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Abstract: The parameters of water movement and solute transport models are essential for the
accurate simulation of soil moisture and salinity, particularly for layered soils in field conditions.
Parameter estimation can be achieved using the inverse modeling method. However, this type
of method cannot fully consider the uncertainties of measurements, boundary conditions, and
parameters, resulting in inaccurate estimations of parameters and predictions of state variables.
The ensemble Kalman filter (EnKF) is well-suited to data assimilation and parameter prediction
in Situations with large numbers of variables and uncertainties. Thus, in this study, the EnKF
was used to estimate the parameters of water movement and solute transport in layered, variably
saturated soils. Our results indicate that when used in conjunction with the HYDRUS-1D software
(University of California Riverside, California, CA, USA) the EnKF effectively estimates parameters
and predicts state variables for layered, variably saturated soils. The assimilation of factors such as
the initial perturbation and ensemble size significantly affected in the simulated results. A proposed
ensemble size range of 50–100 was used when applying the EnKF to the highly nonlinear hydrological
models of the present study. Although the simulation results for moisture did not exhibit substantial
improvement with the assimilation, the simulation of the salinity was significantly improved through
the assimilation of the salinity and relative solutetransport parameters. Reducing the uncertainties
in measured data can improve the goodness-of-fit in the application of the EnKF method. Sparse
field condition observation data also benefited from the accurate measurement of state variables in
the case of EnKF assimilation. However, the application of the EnKF algorithm for layered, variably
saturated soils with hydrological models requires further study, because it is a challenging and highly
nonlinear problem.

Keywords: data assimilation; parameter estimation; water movement; solute transport; HYDRUS-1D;
ensemble Kalman filter

1. Introduction

The soil moisture status of farmland is crucial for optimizing irrigation water management, which
promotes efficient water use and alleviates soil secondary salinity problems. In field conditions, soils
exhibit a vertically layered distribution and are variably saturated due to infiltration and evaporation.
Soil water and salinity are commonly estimated or predicted using the Richards equation and
convection–dispersion equation-based models, respectively.

The estimation and prediction of soil moisture and salinity are imprecise because of inherent process
uncertainties, such as the model parameters [1], initial and boundary conditions [2], and source/sink
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relationships in the root zone, particularly for layered, variably saturated soils. Thus, there is a great
need for methods that can improve the accuracy of simulation results or parameter estimation via
inverse modeling [3]. The accuracy of modeling and prediction can be improved by optimizing the
parameters through a calibration process [4] or by directly updating the state variables involved in the
modeling process [5]. Both types of improvements require exploiting observations associated with the
model state variables. However, observations can introduce errors due to instrument inaccuracy.

Optimal parameter values can be obtained using inverse modeling. Various inverse modeling
methods have been developed, including the annealing–simplex method [6], genetic algorithms [7],
multilevel grid sampling strategies [8], ant colony optimization [9], shuffled complex methods [10],
the Shuffled Complex Evolution Metropolis algorithm [11], and the multi-algorithm genetically
adaptive method [12]. Although these methods account for the uncertainties of model parameters, they
do not explicitly consider the uncertainties of inputs and outputs, as well as those of the model [13].
Therefore, such treatments may produce suboptimal parameter values and correspondingly inaccurate
models and forecasts.

The recently developed ensemble Kalman filter (EnKF) [14] has been widely used in hydrological
processes for data assimilation and parameterization [15–17] because of its comprehensive consideration
of uncertainties. Moreover, the EnKF is well-suited to multi-dimensional systems and nonlinear
problems [14] owing to its titular ensemble forecasting technique. The EnKF method is particularly
noted for its robustness when applied to state assimilation and parameters estimation for hydrological
modeling. For example, Xie and Zhang [18] obtained acceptable parameters and satisfactory estimations
of the runoff, soil water content, and evapotranspiration in the Soil & Water Assessment Tool model
using the EnKF method. Li et al. [19] enhanced the accuracy of the estimation of the conductivities
and piezometric heads in a transient groundwater flow by coupling ensemble Kalman filtering with
an upscaling method. Wanders et al. [20] applied a dual state and parameter EnKF to calibrate the
hydrological LISFLOOD model and used the discharge and remotely sensed soil moisture to improve
the estimation of groundwater and routing parameters. Zhang et al. [21] examined the benefits of
assimilating groundwater levels using different EnKF-based methodologies to improve the predictions
of root zone soil moisture with an integrated terrestrial system model.

