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Abstract: Offshore wind farms have a superior wind source to terrestrial wind farms, but they also
face more severe environmental conditions such as severe storms, typhoons, and sea waves. Scour
leads to the excavation of sediments around the foundations of structures, reducing the safe capacity
of the structures. The phenomenon of pier scour is extremely complex because of the combined effects
of the vortex system involving time-dependent flow patterns and sediment transport mechanisms.
A real-time scour monitoring system can improve the safety of structures and afford cost-effective
operations by preventing premature or unnecessary maintenance. This paper proposes an on-site
scour monitoring system using visible light communication (VLC) modules for offshore wind turbine
installations. A flume experiment revealed that the system was highly sensitive and accurate in
monitoring seabed scour processes. This arrayed-VLC sensory system, proposed in this paper, has
considerable potential for safety monitoring and also can contribute to improving the accuracy of
empirical scour formulas for sustainable maintenance in the life cycle of offshore structures.

Keywords: visible light communication system; offshore wind turbine foundation; scour; early
warning monitoring; life cycle

1. Introduction

Wind energy, in particular, offshore wind power, has been recognized as one of the highest
growing and the most important future renewable energy source [1,2]. Due to severe environmental
conditions—such as severe storms, typhoons, ocean currents, and waves—offshore wind farms face
more challenges in the issues of structure safety. Scour around the foundation of structure leads to the
excavation of sediment deposits, reducing the safe capacity of the structure [3,4].

The scour mechanism of offshore wind turbine foundation caused by waves and currents is quite
similar to bridge scour. From the studies of the past 30 years, flooding and foundation scouring
was the primary cause of 600 bridges failed or collapse in the United States [5–14]. Average damage
repair on highways cost of flooding in the United States is estimated to be $50 million per year [11].
A scour monitoring and early warning system must be developed for evaluating the safety of
structures. Moreover, conducting timely reinforcement and maintenance processes in response to
seabed topographical changes induced by current erosion and scour processes around these structures
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is also needed. Information obtained from scour monitoring systems can help engineers to design
relatively safe and cost-effective offshore wind farms.

The phenomenon of pier scour is extremely complex because of the combined effects of the
vortex system involving time-dependent flow patterns and sediment transport mechanisms. Scour
processes around structures have received considerable attention over the past decades. Numerous
studies have explored the mechanisms of hydraulic scour around foundations and have presented
several formulas for scour depth estimation around piers. Most studies on scour have applied
experimental flumes and mainly focused on the application of empirical regression equations for
estimating the maximum scour depth. However, field data are limited because of the difficulties
associated with long-term measurement processes. Without sufficient field measurement data, such
empirical equations may not be sufficiently accurate for field applications. In general, when a steady
current encounters a cylindrical vertical foundation, the flow rate increases around the periphery of
the foundation, producing a complex hydraulic flow such as a bow wave, a downflow in front of the
pier, a horseshoe vortex, and a highly turbulent wake in the downstream region of the foundation.
These combined effects of hydraulic scour lead to the erosion of sediments from the foundation in
all directions and reduce the loading capacity of the foundation, thereby compromising the safety of
the supported structure [5–17]. Uncertainties regarding the maximum scour depth around offshore
wind turbines lead to complications in their design and risks in their operation. Several methods have
been proposed for estimating or monitoring the maximum scour depth around structures. A real-time
scour monitoring system can improve the safety of structures and afford cost-effective operations by
preventing premature or unnecessary maintenance [17].

