,625 390,625 390,625
No. of feasible designs 9956 4725 2294

Ratio of feasible designs (%) 2.5487 1.2096 0.5873

Modified factor c

Used value 130 100 70
Global optimum ($) 882,000 961,000 1,403,000

No. of candidate designs 390,625 390,625 390,625
No. of feasible designs 9956 4101 1895

Ratio of feasible designs (%) 2.5487 1.0499 0.4851

Modified factor d

Used value 1.0 1.5 2.0
Global optimum ($) 882,000 1,010,000 1,476,000

No. of candidate designs 390,625 390,625 390,625
No. of feasible designs 9956 3346 1326

Ratio of feasible designs (%) 2.5487 0.8566 0.3395

3. Applications and Results

In this study, the Hanoi network design problem [28] was used as a reference benchmark problem.
The Hanoi network in Vietnam is a well-known benchmark water distribution design system. It consists
of one source (junction 1), 31 demand nodes (junctions 2–32), 34 pipes, and three loops, as shown in
Figure 2. Six commercial pipes with internal diameters ranging from 304.8 to 1016.0 mm were selected
for the Hanoi network in the original design benchmark. Therefore, the number of candidate designs
for the complete network is 634. The Hazen–Williams roughness coefficient for calculating friction
head loss is assumed to be 130 for all pipes. In addition, the minimum required pressure head at each
demand node is 30 m for the Hanoi network. Default problem characteristic factors are printed in
bold given in Table 4. Four values were considered for each factor and 20 benchmark problems were
generated in this study.
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Figure 2. The layout of the Hanoi network (junction ID and water demand in m3/hour).

Table 4. Factors applied in engineering benchmarks modified from the Hanoi network design problem.

Factor Values Used

n [34, 68, 102, 136]
m [6, 8, 10, 12]
p [30, 35, 40, 45]
c [130, 125, 120, 115]
d [1.0, 1.05, 1.1, 1.15]

The known globally optimal solution was used as a reference value for the measurement of
performance among the metaheuristic algorithms. However, global optimal solutions of engineering
optimization problems, including water distribution system designs, are generally unknown.
In addition, the global optimal solution changes with different factors, such as n and m. Therefore,
the global lowest cost cannot be used as a reference value for measuring the performance of the applied
optimization algorithms. Thus, the known worst solution in the feasible solution area is used as
a reference. In the case of the water distribution system cost optimization problem, the global optimal
design among candidate designs cannot be obtained without the solution search is performed, however,
we intuitively know that in the worst design all pipes are set to the maximum diameter. This is because
as the diameter increases, the cost increases (see Equation (1)), but the head loss in the pipe decreases
and the constraint can be satisfied (see Equation (2)).

Here, the ratio of an algorithm’s optimal solution cost to the known worst solution cost is defined
as the improvement ratio. Note that the known worst solution is the design with the largest diameter
for all pipes that still meets the hydraulic requirements. Water distribution system design problems
are constrained problems, and the success rates are considered as a basic performance indicator. In this
study, four improvement ratio statistics were used to compare five existing algorithms: The mean
and standard deviation of the average improvement ratios, and the mean and standard deviation of
the best improvement ratios. Note that, if the standard deviation of the decision variables is large,
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it can be estimated that various solutions can be derived at each independent run. Indeed, if the
standard deviation of the objective function of the final solution is large, it means that the probability
of converging to a good solution is low. Therefore, in this study, reliability is considered to be superior
when the standard deviation of improvement ratios is small along with obtaining better cost function.
Meanwhile, the best solution included in the final population was selected (in 20 individual runs) for
each case and applied to the evaluation index. Therefore, a run is considered to be a success if one or
more feasible solutions are included in the final iteration. On the other hand, if there is no feasible
solution in the final iteration, the run was considered as failed.

In this study, five algorithms were compared: Random search (RS), genetic algorithms (GAs) [32],
simulated annealing (SA) [33], harmony search algorithm (HSA) [34]), and water cycle algorithm
(WCA) [35], which were applied to water distribution system design in the previous studies [17,18,21,22].
The RS was used as the subject to be compared. It includes the process of searching for solutions
by creating uniform random numbers within a range of searching solutions. The GAs is one of the
early developed metaheuristic algorithms, and it mimics the evolutionary phenomena that are the
most widely utilized. The SA mimics the quenching process. While the GAs evolves several solutions
in the population, the SA improves one solution repeatedly. The HSA mimics behaviors of music
players, and performs well for the combinatorial optimization problems. The WCA is the most recently
developed metaheuristic algorithm among the considered applied algorithms, and it mimics the
hydrological cycle process.

Each metaheuristic algorithm was tested in 20 individual runs for each of the 20 cases shown
in Table 4. The parameters of applied metaheuristic algorithms were determined using sensitivity
analysis. The characteristic factors of the water distribution system design benchmark were set to the
default value (see Table 4), and the optimization parameters of each metaheuristic algorithm were
tested. The combination of parameters that derive the best optimization results was determined,
and the parameters were applied to 20 cases of benchmark problems. The maximum number of
function evaluations was used as the stopping criterion and was set to 50,000, and the results were
compared at 10,000th, 30,000th, and final function evaluation.

Table 5 shows the success rate for each metaheuristic algorithm with varying factor values. The RS
failed to find a single feasible solution in all runs. The SA found 19.375% of the feasible solutions
on average at the final function evaluation; it had the second-worst results after the RS. The SA was
weak—especially with variations in demand and number of pipes. The GAs, HSA, and WCA all found
feasible solutions in all individual runs for each case in the final function evaluation. However, the GAs
had slow convergence results compared to the HSA and WCA at 10,000th, 30,000th, and final function
evaluation—especially with variations in demand and number of pipes.
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Table 5. Performance comparison of modified Hanoi network design problems (success rate).