The EnKF has also been used in data assimilation for soil water movement and solute transport
systems [22–26]. For example, Li and Ren [27] investigated the influence of assimilation factors,
including the initial parameter estimate, ensemble size, observation error, model error, assimilation
interval, and water regime, on soil hydraulic parameter estimation for 12 synthetic unsaturated soils.
Song et al. [28] compared the performance of different iterative EnKFs (i.e., the confirming EnKF,
restart EnKF, and modified restart EnKF) for the estimation of unsaturated soil hydraulic parameters.
Gharamti et al. [29] used an efficient sequential data assimilation scheme based on a hybrid formulation
of EnKF and optimal interpolation to accurately estimate the aquifer contamination and spatially
variable sorption coefficients in a saturated heterogeneous clayey sandstone zone. However, to our
knowledge, there is limited research on the application of the EnKF method for water movement and
solute transport in field conditions, particularly for data from soil sampling in layered soil textures.

The objectives of the present study were as follows:

(i) Extend the EnKF framework to estimate the parameters of water movement and solute transport
in layered, variably saturated soils with field sampling data.

(ii) Improve the prediction accuracy of soil moisture and salinity status under field conditions.
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2. Materials and Methods

2.1. Governing Equations for Water Flow and Solute Transport in Variably Saturated Soils

Water flow in soils are most commonly described using the one-dimensional Richards equation [30]:

∂θ
∂t

=
∂
∂z

[
K
(
∂h
∂z

+ cosα
)]
− S(h) (1)

where θ represents the volumetric water content (cm3 cm−3), h represents the water pressure head (cm),
t represents time (d), z represents the vertical space coordinate (cm), α represents the angle between
the direction of water flow and the vertical direction, K represents the hydraulic conductivity function
(cm day−1), and S is the sink term (cm3 cm−3 day−1), which is defined as the rate of root water uptake.

The soil hydraulic properties can be expressed using the equations of van Genuchten [31] and
Mualem [32], which take the following forms:

θ(h) =

 θr +
θs−θr

[1+(α|h|)n]
m h < 0

θs h ≥ 0
(2)

K(h) = KsSl
e

[
1−

(
1− S1/m

e

)m]2
(3)

Se =
θ− θr

θs − θr
(4)

where Se represents the effective saturation (-), θr and θs represent the residual and saturated water
contents (cm3 cm−3), respectively, Ks represents the saturated hydraulic conductivity (cm day−1),
α (cm−1), m (-), and n (-) are empirical shape parameters, m = 1 − 1/n, and l (-) is the pore connectivity
parameter with the common assumption that l = 0.5.

The solute transport can be described using the convection–dispersion equation:

∂(θc)
∂t

+
∂(ρs)
∂t

=
∂
∂z

(
θD

∂c
∂z

)
−
∂(qc)
∂z

(5)

where c represents the solute concentration in the liquid phase (mg cm−3 or g L−1), ρ represents the
bulk density (g cm−3), s represents the adsorbed concentration (g g−1), q represents the vertical water
flux (cm day−1), and D represents the diffusion–dispersion coefficient (cm2 day−1).