In general, the difficulty associated with developing measuring instruments with data acquisition
systems is ensuring their durability in monitoring large-scale hydraulic and transportation structures
under severe conditions. The Keulegan–Carpenter number (KC) was applied to realize the foundation
uncertainties of marine wind farm structures scour [18]. There were many works focused on the
vibration-based approaches to monitoring the structural health status of the wind turbine [19–21]. For
example, a distributed-spring foundation model to estimate the variation of natural frequencies and
provide a strategy for addressing scour-induced damage around monopile foundations has used [22].
Full-scale offshore wind turbines with tripod structure were analyzed using real structural features
and three-dimensional (3D) finite element models; the results show that scouring has a slight effect on
natural frequency data [23]. Another study employed nonlinear springs to simulate the interaction
between the foundation of a wind turbine and soil subjected to different wind, wave, and current
loads—reflecting operational conditions—to determine the effects of scour on stiffness properties.
The results revealed that scour considerably altered the eigen frequency of the structure compared
with that of an offshore monopile wind turbine with scour protection [24,25]. Furthermore, a study
applied 3D computational fluid dynamics (CFD) to develop a numerical model to examine the seabed
boundary-layer flow around monopile and hexagonal gravity-based foundations of offshore wind
turbines; the flow was examined to determine the formation of horseshoe vortices and flow structures
to estimate potential scour for engineering designs. The results showed that the horseshoe vortex size
for the hexagonal gravity-based foundation was smaller than that for the monopile foundation [26–30].
Another study also proposed a wireless network monitoring system connected to an array of small
capacitive sensor probes installed around a foundation for observing scour and sediment deposition
processes; this system is similar to a sonar scanning approach [31].

The foundation of an offshore wind turbine constitutes approximately 35% of the installation
cost of such a turbine [32]. Construction sites for offshore wind farms are typically surveyed using
different investigation approaches or hydraulic models such as bathymetry, seismometry, and side-scan
sonar techniques before and after the main construction phase. However, as mentioned, the seabed
topography changes constantly because of sea currents. Because uncertainties regarding seabed erosion
and scour constitute a major risk for offshore wind farm development, the design and operation of
offshore wind turbines should mainly focus on addressing the uncertainty regarding the maximum
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scour depth around the foundations of such turbines. In order to protect against the erosion of the
offshore wind turbine foundation, rock dump is usually laid to prevent removal of the sediment base.
However, edge scour still continues to occur despite the foundation protective devices installed [33].
With the advancement of artificial intelligence (AI) technology, machine learning (ML) and deep learning
(DL) will have a better contribution to offshore wind turbine condition monitoring [34–49]. Artificial
intelligence (AI) is basically an algorithm for regression analysis of existing big data rules which
include machine learning, deep learning, genetic algorithm, neural network, and fuzzy. Generally, the
multilayer perceptron (MLP) neural network is commonly used as an AI model prediction. Feature
extraction from the multiple linear regression (MLR) and multivariate nonlinear regression (MNLR)
properties of supervised and unsupervised learning need to compare with existing empirical equations.
To accurately predict the scouring process by means of inductive modeling, the AI modeling process
still requires a large amount of data as training, test, and vilified dataset to analyze the sensitivity of
the model. Once the scour depth can be measured, empirical formulas for measuring scour processes
can be developed. Most of the current formulas are based on laboratory-based research models,
engineering design assessments, and measurement experience after in situ scouring. However, due
to the lack of reliable and durable instrumentation technology, scour data from real-time monitoring
systems is still insufficient.

An on-site scour monitoring system using visible light communication (VLC) for offshore wind
turbine is proposed in this paper. Specifically, the monitoring system consists of arrays of small VLC
modules attached directly to a pile structure and use the topology of the underwater optical wireless
sensor network to enable remote data acquisition. Experiments conducted in flumes have revealed
that the system was highly sensitive and accurate to monitor seabed scour processes. The proposed
robust sensory monitoring system has considered for further on-site applications and as an indicator to
improve the empirical scour formulas for sustainable maintenance in the life cycle of offshore structures.

2. Underwater VLC Turbidity and Velocity Characteristics

VLC, a novel free-space optical wireless communication technology, entails the combination
of white and colored light-emitting diodes (LEDs) to utilize visible light (375–780 nm) as
a transmission medium.

VLC is becoming an alternative choice for wireless technology because of its low operating cost,
low maintenance cost, long-term service stability, broad bandwidth, and ubiquitous infrastructure
support. Numerous studies have been conducted in both industry and academia to develop and
commercialize VLC systems. Particularly, underwater wireless communication is of great interest to
the marine industry and scientific society [50]. With the rapid development of solid-state lighting and
semiconductor technology, VLC modules equipped with LEDs as light sources are expected to be mass
produced at low cost. This technology has potential for use in a wide range of both indoor and outdoor
applications for free communication services. Indoor VLC for an optical wireless communication
system using LED lights was firstly proposed in 2004 with its high brightness, reliability, lower power
consumption, and long lifetime advantages [50].

