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Abstract: Algal bloom significantly alters the physicochemical properties of water due to drastic
pH change, dissolved oxygen depletion/super-saturation, and toxicity, which lead to ecosystem
destruction. To prevent this, this study evaluated the reduction performance of algal biomass by
applying a non-thermal or cold plasma process. We used chlorophyll-a (chl-a), suspended solids
(SS), and turbidity as indicators of the biomass. Results demonstrated that their removal efficiencies
were in the ranges 88–98%, 70%–90%, and 53%–91%, respectively. Field emission scanning electron
microscopy indicated how the cell wall of microalgae was destroyed by cold plasma. Also, the removal
kinetics of cold plasma confirmed the enhanced removal rate constants. The estimated required times
for 99% removal were 0.4–1.2 d (chl-a), 1.3–3.4 d (SS), and 1.6–6.2 d (turbidity), respectively. Overall,
cold plasma could be a useful option to effectively treat pollution associated with algal bloom in
surface water.
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1. Introduction

Microalgal bloom associated with the rapid growth of numerous algae and cyanobacteria in
surface water has been frequently reported in receiving water worldwide [1]. In addition to the
insufficient management of eutrophication by incoming non-point sources [2,3], climate change and
global warming are also major causes of the significant blooms [1,4,5]. If the bloom occurs at around the
water intake, it leads to serious drinking water quality problems [6], and thus securing the high quality
of water resources from the bloom is currently a very important issue [7]. The bloom changes the
physicochemical properties and microbial communities of surface water [8] due to drastic pH change
and dissolved oxygen depletion/super-saturation, leading to fish deaths, bad taste, odor-causing
compounds, and toxins [9,10].

These problematic issues made by microalgal biomass have become the main removal targets
in surface water [11,12]. Therefore, newly suggested methods have been tested, such as modified
local soil technology [3], advanced oxidation processes (AOPs) [13], and so on. In most cases, the
amount of biomass has been quantified by either suspended solids (SS) [14], turbidity, or chlorophyll-a
(chl-a) [15], and thus the control over the major indicator pollutants is crucial for water resources
protection and security.

Various AOPs have been applied to remove microalgal biomass, but UV treatment has a limitation
when the turbidity of the raw water is high [16], and O3 has difficulties in controlling the pH [17].
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In the case of Fenton oxidation, excess sludge generation is problematic when the organic content is
too high [18]. For ultrasonication and microwave treatment, cost can be a limiting factor despite the
strong physicochemical oxidizing power [19].

Among various options, the non-thermal or cold plasma process has been known to overcome
the disadvantages of conventional AOP. Cold plasma is known to cause a variety of oxidative and
chemical species, such as radicals (e.g., H·, O·, and OH· ) and molecules (e.g., H2O2 and O3), shock
waves, ultraviolet, and electrohydraulic cavitation [13,20–23]. In addition, the cold plasma process is
considered to be a process combining the advantages of other AOPs, and has relatively few constraints
on temperature and pressure [24–26]. However, the cold plasma process for the removal of microalgae
has rarely been reported.

This study therefore attempted an air-assisted cold plasma process as a method to treat indicators
of microalgal biomass content. Experiments were designed to confirm the efficient elimination of
algae by the cold plasma. Their specific objectives were: (1) to verify how the cold plasma effectively
removes chl-a, SS, and turbidity at various initial concentrations; (2) to investigate the kinetic rate
constants of the cold plasma process; (3) to find cause and effect of microalgal cell change in the cold
plasma treatment; and (4) to estimate time for 99% removal based on the kinetics.

2. Materials and Methods

2.1. Experiment Set-Up

The water samples were taken from a local reservoir that suffered from algal bloom in Korea.
The characteristics of the sample are shown in Table 1.

Table 1. Physical and chemical characteristic of sampled raw surface water. CODcr: chemical oxygen
demand; TOC: total organic carbon; SS: suspended solids; TN: total nitrogen; Chl-a: chlorophyll-a.