2.2. Framework of EnKF

The EnKF was first proposed by Evensen [14]. It is based on forecasting error statistics using the
Monte Carlo method. This method adopts the mean of the ensemble of model states evolved in the
state space as the best estimate and the spreading of the ensemble as the error variance [32]. The EnKF
operates sequentially by performing a forecast step, followed by a filter update step. Generally,
the forecast step for an ensemble member i between times k + 1 and k can be expressed as:

X f
i,k+1 = Fk(Xa

i,k

)
+wi,k; wi,k ∼ N(0, Qk) (6)

where X f
i,k+1 and Xa

i,k represent the forecast state vector at time k + 1 and the updated state vector
at time k, respectively, Fk(•) represents the nonlinear model operator, Qk represents the model error
covariance matrix, and wi,k represents the perturbation of the model error.

Based on a linear correction, the filter update step at time k + 1 can be expressed as:

Xa
i,k+1 = X f

i,k+1 + Kk+1

(
Yi,k+1 −H

(
X f

i,k+1

))
(7)
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where Yi,k+1 is the ith observation sample obtained by adding a Gaussian noise to the actual observation
and H(•) is the observation operator that maps the model states to the observation space. For detailed
computation of the Kalman gain matrix at time k + 1, Kk+1, please refer to Evensen [33].

2.3. Observations in Layered, Variably Saturated Soils under Field Conditions

Using datasets including the soil texture, soil moisture, and salinity of layered, variably saturated
soils were collected from a maize field in the Hetao Irrigation District, which is located in the upper
reaches of the Yellow River Basin. Other information, including weather, irrigation, and crop growth
data, were also collected during the growing season of the year 2013 (seeded May 2 and harvested
September 21) [34].

The field was irrigated three times at rates of 112 mm in the jointing stage, 94 mm in flowering
stage, and 108 mm in the filling stage. The precipitation and evaporation during the growing season
were 104 and 920 mm, respectively. The soils were in a variably saturated state during the wet (irrigation
and/or precipitation) and drying (evaporation) cycles. The soil profiles at a depth of 0–300 cm were
divided into four layers according to the soil textures, as shown in Table 1. The soil water content and
salinity at depths of 0–10, 10–20, 20–40, 40–60, 60–80, and 80–100 cm were measured using soil samples
collected once every 10 d from May 2 to September 21, according to the crop growing season.

Table 1. Values of the van Genuchten–Mualem model parameters and dispersion length for different
soil layers.

Depth
(cm)

θr
(cm3 cm−3)

θs
(cm3 cm−3)

α
(cm−1)

n (-) Ks
(cm d−1)

l (-) L
(cm)

Soil
Texture

0–50 0.05 0.42 0.010 1.70 9 0.5 15 Silt loam
50–150 0.04 0.47 0.012 1.50 15 0.5 15 Silt loam
150–240 0.07 0.50 0.007 1.20 4 0.5 15 Silt loam
240–300 0.03 0.45 0.012 1.70 25 0.5 15 Silt loam

2.4. Model Setup

In the simulation, we used the calibrated results of Ren et al. [34] as the initial values of the soil
hydraulic parameters θr, θs, α, n, and Ks, and solute longitudinal dispersivity L, as shown in Table 1.
The parameters of the root water uptake used in the simulation are presented in Table 2.

Table 2. Values of parameters in water and salt stress response functions.

Parameter Description Values (cm)

h1 No water extraction at higher pressure heads −0.1
h2 h below which optimal water starts −15
h3h h below which water uptake reduction starts at high atmospheric demand −325
h3l h below which water uptake reduction starts at low atmospheric demand −450
h4 h below which water uptake is zero −8000
h*
ϕ Threshold value of hϕ −2000

h*
ϕ50 hϕ at which water uptake is reduced by 50% −6000

A meteorological forcing with a surface layer was specified as the upper boundary condition for
water flow, while a transient specified head defined by the observed groundwater depth was used
as the bottom boundary condition. For solute transport, the upper and lower boundary conditions
were defined by a given concentration flux, which was based on the observed total dissolved solid of
irrigation water and groundwater, respectively. The initial conditions of the soil water content and
solute concentration were set according to field observations [34].
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2.5. Data Assimilation Procedure

The HYDRUS-1D model was employed as an ensemble mode in the data assimilation scheme,
in which the soil moisture, solute contents, and model parameters were treated as random variables.
The data assimilation system predicted the states of soil water movement and solute transport,
and updated the model parameters sequentially in consideration of the observations. The detailed
procedures are described as follows:

(1) Construct the joint matrices for water dynamics and solute transport.