Measuring water turbidity has been widely developed over the past few decades. Theoretically,
water turbidity was measured based on absorption, attenuation, and scattering effects by using
spectrometers or photometric devices. For example, the acoustic Doppler velocimeter (ADV) measured
the flowing velocity [51] while the optical laser Doppler velocimeter (LDV) [52] estimated the Doppler
frequency shift (DFS) of coherent sound or light caused by the particle concentration in water. However,
because of its size and inconvenient implementation, ADV and LDV are not suitable for measuring
seabed turbidity and scouring. For offshore wind turbine foundation scour monitoring, the attenuation
and absorption characters of the VLC measurement system in seawater, particularly the turbidity of
the scouring suspension particles, need to be studied first.
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Typically, Beer’s law (also known as Beer–Lambert law) is a well-known optical law and commonly
applied to derive the relationship in between absorption coefficient, optical path length, and the media
concentration in spectroscopy from a continuous wave [53,54].

h(D) = hc e−c(λ)D (1)

where c (λ) = a(λ) + b(λ) is the cumulative attenuation coefficient of the medium, a(λ) and b(λ)
denote the absorption coefficient and scattering coefficient, respectively. Typically, λ stands for the
light wavelength, D is the communication distance, h(D) is the output or detected intensity, hc is the
input intensity.

VLC system implemented for underwater turbidity and scour laboratory demonstration in this
paper, a nearby 2 cm distance of transmitter and receiver are arranged for less multiple scattering effects
and avoided long distance channel attenuation loss. However, there are higher power optical lasers
and higher intensity LEDs for long distance optical wireless communications (OWCs) which have less
length intensity dispersion and improved the channel scattering effects [55]. A VLC system in the
order of 100–200 m, and up to 300 m has been used to transmit data in the water environment [56,57].
However, due to the properties of oceanic turbulence such as the suspended particles, salinity, and
temperature, the line-of-sight path attenuation loss is estimated by the radiative transfer equation
(RTE). The vector RTE, implies energy conservation of a light wave traversing a scattering medium,
is calculated by[

1
c
∂
∂t

+ α·∇

]
ψ(t, ρ,α) =

∫
4π
ξ(ρ,α,α′)ψ(ρ,α,α′)dα′ − κ(λ)ψ(t,ρ,α) + Φ(t,ρ,α) (2)

Herein, α is the direction vector while ρ is the position vector. ∇ presents the divergence operator with
respect to ρ,ψ is the irradiance, Φ is the internal source radiance, and ξ is the volume scattering function.

Experimental results obtained in our previous study demonstrated the feasibility of the VLC
modules for executing both water turbidity and water flow velocity measurements [58]. To prevent the
effects of ambient light, the proposed system applies a sinusoidal signal to modulate the VLC module.
Figure 1 describes both the sinusoidal signal from the VLC transmitter and the interference signals from
ambient light sources, obtained on the receiver side. Normally, VLC modules operate at a frequency of
a few megahertz. The frequency of ambient light intensity changes is slower than that of the designed
sinusoidal signal, bandpass filters implemented on the VLC receiver. Therefore, the VLC can receive
the in-band sinusoidal signal and eliminate the interference signals of out-of-band frequencies; thus,
the problems associated with ambient light interference are prevented in the proposed system.
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2.1. Water Turbidity Measurement

For water turbidity measurement, assume that yt is the sampled version of the received signal
y(t) at a sampling rate of ft and window size of Nt-point. The root mean square (RMS) value of yt can
be computed as

yRMS =

√
yty

T
t

Nt
(3)

Assume that y0 is the reference RMS value of transparent water. The difference between yRMS
and y0 can then be calculated as

∆RMS = y0 − yRMS (4)

Notably, Equation (4) is the attenuated power energy caused by the attenuated light path through
the turbid water. The proposed system applies ∆RMS to measure water turbidity.