Item Average

CODcr (g/L) 4.1
TOC (g/L) 0.4

SS (g/L) 1.2
TN (g/L) 0.3

Turbidity (NTU) 3600
Chl-a (g/m3) 10.8

A lab-scale cold plasma process equipped with the direct aeration of carrier gas and air was
applied to the sample. The air-assisted cold plasma was provided by Groon co. Ltd., in Jeonju city,
Korea. The glow-discharge-based plasma generator (10 mA and 2.2 W) produced plasma in the passing
air. The aeration pump (1.5 A and 330 W, WELCH, Model No. 2546 C-10) was operated with the air
flowrate of 5 L/min, which was controlled by a flow meter (Dwyer, RMA-22-SSV, USA). After the air
passed through a plasma-generating apparatus, reactive chemicals in the plasma state were directly
contacted with the target pollutants in the water sample. A schematic diagram of the device is shown
in Figure 1.
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Figure 1. Lab-scale set-up of the air-assisted cold plasma process for batch experiments at an air 
flowrate of 5 L/min: (a) aerator, (b) cold plasma generator, (c) flow meter, and (d) magnetic stirring 
and reactor. 

To investigate the removal efficiencies of indicator parameters, we diluted the original sample 
for five different runs, as summarized in Table 2. Under each initial concentration, cold plasma 
treatments were conducted for 24 h, and the samples were collected according to the experimental 
design for analyses. 

Table 2. Mixing ratio of raw surface water to dilution (distilled water). 

Run Dilution Ratio a (times) 
1 8.0 
2 4.0 
3 3.0 
4 1.3 
5 1.0 

a Total water volume after dilution/raw water volume. 

2.2. Experimental Measurements  

Using spectrophotometry, chl-a concentrations were analyzed by a method based on acetone 
extraction [27]. To quantify the total mass of microalgae, SS was determined by adapting 2540 D of 
the standard method for the examination of water and wastewater [28]. Turbidity was determined 
by a turbidity meter (Orion AQ4500, Thermo Scientific, Singapore), which recorded nephelometric 
turbidity units (NTUs). 

The microalgal cell surface was observed using a field emission scanning electron microscope 
(FE-SEM). After centrifugation, the cells were resuspended by inserting a fixing solution containing 
2% paraformaldehyde and 2% glutaraldehyde into 0.05 M cacodylate buffer (pH 7.2). We then kept 
the sample at room temperature overnight. Thereafter, cells were washed three times (10 min each) 
with 0.05 M sodium cacodylate buffer (pH 7.2). Then, cells were immersed in 1% osmium tetraoxide 
in 0.05 M sodium cacodylate buffer, pH 7.2, for 1.5 h at 4 °C. Again, after two times of washing with 
distilled water, stepwise dehydration in ascending ethanol content (30%, 40%, 50%, 70%, 80%, 90%, 
and 100%) was conducted. Overall, the pretreatment process took approximately 80–90 min to 
complete. The pretreatment was followed by a drying processes of: (1) two steps of chemical drying 
were conducted with 100% hexamethyldisilazane (HMDS) for 15 min each, and then (2) two rounds 
of critical point drying were conducted with 100% isoamyl acetate for 15 min. Afterwards, a gold film 
coating made the cell surface observable by FE-SEM equipment (SUPRA 40 VP, Carl Zeiss 
Oberkochen, Germany). 

Figure 1. Lab-scale set-up of the air-assisted cold plasma process for batch experiments at an air
flowrate of 5 L/min: (a) aerator, (b) cold plasma generator, (c) flow meter, and (d) magnetic stirring
and reactor.

To investigate the removal efficiencies of indicator parameters, we diluted the original sample
for five different runs, as summarized in Table 2. Under each initial concentration, cold plasma
treatments were conducted for 24 h, and the samples were collected according to the experimental
design for analyses.

Table 2. Mixing ratio of raw surface water to dilution (distilled water).

Run Dilution Ratio a (times)

1 8.0
2 4.0
3 3.0
4 1.3
5 1.0

a Total water volume after dilution/raw water volume.

2.2. Experimental Measurements

Using spectrophotometry, chl-a concentrations were analyzed by a method based on acetone
extraction [27]. To quantify the total mass of microalgae, SS was determined by adapting 2540 D of
the standard method for the examination of water and wastewater [28]. Turbidity was determined
by a turbidity meter (Orion AQ4500, Thermo Scientific, Singapore), which recorded nephelometric
turbidity units (NTUs).