A =


h

Ks

α

B =

[
c
L

]
(8)

In matrix A, Ks and α represent the ensembles of the soil hydraulic parameters, and h represents
the pressure heads. In matrix B, L represents the ensemble of longitudinal dispersivity, and c represents
the simulated solute concentration simulated.

(2) Calculate the Kalman gain matrix Kk+1 when the observations are available at time k + 1.
The Kalman gain matrix can be expressed as follows:

Kk+1 = P f
k+1HT

(
HP f

k+1HT + Rk+1

)−1
(9)

where Pk+1 represents the error covariance matrix for the predicted state at time k + 1 and Rk+1

represents the error covariance matrix for observation at time k + 1.
(3) Update matrices A and B using Equation (7).
(4) Repeat steps (1)–(3) until the end of the simulation.
A flowchart of the coupling of the EnKF with HYDRUS-1D for assimilating the soil water

movement and solute transport is presented in Figure 1.
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2.6. Performance Metrics

The results of data assimilation were evaluated using the following indicators: the determination
coefficient (R2), mean relative error (MRE), root mean square error (RMSE), andNash and Sutcliffe
model efficiency (NSE) [35–37].

3. Results

3.1. Parameter Estimation for Homogeneous Soil

First, the established assimilation scheme was applied in a synthetic experiment to verify its
accuracy. The meteorological data from the study area were used as the upper boundary condition
in the scheme. In situ information for the soil texture and silt loam was applied in HYDRUS-1D.
The corresponding reference values of the parameters for the soil water and solute transport in
assimilation were Ks = 9 cm/day, α = 0.01 cm−1, and L = 15 cm. The simulated results at specific depths
corresponding to the sampling scheme (5, 10, 15, 20, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, and 110 cm
from the surface) were extracted for model comparison and verification. The time interval for model
assimilation was set as 2 days. To evaluate the performance of the EnKF for parameter estimation,
the initial estimates of Ks and α were shifted up and L was shifted down from their true values in the
forecasted prior system state. Detailed information regarding the data assimilation is presented in
Table 3.

Table 3. Values of potential impact factors for synthetic simulation.

Factors Values

Initial estimate of Ks (cm/day) 12
Initial estimate of α (cm−1) 0.011

Initial estimate of L (cm) 6.2
Initial standard deviation of lnKs 0.1
Initial standard deviation of lnα 0.01
Initial standard deviation of L 0.1

Model standard deviation of water content 0.001
Model standard deviation of salinity 0.01

Observation standard deviation of water content 0.0004
Observation standard deviation of salinity 0.0004
Initial standard deviation of water content 0.001

Initial standard deviation of salinity 0.01

The results of parameter estimation are depicted in Figure 2. We found that all the parameters
for water movement and solute transport eventually approached the reference values. Among the
three parameters, L exhibited a fast convergence. The changes of α and L were relatively stable, but Ks

changed drastically during the process. This tendency is attributed to the larger difference between the
initial estimate and the true value for Ks compared with those for α and L. The standard deviations
of all the parameters decreased continuously during assimilation. Thus, in summary, the EnKF is
effective for estimating the parameters of water and solute transport in homogeneous soil.
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Figure 2. Evolution of the estimated hydraulic conductivity (Ks), shape parameter (α), and longitudinal
dispersivity (L) values using EnKF.