2.2. Water Flow Velocity Measurement

Figure 1 presents the signal processing setup for water flow velocity measurement, where
yv = [yv,1, . . . , yv,Nv ] is the sampled version of the received signal y(t) at a sampling rate of fv
and window size of Nv-point. The envelope of the received signal yv is computed to outline the
characteristics of the signal. Let the Hilbert transform of yv be

~
yv = [ỹv,1, . . . ,ỹv,Nv ]. The envelope of

the received signal yv can be expressed as

ŷv = [ŷv,1, . . . ,ŷv,Nv ] (5)

in which ŷi =
√

y2
v,i + ỹ2

v,i, i = 1, . . . , Nv. The frequency of the envelope from the received signal can
be obtained as

yF = [yF,1, . . . ,yF,Nv ] = =(ŷv) (6)

where =(•) describes the Fourier transform operation. Herein, only half of yF is considered due to the
symmetric property of the frequency response (i.e.,

[
yF,1, . . . ,yF,Nv/2

]
). To remove the direct current

(DC), the system applies a frequency-domain DC-block filter with the coefficients

hDC =
[
h1, . . . ,hNv/2

]
(7)

where hi =

{
1, i ≥ pcut

0, i ≤ pcut
, i = 1, . . . , Nv/2.

In Equation (7), pcut = [( fv/2 + fcut)(Nv − 1)/ fv+1] −Nv/2, and fcut represents the DC-block
filter of the desired cutoff frequency. The DC-block filter provides

yDC =
[
yDC,1, . . . ,yDC,Nv/2

]
(8)

in which yDC,i = yF,ihi, i = 1, . . . , Nv/2.
The Gaussian smoothing filter is applied to smooth the frequency response yDC

yG = yDC ⊗ g (9)

where g = [g 1, . . . , gL

]
shows the L-point filter coefficients and gi = e(−

1
2σ2 )[(2/L−1)(i−1)−1]2 , i = 1, 2 . . . L,

herein, the σ contains the variance of the Gaussian coefficients. In the proposed system, the flowing
velocity is measured from the frequency response in Equation (9).

Figure 2 depicts the experimental system for the water turbidity and water flow velocity
measurement processes. The water flow was generated by a pump driven by a 1/6-hp motor in
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a 0.35 m wide and 2 m long flume. Four release holes were established at the end of the water channel
to control the amount of water released. The sluice has been applied to the water flow channel to
steadily control the water level of the flowing water. The turbidity of the flowing water was slight
adding fine sand to the water. Sieving sediments of uniform sand with a diameter of 0.88 mm were
used in this experiment. A 0.2 × 0.2 m pier made by a transparent acrylic column with VLC sensors
was placed in the middle of the flume.
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2.3. Experimental Setup for Water Turbidity Measurement

A sinusoidal signal with the frequency of 1 MHz was generated from the arbitrary waveform
generator (AWG) in this turbidity measurement and stayed an amplitude of 0.2 V. The received signal
was then obtained from the oscilloscope at a sampling rate of ft = 1.024 Ghz with a window size of
Nt = 10, 240. From Equations (3) and (4), ∆RMS values were computed. In this experiment, signal
measurements were conducted at water turbidity levels of 0, 200, 400, 600, 800, 1000, and 1200 ppm
and at two water flow velocities of 83.14q and 136.40q, where q = (Liter)/(second ×meter2).

2.4. Experimental Setup for Water Flow Velocity Measurement

As mentioned, the sinusoidal signal was generated from the AWG. Signals were captured on
the oscilloscope using a sampling rate of fv = 50 hz with a window size of Nv = 500 to estimate the
flowing velocity. The envelope of the received signal ŷv was then calculated using Equation (5) and the
DC-blocked frequency of the received signal yDC has computed from Equations (6)–(8). Finally, the
Gaussian smoothing filter with a variance of σ = 1.8 and a window size of L = 45 was substituted
into the smoothed frequency yG in Equation (9). The flowing velocities were set to be 25.98q, 83.14q,
and 136.40q in the experiments.