The microalgal cell surface was observed using a field emission scanning electron microscope
(FE-SEM). After centrifugation, the cells were resuspended by inserting a fixing solution containing
2% paraformaldehyde and 2% glutaraldehyde into 0.05 M cacodylate buffer (pH 7.2). We then kept
the sample at room temperature overnight. Thereafter, cells were washed three times (10 min each)
with 0.05 M sodium cacodylate buffer (pH 7.2). Then, cells were immersed in 1% osmium tetraoxide
in 0.05 M sodium cacodylate buffer, pH 7.2, for 1.5 h at 4 ◦C. Again, after two times of washing
with distilled water, stepwise dehydration in ascending ethanol content (30%, 40%, 50%, 70%, 80%,
90%, and 100%) was conducted. Overall, the pretreatment process took approximately 80–90 min to
complete. The pretreatment was followed by a drying processes of: (1) two steps of chemical drying
were conducted with 100% hexamethyldisilazane (HMDS) for 15 min each, and then (2) two rounds of
critical point drying were conducted with 100% isoamyl acetate for 15 min. Afterwards, a gold film
coating made the cell surface observable by FE-SEM equipment (SUPRA 40 VP, Carl Zeiss Oberkochen,
Germany).
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2.3. Statistical Analyses and Regressions

To determine the removal rate constant, k (d−1), the computer software SigmaPlot (Systat Software,
Inc., San Jose, CA, USA) was used for regression based on first-order exponential decay assumptions
of chl-a, SS, and turbidity over the cold plasma operation time. To estimate the response time for
99% removal of chl-a, SS, and turbidity, we replaced the concentration of the first-order exponential
decay model as 0.01c0 with the obtained k (d−1), where c0 is the initial concentration of either chl-a, SS,
or turbidity.

3. Results and Discussion

3.1. Degradation of Major Microalgal Indicators by Cold Plasma Application

The experiment was designed to verify the degradation performance of microalgal indicators by
cold plasma. Experimental results were obtained based on the experimental design. Figure 2 shows
the degradation trends of chl-a, SS, and turbidity according to the cold plasma contact time.

As shown in Figure 2a, the initial chl-a of Run 5 was 10.8 g/m3, which decreased to 1.2 g/m3

after 24 h, having an 88.8% removal efficiency. The chl-a of Run 4 started at 7.9 g/m3, and the final
concentration after 24 h was merely 0.5 g/m3 (94.3% removal efficiency). Run 3 showed the highest
removal efficiency of 98.8%, equivalent to a decrease from 6.4 g/m3 to 0.08 g/m3. In the case of Run 2
and Run 1, initial chl-a (3.1 g/m3 and 1.0 g/m3) declined to 0.07 g/m3 (97.7% removal) and 0.05 g/m3

(95.1% removal), respectively.
Figure 2b illustrates the dynamics of SS in the reactor. It was revealed that the cold plasma

actively degraded suspended solids in the reactor, though Run 5, with the highest initial concentration,
presented an initial fluctuation. The SS of Run 5 was measured to be 1.28 g/L, and after 24 h treatment
the SS value was 0.29 g/L, showing a 77.3% removal efficiency. The SS values of Run 4 and Run 3 were
measured as 1.01 g/L and 0.58 g/L, respectively. The final data were 0.15 g/L and 0.08 g/L. The removal
efficiencies of the two runs were only 85.0% and 85.3%, respectively. Run 2 showed the highest removal
efficiency of 90.5% (0.42 g/L to 0.04 g/L). The SS value of Run 1 was 0.1 g/L, and it decreased to 0.03 g/L,
recording a 70.0% removal efficiency.

Figure 2c presents the turbidity according to the cold plasma contact time. The initial turbidity of
Run 5 was 3267 NTU, and the final was recorded as 1519 NTU, showing a 53.5% removal. The initial
turbidity of Run 4 (1800 NTU) reduced to 460 NTU (74.7%) after 24 h. Meanwhile, Run 3 showed the
highest removal efficiency of 91.1% (1275 NTU to 113 NTU). The lower initial turbidities of Run 2
(346 NTU) and Run 1 (108 NTU) did not lead to higher removal efficiency. The final turbidities were
84.6 NTU (75.5%) and 41.3 NTU (61.8%), respectively.