3.2. Water and Solute Dynamics Processes with Assimilation of Soil Moisture

The established assimilation system was applied to verify its practicability in field conditions.
The reference parameter values used for assimilation listed in Table 1 were used with soil moisture
data. Other model setups duplicate those in Section 2.4. Figures 3 and 4 show the dynamics of the soil
moisture and salinity, respectively, at different depths of the simulation. The green dashed lines labeled
HYDRUS-1D in Figures 3 and 4 represent the results simulated by Ren et al. [34]. Both nonlinear
least squares estimation of parameters and trial and error curves fitting were employed in their
simulation. The “assimilation” marked with solid red lines denotes results from the EnKF with
parameter optimization. The assimilation results concur with the simulated results from HYDRUS-1D.
Often, a limitation in assimilation times and a lack of observation data are the two most significant
obstacles in the application of the EnKF for soil moisture and solute predictions. However, in our
experiment, there appeared to be no distinguishing differences between the results of the EnKF and
the least squares fitting when the number of assimilations approached 14, for both soil moisture
and salinity.
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Figure 3. Simulated soil moisture at different depths with assimilation of only the soil moisture. (Green
dashed lines represent the simulated results from Ren et al. [34] obtained using HYDRUS-1D; red solid
lines represent the assimilation results).
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dashed lines represent the simulated results from Ren et al. [34] obtained using HYDRUS-1D; red solid
lines represent the assimilation results).
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3.3. Water and Solute Dynamics Process for Assimilation of Soil Moisture, Salinity, and Parameters

Both the salinity data and the parameter L were considered in the assimilation process to
investigate the parameter-estimation capability of the EnKF. The dynamic processes of soil moisture
from observation, simulation, and assimilation at different depths are depicted in Figure 5, indicating a
perfect match for the soil moisture among the three datasets. The results are even better than those for
the assimilation shown in Figure 3 for a certain period. Figure 6 shows the measured, simulated, and
assimilated soil salinity content at different depths. Compared with Figure 4, the simulation results
for the soil salinity at different depths improved when the EnKF was applied. Both figures indicated
better simulations for the salinity of deeper layers (e.g., below 40 cm) than for that of the surface
layers. Furthermore, the simulated results for the salinity tended to be better at the later assimilation
stage; for example, the simulated results for greater than 60 d were better than those for the days
prior to day 60. Additionally, it appears that assimilating both the soil moisture and salinity did not
significantly improve the prediction of the soil moisture; however, it improved the prediction of the
salinity dynamics, particularly for the deeper layers.
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Figure 5. Simulated soil moisture at different depths with assimilation of the soil moisture and salinity.
(Green dashed lines represent the simulated results from Ren et al. [34] obtained using HYDRUS-1D;
red solid lines represent the assimilation results).
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Figure 6. Simulated salinity at different depths with assimilation of the soil moisture and salinity.
(Green dashed lines represent the simulated results from Ren et al. [34] obtained using HYDRUS-1D;
red solid lines represent the assimilation results).

The evolution of the estimated hydraulic conductivity (Ks), shape parameter (α), and longitudinal
dispersivity (L) values are shown in Figure 7. The estimated results of Ks1 and Ks3 for unsaturated
and saturated zones, respectively, were obviously stable during the assimilation process, and similar
tendencies for α and L are also observed in Figure 7. The standard deviations of Ks1 and α1 increased
over time. The primary reason for the increase was the impact of the uncertainty on the upper boundary
condition. The standard deviations of Ks3 and α3 were stable during the simulation, and the standard
deviations of L1 and L3 were stable during all simulation periods. Because of the insufficient measured
data during assimilation, deviation from the true value usually occurs when the EnKF is applied for
parameter estimation. Because the initial approximations for the parameters are used as the reference
values in the assimilation, accurate results for parameter estimation cannot be achieved if significant
differences exist between the initial estimations of the parameters and the true values.
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Figure 7. Evolution of the estimated hydraulic conductivity (Ks), shape parameter (α), and longitudinal
dispersivity (L) values with assimilation of the soil moisture and salinity.
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Ren et al. [34] used the procedures of nonlinear least squares fitting in addition to the trial and
error method to obtain optimized parameters, at the high cost of extensive human labor. The results of
parameter estimation using the EnKF proved to be of similar quality to those of Ren et al. [34], although
the procedures were both more straightforward and far less intensive with regard to human labor.
Furthermore, the results for the assimilation of the salinity were improved compared with the original
simulation results obtained by Ren et al. [34]. The goodness-of-fit indices for the simulation of the
salinity are presented in Table 4. In the present study, the assimilation of L improved the simulation
results compared with the MRE and NSE assimilation values for the original simulation. This indicates
that assimilation with the estimation of L can yield better results than assimilation of only the salinity.