Figure 3a shows the received signals at turbidity levels of 0, 200, 600, and 1000 ppm and at
a water flow velocity of 83.14q. The attenuation of the amplitude of the received signals increased in
accordance with the water turbidity levels. Figure 3b illustrates the relationship between ∆RMS values
and water turbidity levels at the water flow velocities of 83.14q and 136.40q. It seems that a linear
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relationship was observed between the ∆RMS values and trifling water turbidity levels. Furthermore,
∆RMS values computed at different flowing velocities were approximately the same. It shows that
∆RMS is independent of the flowing velocity in the experiment.
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Figure 4 shows the turbidity effect in nephelometric units (NTU) of the output voltage value for
VLC, blue LED, and infrared LED (IR LED). VLC turbidity data was tested in the flowing flume with
suspension particles distribution while the blue LED and IR LED turbidity data is obtained from the
standard specimen. As shown in Figure 4, the VLC data have a slightly variated than the blue LED
and IR LED, this variation is because the flowing suspension particles of the scattering, attenuation,
and absorption effects have a significant influence on the measurement in the water. It is well-known
that the on-line resolution of the experiment progress is highly dependent on the measurement angle
of the sensor between the transmitter and the receiver. In addition, the ambient indoor light would be
a noise resource which affects the performance of VLC during the experiment progress. Despite the
influence of these factors, the nonlinear nature of turbidity which actually responds in exponential
form to the light intensity was obviously obtained from the VLC monitoring system.
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According to the results of the underwater turbidity and water flow velocity experiments in
Section 2, we see that the communication light path of the VLC modules can be sensitively affected by
turbulent movement of particles in water. In the following sections, the study further examines the
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effects of this notable phenomenon on real-time scour measurement by conducting real-time scour
measurement and Hilbert transform analysis.

3. VLC Scour Experiment

An experiment was conducted in a 6 m wide and 30 m long flume, as depicted in Figure 5. Eight
VLC sensors including the transmitter (Tx) and the receiver (Rx) were installed in the pier. Sensor 1
was located 5-cm below the bed surface. These sensors were arranged in two rows of eight sensors
separated by 5-cm intervals in the vertical direction. The sampling rate was set to 100 Hz to record
the time history throughout the scour experiment. Uniform sand with a diameter of 0.88 mm was
paved as the bed material in the flume. The approach velocity of the steady current was set to be
0.5 m/s. All dynamic data were monitored through the experimental setup shown in Figure 5. Figure 5
illustrates the scour responses recorded by individual sensors. These responses were further analyzed
using the proposed Hilbert–Huang transform (HHT) process.
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Figure 5. Hydraulic flume test and experimental setup.

Initially, all the sensors are embedded in the soil and the transmit signal cannot be detected by the
receiver sensors. At the early stage, the scour depth increases significantly while inflow runs through
the pier. As the embedded VLC sensor scoured from the soil due to scour, the significant signal of the
waveform can be easily obtained. An obvious example of the sensors 3 and 4 is shown in Figure 6.
The variation of waveform magnitude is due to the turbidity and velocity of the turbulent flow that
contains time-depended suspension particles. As seen in Figure 6, the scour depth increases gradually
after 1 h. Around 2.5 h, a total scour depth of 30 cm is measured in this test, which may be close to
the equilibrium state. As experiment finished, the scour hole can be observed as shown in Figure 5.
A small camera recorded the scouring process as a comparison to valid the scour depth evolution
measured by the VLC. An empirical scour formula with the nonlinear nature of flowing water which
responds in exponential form to the light intensity for the VLC monitoring system is also obtained as
shown in Figure 6.
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4. HHT and Data Analysis

4.1. Instantaneous Frequency

Traditionally, a Fourier spectrum is evaluated using sine and cosine basis functions with a fixed
amplitude. However, signals vary with time limiting the applicability of the fast Fourier transform;
moreover, obtaining the instantaneous frequency (IF) at any specific time is impractical. For a structure
affected by an earthquake, understanding the frequency variation is imperative. The Hilbert transform
is widely used for nonlinear and nonstationary cases, facilitating the analysis of a time-varying signal.
A measured signal can be expressed in the form of a complex number to determine the instantaneous
amplitude a(t) and instantaneous phase θ(t), and the IFω(t) can then be determined [59,60]. The Hilbert
transform can be defined as the convolution between X(t) and 1/t. For any time series X(τ), the Hilbert
transform Y(t) can be expressed as