Factors

Success Rate (%)

RS GAs SA HSA WCA

10,000
FEs*

30,000
FEs

50,000
FEs

10,000
FEs

30,000
FEs

50,000
FEs

10,000
FEs

30,000
FEs

50,000
FEs

10,000
FEs

30,000
FEs

50,000
FEs

10,000
FEs

30,000
FEs

50,000
FEs

n 0 0 0 23.75 68.75 100 6.25 8.75 15 100 100 100 100 100 100
m 0 0 0 55 100 100 15 17.5 27.5 100 100 100 100 100 100
p 0 0 0 63.75 100 100 7.5 10 16.25 100 100 100 100 100 100
c 0 0 0 46.25 100 100 10 12.5 18.75 100 100 100 100 100 100
d 0 0 0 51.25 98.75 100 6.25 8.75 15 100 100 100 100 100 100

* FEs: Function evaluations.
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Figures 3 and 4 show pentagon diagrams of the means and standard deviations of the average
improvement ratios, respectively. Figures 5 and 6 display pentagon diagrams of the means and
standard deviations of the best improvement ratios, respectively. Note that the means and standard
deviations are calculated from the feasible solutions. A value close to a corner of a pentagon indicates
a larger improvement ratio and a smaller standard deviation.
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(b) SA; (c) HSA; and (d) WCA.

The SA showed stable results in terms of means and standard deviations; however, the values
were calculated from feasible solutions, where the weights of the problem size and complexity have
not been considered in the calculations. In addition, the success rates for each factor variation should
be considered together. Therefore, in this study, the SA gave the second-worst performance after the
RA, which was excluded from the comparison.

The GAs provided better optimization results compared with the other methods with respect to the
varying number of pipes in terms of the mean and standard deviation at the final function evaluation.
On the other hand, in terms of the varying number of candidate pipe diameters, the performance of
the GAs was insufficient. In addition, in terms of the convergence rate, the GAs showed low efficiency
in early function evaluations when compared with the HSA and the WCA. The GAs found infeasible
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solutions at the 10,000th and 30,000th, function evaluations. Moreover, feasible solutions found by the
GAs had low improvement ratio values.

The HSA showed the best results when varying the number of candidate pipe diameter options,
while it had the worst results when the number of pipes was varied. The HSA also showed the
best results in terms of the means of the average improvement ratio and best improvement ratio
for three-factor variations: Pressure constraint, roughness coefficient, and nodal demand multiplier.
On the other hand, the HSA showed large standard deviations for these three characteristics.

The WCA produced an average performance in relation to the other metaheuristic algorithms.
Additionally, the WCA found relatively good solutions in the early function evaluations compared to
the other algorithms. Therefore, the WCA is less sensitive to the variation of problem characteristics
than the other applied algorithms and has good adaptability. However, in the second half of the
optimization process, the solutions found by the WCA did not improve further.

The metaheuristic optimization algorithms have their own strengths and weaknesses, and no
method performs better than the other with respect to all aspects. Furthermore, as the size and
complexity of the problems increase, performance and reliability of all reported algorithms weaken
consistently. Therefore, the choice of method should be dependent on the characteristics of the
optimization problem. For instance, the SA can be applied to simple optimization problems with
several individual runs, while the GAs can be used to find optimal solutions for large-scale optimization
problems offering a reliable solution at every single run. The HSA is suitable for the problems that
include high complexities, however, the results should be verified to find a reliable solution. The WCA
can be efficiently applied to optimization problems which need long computational time, such as
real-time estimation problems, feature selection, and classification of big data.

These performance and reliability characteristics of algorithms can be used as a guide to select the
proper optimization algorithm for given problems. In addition, the existing optimization algorithms
require improvement by enhancing the optimization process and introducing additional engineering
approaches considering the characteristics of a given problem.

4. Conclusions and Future Research

Various optimization techniques, including metaheuristic optimization algorithms, have been
developed and applied to find optimal solutions for real-world engineering problems. Engineering
benchmark problems can be used for performance and reliability comparisons among metaheuristic
algorithms; the water distribution system design problem is a widely used benchmark in the
engineering field. However, previous water distribution system design problems have limited
problem characteristic sets.

Therefore, in this study, engineering design problems were generated by modifying an existing
water distribution system design benchmark. Then, they were applied to measure the performance of
five reported metaheuristic algorithms. The benchmark design problems were generated using five
problem characteristic factors: Two problem size modification factors and three problem complexity
modification factors.

Each applied metaheuristic algorithm had its own strengths and weaknesses, and the performance
and reliability of all studied algorithms weakened as the size and complexity of the problems increased.
In addition, each algorithm showed its own convergence characteristic for given design problems.
This implies that finding optimal solutions for engineering problems using a metaheuristic algorithm
requires an efficient approach that considers the characteristics of the given design problem. In this study,
performance and reliability metaheuristic algorithms were evaluated through the water distribution
system design benchmarks, and guidance to select the proper optimal algorithm for given problem
characteristics was suggested from the results of this study.

Meanwhile, cost minimization was selected as an objective function in this study, and the
node pressure requirement was used as a hydraulic constraint. However, real water distribution
system designs have several objectives (such as system reliability and greenhouse gas emissions) and
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constraints (such as water flow velocity limitations and water quality requirements). Therefore, in
future studies, various combinations of objectives and constraints with other problem characteristic
modification factors will be considered including multi-objective optimization problems; then they
will be applied to benchmark problem generation for performance and reliability comparisons among
optimization techniques. In addition, five metaheuristic optimizers were compared using the proposed
water distribution system design benchmarks in this study, however, other optimization algorithms
and other variants will be tested in future studies.
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