Table 4. Goodness-of-fit test indicators for simulations with the assimilation of soil salinity data.

Indicator Original
Simulation

Assimilating Soil
Moisture

Assimilating Soil
Moisture and Salinity

RMSE (cm3 cm−3) 1.191 1.113 1.116
MRE (%) −3.345 −3.579 1.708

NSE 0.741 0.743 0.772
R2 0.822 0.830 0.834

The RMSE values of the soil salinity were calculated for the entire simulation period, as shown in
Figure 8. The RMSE values of the simulation results for the depth of 0–30 cm were slightly smaller
than those of the original simulation, in which the parameter estimation for salinity dynamics was not
considered. The RMSE values below 30 cm indicated that the original simulation was slightly better
than the assimilation results. Furthermore, the parameter estimation improved the accuracy of the
salinity prediction. The results of direct simulation via HYDRUS-1D were better than those of the
assimilation result when the parameters for the salinity dynamics were considered for depth below
30 cm. In contrast, the assimilation results for the salinity were significantly improved compared with
those of the original simulation when the parameter estimations were considered.
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Figure 8. Comparison of the RMSE values for different depths in HYDRUS-1D, for the assimilation of
only soil moisture and the assimilation of soil moisture and salinity.

This study indicates that the EnKF is effective for handling the highly nonlinear dynamics of soil
moisture and salinity, even for layered soil profiles. Figure 9 shows that both the soil moisture and
salinity were accurately predicted via the EnKF scheme within the assimilating depths of 0–100 cm,
although the prediction of the soil moisture was better than that of the salinity. Similar conclusions
were reported by Wu and Margulis [26]. Onsite soil moisture and solution electrical conductivity (EC)
data from sensors were used for data assimilation in their study. A far larger deviation was observed
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between the results of the assimilation and measurement in the study of Wu and Margulis than in the
present study. The primary reason for the bias of the EnKF simulation was the uncertainties of the
measurements from the sensor. High quality on-site measured data may improve the goodness-of-fit
in the application of the EnKF method. Thus, the uncertainties of the data source are an important
aspect worth considering in the application of the EnKF for hydrological modeling, particularly in
cases where parameter estimation is required.
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Figure 9. Sampling measurements versus EnKF estimates for soil with depths of 0–100 cm: (a) moisture;
(b) salinity. The black circles represent the ensemble mean versus measurements at different time steps,
and the solid black 1:1 diagonal line represents a perfect prediction.

3.4. Impact of Initial Perturbation

To analyze the influence of the initial perturbation on the assimilation results, different standard
deviations of the water content and salt concentration—(1) 0.001 cm3 cm−3, 0.1 g L−1; (2) 0.001 cm3