Y(t) =
1
π

P

∞∫
−∞

X(τ)

t− τ
dτ (10)

where P represents the Cauchy principal value.
Combining X(t) and Y(t) into a conjugate complex number yields an analytic signal Z(t)

Z(t) = X(t) + iY(t) = a(t)eiθ(t) (11)

For example,

a(t) =
√

X2(t) + Y2(t) (12)

θ(t) = tan−1(Y(t)/X(t)) (13)

ω(t) = (dθ(t)/dt) (14)

According to the analysis, the time–frequency–amplitude distribution of the time series can
be obtained.

4.2. Empirical Mode Decomposition

In contrast to other decomposition methods, empirical mode decomposition (EMD) does not
entail predetermining a basis function. In EMD, such a function is directly obtained from the signal
data; therefore, this method has considerable flexibility. EMD entails decomposing an original signal
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into a finite number of intrinsic mode function (IMF) components; specifically, a signal is approximated
as a sum of zero-mean amplitude modulation and frequency modulation components. The finite
number of IMF components can be divided into high- and low-frequency partitions until a monotonic
function (trend) remains. The original data can be regarded as the sum of all IMF components and
trends. During analysis, if the time difference between the extreme values represents the time scalar of
the intrawave, an optimal vibration modal resolution can be achieved and can be applied to nonzero
mean values as well as non-zero-crossing data. Thus, the original signal can be re-presented as

X(t) =
n∑

i=1

ci + rn (15)

where Ci is the ith intrinsic mode functions; rn is the residual.

4.3. Ensemble EMD

EMD is often used as a signal disassembly method. EMD is used to decompose mixed signals
of different scales into different IMF components. However, a limitation of this approach is the
phenomenon called ‘mode mixing’. Specifically, during the EMD process, a low-amplitude oscillation
or an intermittent signal may exist in several IMF components; for example, a single modal component
may be decomposed into different IMF components, or a single IMF component may contain two
different modal signals, resulting in mode mixing within the IMF component. To solve this issue,
Ensemble EMD (EEMD) is proposed [61]. When EEMD is performed, a white noise wi(t) signal with
a limited amplitude is added to the original signal X(t); thus, the original signal is transformed as

Xi(t) = X(t) + wi(t) (16)

4.4. Hilbert Spectrum

As indicated in Equation (17), an IMF component can be converted from a time-domain to
a frequency-domain component; this process is called Hilbert spectral analysis (Figure 7)

X(t) =
n∑

j=1

a j(t) exp
(
i
∫
ω j(t)dt

)
(17)

Although the Hilbert transform can process a monotonous trend and consider it a part of a longer
amplitude, the remaining energy may be excessively strong, considering the uncertainties of longer-term
trends and other low-energy elements and information contained in a high-frequency component. The
preceding formula provides a time function for each amplitude and frequency component, and this
formula can be expanded using a Fourier expression as

X(t) =
∞∑

j=1

a jeiω jt (18)

where aj and wj are constants. Comparing Equations (17) and (18) reveals that the IMF can be
represented by a generalized Fourier expansion. Variables within the amplitude and the IF cannot only
improve the expansion but also render it applicable to unsteady signals. In terms of the expansion
of the IMF, the amplitude and the frequency modulation are clearly separated. The amplitude of the
time function and the IF can be combined as the time–frequency–amplitude spectrum; this spectrum is
referred to as the Hilbert amplitude spectrum.
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4.5. Analysis Results

From recorded data, the time history data and HHT diagrams obtained for the first six sensors
are plotted in Figure 8. The recorded time history is plotted on the top of each subplot and the
corresponding Hilbert amplitude spectrum is shown in the bottom. The time-varying IF demonstrated
nonlinear characteristics of the signals. The x-axis represents the time history measured in seconds,
and the energy density is illustrated at frequencies between 0 and 5 Hz, which contains the most energy
of the vibration.