Previous studies have shown that the AOP process was effective in chl-a removal when the initial
concentration was ~160 mg/m3 [29,30], and was also shown to be effective in SS removal [25,31–33]
and turbidity removal [14,34–36].

This study found that cold plasma could obtain chl-a removal efficiencies of over 94% when the
initial concentration was higher than 1.4 g/m3 (Run 1). This result implies that cold plasma is very
effective in chl-a reduction, even at extremely high initial chl-a (~10 g/m3). The obtained removal
efficiencies indicate that the reactivity of chemical species from cold plasma seems to be very strong,
since this study demonstrated little difference in efficacy for the tested range of initial chl-a.

Results also showed SS removal greater than 70% for all the experiments, indicating the efficacy
of the cold plasma process, though a slight increase of SS (1.08 to 1.24 g/L) at 3 h was observable for
higher initial SS (Run 5). This is possibly because algal cell disintegration, extracellular by-products
separation, or intercellular materials release may increase or maintain the initial SS due to active
simultaneous reactions.

The strong oxidizing power of the cold plasma process similarly confirmed the reduction of
turbidity, though the treatment efficiencies were lower than those of chl-a and SS. In the case of Run 5,
the turbidity increased to 4300 NTU during first 3 h and then started to decrease. This increase may
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be associated with the release of inner cell materials in the microalgae decomposition process, which
is consistent with the literature [29]. These results indicate that the turbidity is not a good indicator
for biomass removal assessment compared to chl-a and SS, though the cold plasma process could
effectively oxidize turbidity, eventually obtaining material degradations of up to 91.1%.
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3.2. Enhanced Degradation Kinetics in Cold Plasma Process

The removal rate constant (kchl-a) of Run 1 with a relatively low initial concentration (1 g/m3)
was 3.75 d−1 (Table 3). When the chl-a concentration was over 10.8 g/m3 (Run 5) it was
11.84 d−1—approximately three times slower due to the increased concentration of chl-a. However,
Runs 3, 4, and 5 showed slightly lower or similar removal rates than Run 2, which indicates that
the removal rate could be maintained despite the increase of biomass being removed (Figure 3a).
Therefore, it is considered that a high removal rate can be obtained at a low concentration, and a large
amount of removal can be obtained at a high concentration. This large variation occurs possibly due to
the difference in the initial amount of chl-a, but all cases showed higher values than that (3.55 d−1,
R2 = 0.97) of UV-C degradation [37]. Based on the regression, removal rates (k) of chl-a were estimated.

The removal rate constant of SS showed a different pattern to chl-a (Figure 3a,b). The highest
removal rate of Run 4 was 3.38 d−1. Depending on concentration, the removal rate constant ranged
between 1.35 d−1 and 3.38 d−1 (Table 3). Especially, when the concentration of SS was approximately
100 mg/L (Run 1), a very low removal rate of 1.34 d−1 was recorded. It was judged that the removal
rate was the lowest because of a low initial amount of SS. Therefore, the removal rate might be lowered
due to the overload of particulate matter in this SS removal by cold plasma.

Table 3. The removal rate constant, k, was regressed by using the data obtained from each experimental
condition of chl-a, SS, and turbidity.

Run
Chl-a SS Turbidity

Experimental
Removal
Efficiency

(%)

Regressed
Removal

Rate, k (d−1)
R2

Experimental
Removal
Efficiency

(%)

Regressed
Removal

Rate, k (d−1)
R2

Experimental
Removal
Efficiency

(%)

Regressed
Removal

Rate, k (d−1)
R2

1 95.1 11.84 0.96 70.0 1.35 0.90 61.8 0.73 0.71
2 97.7 3.92 0.96 90.5 2.69 0.98 75.5 1.74 0.96
3 98.8 4.80 0.99 85.3 2.89 0.92 91.1 2.85 0.96
4 94.3 4.75 0.96 85.0 3.38 0.96 74.7 2.39 0.94
5 88.8 3.75 0.99 77.3 1.92 0.66 53.5 1.44 0.52