cm−3, 1 g L−1; and (3) 0.01 cm3 cm−3, 0.1 g L−1—were applied in a numerical scheme. Figure 10 shows
the soil moisture simulated using the EnKF at different initial perturbations. Figure 11 shows the
simulated salinity concentration in the same situation as that of Figure 10. It appears that the initial
perturbations had less effect on the results of the soil moisture simulation, while the initial perturbation
of the salinity may have caused a significant bias in the results of salinity simulation. The remarkable
bias of the simulated results could also cause divergence in certain cases or parts of the simulation
period. If the parameter estimation process was stable, the impact of the initial perturbation decreased
rapidly and remained stable after assimilation. The simulated soil moisture was not significantly
influenced by the simulation results for the salinity. This may have been caused by the small standard
deviation of the moisture.
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Figure 10. Simulated soil moisture at different depths with different initial perturbations of the soil
moisture and salinity: (a) 0–10 cm, with standard deviations of 0.001 cm3 cm−3 for moisture and
0.1 g L−1 for salinity; (b) 60–80 cm, with standard deviations of 0.001 cm3 cm−3 for moisture and
0.1 g L−1 for salinity; (c) 0–10 cm, with standard deviations of 0.001 cm3 cm−3 for moisture and 1 g
L−1 for salinity; (d) 60–80 cm, with standard deviations of 0.001 cm3 cm−3 for moisture and 1 g L−1 for
salinity; (e) 0–10 cm, with standard deviations of 0.01 cm3 cm−3 for moisture and 0.1 g L−1 for salinity;
(f) 60–80 cm, with standard deviations of 0.01 cm3 cm−3 for moisture and 0.1 g L−1 for salinity.
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3.5. Influence of Ensemble Size

Ensemble size significantly affected the assimilation results in for the EnKF method and thus also
influenced the simulated results for the soil moisture and salinity. Different ensemble sizes—(1) 30, (2)
50, (3) 100, and (4) 200—were adopted to investigate the effects of the ensemble size on the assimilation
processes and simulation results. Because the quality of parameter estimation is affected greatly by
the quantity of field observation data, the influence of the ensemble size on the parameter estimation
will not be discussed in this section, as limited field observation data were employed in the numerical
scheme. According to Figure 12, we concluded that the ensemble size had little influence on the soil
moisture at different depths, indicating that a reasonable or relatively small initial perturbation was
given for the soil moisture. Figure 13 shows the effect of the ensemble size on the assimilation of the
salinity for different soil depths. Clearly, the estimated results for the salinity were strongly influenced
by the ensemble size compared with the soil moisture. A smaller ensemble size yielded a broader
distribution of the simulated salinity values. Thus, a reasonably large ensemble size (e.g., 50 to 100)
can be useful for obtaining a stable assimilation result when the EnKF is applied in highly nonlinear
hydrological models.
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Figure 12. Simulated soil moisture at different depths with different ensemble sizes: (a) 0–10 cm, with
an ensemble size of 30; (b) 60–80 cm, with an ensemble size of 30; (c) 0–10 cm, with an ensemble size of
50; (d) 60–80 cm, with an ensemble size of 50; (e) 0–10 cm, with an ensemble size of 100; (f) 60–80 cm,
with an ensemble size of 100; (g) 0–10 cm, with an ensemble size of 200; (h) 60–80 cm, with an ensemble
size of 200.
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4. Discussion

As mentioned previously, the quality of parameter estimation via the EnKF for nonlinear
hydrological models is subject to two major constraints: uncertainties in the data source and the
quantity of observations. It is difficult to obtain an accurate result with uncertain data or sparse
observations in either the spatial or temporal scale. In our study, sampling data from six different layers
with soil depths of 0–100 cm were used for assimilation. The simulated soil profile spanned depths of
0–300 cm, which could include substantial differences in the soil texture, as well as in the parameters
for water and solute transport. Nodes far from the observation points exhibited weaker correlations
to the observation points, which may cause inaccurate estimation of parameters and prediction of
state variables when the EnKF method is applied. A numerical experiment was performed setting the
initial estimates of parameters to the true values to validate the simulation. The parameter estimation
and state prediction were improved by reducing the depth of the simulation or the number of grids
for spatial discretization. However, there was a need to balance these two factors and balance the
EnKF with the model operator. In this study, reducing the number of grids for spatial discretization
compromised the numerical stability of HYDRUS-1D. Furthermore, sparse observation data of field
conditions was common, which influenced the assimilation accuracy. Compared with the application
of Wu and Margulis [26], this study had the benefit of less uncertainties in the measured data. This is
because Wu and Margulis [26] obtained measurements using an onsite sensor, while we acquired
our data through soil sampling. Thus, accurate measurement of the state variables can mitigate an
insufficient dataset when used for assimilation.