The HHT diagram for channel 1 shown in Figure 8a reveals a large energy distribution indicated
by the significant yellow bar at approximately 90 s. This distribution can be attributed to the rapid
jump in the time domain. Similarly, Figure 8b also reveals a yellow bar, indicating a sudden increase in
the beginning of the time history. According to the color distribution in Figure 8b, more energy was
covered in channel 2 than in channel 1, which fits well with the measured time histories.

The HHT diagrams for channels 3 and 4 shown in Figure 8c,d, respectively, reveal a gradual shift
of the yellow bar, which indicates the large variation section of energy in the time domain. Based on
the result, the yellow bars in HHT diagrams can be used to estimate the occurrence time of possible
scour processes. Figure 8d indicates the scour phenomenon to occur between 150 and 200 s and then it
continues till the end of the experiment; this figure also reveals the energy distribution in channel 4 to
be greater than that in channel 3.

Finally, as observed from the time history, significant vibration can be reflected from channel 5.
Furthermore, the HHT diagram for channel 5 shown in Figure 8e reveals that the yellow energy bar is
shifted to 300 s. It can be treated as a proper indicator to evaluate the scour depth, which follows the
trend observed from the experiment. Additionally, the HHT diagram for channel 6 shown in Figure 8f
reveals two peaks. In contrast to the other five sensors, the first yellow energy bar located at 300 s with
the fundamental frequency between 0 and 2 Hz is not considered as scour phenomenon in the HHT
diagram. As only slight energy is shown in the diagram, it can be neglected as a small vibration in the
time domain. By combining Figures 7 and 8, a possible backbone scour curve can be established to
provide a rapid estimation and early warning for scour processes around a bridge.
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5. Summary

Offshore wind farms face more severe environmental conditions such as severe storms, typhoons,
ocean currents, and waves. Flow induced scour around the foundation of structure is extremely
complex. Scour leads to the excavation of sediments, reducing the safe capacity of the structures.
The phenomenon of pier scour combines the effects of the vortex system involving time-dependent
flow pattern and sediment transport mechanism. A real-time scour monitoring system can improve
the safety of structures and afford cost-effective operations by preventing premature or unnecessary
maintenance. Numerous studies have explored the mechanisms of hydraulic scour around foundations
and have presented several formulas for scour depth estimation around piers. However, scour
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data from real-time monitoring systems are still inadequate due to the lack of reliable and durable
instrumentation techniques.

Normally, water turbidity was measured based on absorption, attenuation, and scattering effects
by using spectrometers or photometric devices. However, conventional estimation instruments are
usually bulky and costly. Experimental results obtained in this study demonstrated the feasibility of
the VLC modules for executing both water turbidity and water flow velocity measurements.

According to the results of the underwater turbidity and water flow velocity experiments, the
communication light path of the VLC modules can be sensitively affected by turbulent movement
of particles in water. These notable phenomenon effects could be further implemented as an early
warning structural health monitoring system by conducting real-time scour measurement and Hilbert
transform analysis. In this present study, an on-site scour monitoring system for offshore wind turbines
has been proposed; specifically, the monitoring system consists of arrays of small VLC modules
attached directly to a pile foundation structure and linked to a wireless network to enable remote
data acquisition has demonstrated. From the flume experiment results, it revealed that the system
was highly sensitive to seabed scour processes. The proposed robust sensory monitoring system has
considered for further on-site applications and as an indicator to improve the empirical scour formulas
for sustainable maintenance in the life cycle of offshore structures.

From the result analysis, the VLC ray is easily affected by the suspended particles in the water
and the turbidity, especially in the scouring process. Hence, the proposed arrayed-transmission
measurement method will be limited by the turbidity effect. In the future work, it may be necessary to
cooperate with the reflection approach, as a supplement comparison, for simultaneous measuring the
back-scattering characters. Combining these two transmission and back-scattering implementations
would provide a better real-time approach to measure and discriminate turbidity, flow velocity, and
scour depth. These data can be useful to establish a local scouring formula to evaluate structural safety.
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