The removal rate constants of turbidity presented a slightly similar trend to that of SS (Figure 3b,c).
Estimated removal rate constants of Runs 3 and 4 presented little difference, at 2.85 d−1 and 2.39 d−1,
respectively (Table 3). Only Run 5 with the highest turbidity and Run 1 with the lowest turbidity
showed significantly reduced removal rates (1.44 d−1 and 0.73 d−1).
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This is a distinctively different removal trend from those of chl-a, which showed the highest
removal rate in Run 1 (Figure 3a). This could be attributed to the nature of turbidity measurement, due
to a wide range of particles causing incident light scattering. The residual cell wall (Figure 4c) and
inner cell materials (Figure 2b,c) due to cold plasma application must have different properties in their
shape, color, and reflectivity, leading to an unreliable determination for very high and low turbidity
(Run 5 and 1).
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3.3. Morphological Change of Microalgal Cell Surface by Cold Plasma

To verify the removal mechanism of chl-a, FE-SEM pictures of the cell surface was taken before
and after the cold plasma treatment. Figure 4 illustrates the representative changes found on the cell
surface. The pictures clearly show that the cold plasma caused substantial destruction of the microalgal
cell wall. Especially, Figure 4b,c demonstrates the complete breakage and shrinkage of the cell surface,
which implies the devastating decomposition of the inner cell materials including chl-a, though a
residual skin-like cell wall still remained.

This indicates that the oxidation and reduction of reactive chemicals produced by the cold plasma
can lead to bactericidal or bacteriolytic inactivation of the cells. This is consistent with previous
results [26,30] and may suggest a stronger effect compared to previous literature. Figure 4c demonstrates
that the changes of the cell surface caused severe damage to the cell surface due to continuous exposure
to reactive chemical species. These results support the efficient inactivation of microorganisms in the
cold plasma treatment.
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Figure 4. SEM images showing morphological destruction of the microalgal cell by reactive chemicals
from the cold plasma. (a) Original single cell before cold plasma application; (b) shrunken cell surface
after cold plasma application; and (c) torn-off cell surface at the end of the cold plasma treatment.

3.4. Necessity of Enough Contact Time for Bloom Control

Figure 4c shows that cell wall debris of microalgae remained, constituting the remaining SS. This
explains the low treatment efficiency of SS compared to the case of chl-a. It is evident that removal
rates of chl-a for Runs 3, 4, and 5 were highly maintained, while those of SS were relatively low. So,
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it is judged that the removal was still effective even though the SS removal efficiency was lower than
expected because of the residual SS. The cold plasma process was limited in its capability of complete
SS reduction within a short contact time (24 h). Thus, the 99% response times for SS were much longer
(1.3–3.4 d) than those for chl-a (Table 4).

Table 4. The removal rate k calculated using the data obtained from each experimental condition of
chl-a, SS, and turbidity.

Chl-a SS Turbidity

Run Estimated 99% Response Time a (d) Estimated 99% Response Time a (d) Estimated 99% Response Time a (d)

1 0.4 3.4 6.2
2 1.2 1.7 2.6
3 0.9 1.6 1.6
4 0.9 1.3 1.9
5 1.2 2.4 3.1

a 99% response time means that the concentration was lowered to 99% of its initial value.

The cloudy transparency of the cold-plasma-treated water (Figure S1 in Supporting Information)
also supports the potential interference due to the remaining fine particles or dissolved solids from the
degradation of biomass-related compounds. For these reasons, the 99% response time was extended
significantly to ~6.2 d (Table 4). For Run 1, the initial turbidity was only 108 NTU, and a decrease
to about 1 NTU would be required for a 99% removal efficiency. Therefore, more contact time was
required to obtain such a low turbidity.

4. Conclusions

This study revealed that the strong oxidizing power from reactive chemicals produced by cold
plasma led to excellent microalgal removal. Our experimental results based on chl-a, SS, and turbidity
determinations as biomass indicators demonstrated substantially high removal efficiency (over 90.5%).
Removal rates indicated that SS and turbidity tend to differ from chl-a due to the particulate matter
produced by the degradation of large amounts of microalgal cell. FE-SEM analysis indicated that the
removal mechanisms of chl-a and SS were due to severe deformation of the microalgal cell surface.
The minimum time required to achieve a 99% removal efficiency for each indicator was estimated
at approximately 1.6 d. Overall, this study verified the advanced performance of cold plasma from
the viewpoints of chl-a, SS, and turbidity removal, and provides their kinetics. It may provide a
sustainable approach to control a wide range of microalgal blooms without concerns about microalgal
biomass harvesting.
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