In this study, the assimilation results for the soil moisture and salinity appeared to be independent,
which contradicts the fact that salinity dynamics depend on water movement. The main reason for this
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result may be that the assimilations of the soil moisture and salinity were conducted separately in the
HYDRUS-1D model, and the calculation of the solute transport was based on the water-movement
results. In HYDRUS-1D, the water movement was simulated via sequential iteration untill the threshold
for the water content/pressure was satisfied for a certain timestep. Then, the pore velocity of water
was used to simulate the solute transport via another sequential iteration untill the threshold for the
solute concentration was satisfied for the same timestep. Thus, the water movement and salinity
transport were modeled separately for a certain timestep. In contrast to HYDRUS-1D, which is
physical process-based model, the EnKF is a statistical method. It is impossible for the EnKF to allocate
reasonable weights for the soil moisture, salinity, and parameters of solute transport during parameter
estimation for the dynamics of the soil moisture process. Thus, further investigation of simultaneously
solving the water and solute movement is needed to improve the assimilation results when the EnKF
is applied to layered, variably saturated soil profiles.

The uncertainty in the upper boundary condition could also have an important impact on the
parameter estimation and hydrologic simulations. Factors, such as the weather conditions (precipitation,
potential evapotranspiration, etc.), irrigation practices, crop-growth conditions (amount and location of
water abstraction from the root zone, real evapotranspiration, etc.), that were applied in the simulation
may have deviated from the onsite field conditions. This type of uncertainty could have significantly
affected the upper layer when the assimilation was implemented (as shown in Figure 7). Although
proper quantification of the uncertainty on the upper boundary condition can improve the simulation
results, further investigation is needed for higher efficiency and more robust assimilation when the
EnKF is in combined with HYDRUS-1D.

5. Conclusions

The EnKF has been proven to be an effective tool for data assimilation in diverse areas. In this study,
data from a field experiment in the Hetao Irrigation District were used to investigate the performance
of the EnKF in combination with the HYDRUS-1D model under field conditions. Numerical schemes,
including diverse perturbation for initial values, different ensemble sizes, and parameter estimation,
were considered. The results and conclusions are as follows.

1. The EnKF effectively estimates parameters and predicts state variables such as the soil moisture
and salinity in layered, variably saturated soils when used with HYDRUS-1D. The reliability
of the results was highly dependent on the proper selection of assimilating factors such as
initial perturbation and ensemble size. A reasonable ensemble size range of 50–100 yields stable
assimilation results when the EnKF is applied to highly nonlinear hydrological models such as
that of this study.

2. The simulation results for moisture could not be significantly improved through the assimilation
of the soil moisture and relative parameters, but the simulation of the salinity was significantly
improved through the assimilation of the salinity and relative solute-transport parameters.

3. The bias of the EnKF simulation was primarily attributed to the uncertainties of the measurements
from the sensor. High-quality onsite measured data improved the goodness-of-fit when the
EnKF method was applied. Thus, the uncertainties of the data source are an important aspect
to consider when the EnKF is applied to hydrological modeling, particularly when parameter
estimation is required. Sparse observation data of field conditions benefits from the accurate
measurement of states variables in the application of EnKF assimilation.

The application of the EnKF algorithm for layered, variably saturated soils with a hydrological
model requires additional study, because solving the inherent physical model of the van
Genuchten–Mualem equation is a highly nonlinear problem and the situation is further complicated in
cases of sophisticated boundary conditions and a detailed driving force.
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