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Abstract: Recent evidence of regional climate change associated with the intensification of human
activities has led hydrologists to study a flood regime in a non-stationarity context. This study
utilized a Bayesian framework with informed priors on shape parameter for a generalized extreme
value (GEV) model for the estimation of design flood quantiles for “at site analysis” in a changing
environment, and discussed its implications for flood management in the Kabul River basin (KRB),
Pakistan. Initially, 29 study sites in the KRB were used to evaluate the annual maximum flood regime
by applying the Mann–Kendall test. Stationary (without trend) and a non-stationary (with trend)
Bayesian models for flood frequency estimation were used, and their results were compared using
the corresponding flood frequency curves (FFCs), along with their uncertainty bounds. The results
of trend analysis revealed significant positive trends for 27.6% of the gauges, and 10% showed
significant negative trends at the significance level of 0.05. In addition to these, 6.9% of the gauges
also represented significant positive trends at the significance level of 0.1, while the remaining stations
displayed insignificant trends. The non-stationary Bayesian model was found to be reliable for study
sites possessing a statistically significant trend at the significance level of 0.05, while the stationary
Bayesian model overestimated or underestimated the flood hazard for these sites. Therefore, it is
vital to consider the presence of non-stationarity for sustainable flood management under a changing
environment in the KRB, which has a rich history of flooding. Furthermore, this study also states
a regional shape parameter value of 0.26 for the KRB, which can be further used as an informed
prior on shape parameter if the study site under consideration possesses the flood type “flash”.
The synchronized appearance of a significant increase and decrease of trends within very close
gauge stations is worth paying attention to. The present study, which considers non-stationarity
in the flood regime, will provide a reference for hydrologists, water resource managers, planners,
and decision makers.

Keywords: non-stationary; extreme value theory; uncertainty; flood regime; flood management;
Kabul river basin; Pakistan

1. Introduction

The comprehensive understanding of flood regimes is an important challenge in hydrology.
Hydrologists and engineers customarily use flood frequency analysis (FFA) as a tool to understand
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flood regimes throughout the world. FFA estimates the flood peak for a given return period, but the
currently used methods of FFA assume that the flood time series are independent and identically
distributed [1–3] or, in other words, have no trends and unanticipated variations [4]. Indeed, the concept
of stationarity was and is being adopted to design water resources infrastructure and flood protection
works all around the globe. In recent decades, the climate system has been under stress due to natural
variations in the global climate, and human activity also has a potential influence on regional climate
that is ultimately intensifying the hydrologic cycle [5]. The hypothesis of stationarity has become
widely questionable due to this regional and global change. Keeping this point of view, several studies
have tried to explore the validity of this hypothesis in flood regimes in many regions around the world,
considering the effect of natural climate variability [6–12] or land use changes [13–15]. The results of
these studies have shown clear violations of the assumption of stationarity, which is consistent with
studies that indicate an intensification of the hydrologic cycle [16,17].

Particularly, the KRB in the Hindu Kush Himalayan Range (HKH) is exposed to disturbances
from the South Asian monsoon originating from the Bay of Bengal. Several recent studies represented
a paucity of stationarity and indicated the intensification in some elements of the hydrologic cycle
at the regional scale. The results of these studies investigated the change in the rainfall regime of
the KRB. For instance, the number of consecutive wet days has been increasing significantly in the
Peshawar valley, with a total change of 2.16 at a 95% confidence level. Consecutive wet days have
also increased at Saidu Sharif in the Swat valley and Chitral [18]. Ahmad et al. [19] investigated
trends in rainfall over the entire Swat River basin, a sub-basin of the KRB. They observed the highest
positive trend (7.48 mm year−1) at the Saidu Sharif in Swat valley. For annual precipitation time series,
statistically insignificant trends were revealed for the whole Swat River basin. However, significant
positive increasing trends of precipitation (2.18 mm year−1) were observed in the Lower Swat basin.
Saidu Sharif, Mardan, and Charsada stations showed significant positive trends (increased precipitation
over time) at the 5% significance level in the annual precipitation time series [20]. The results of these
studies revealed the presence of trends in precipitation, and their conclusions suggest an important
link between the changes exhibited in hydro-climatic variables [21].

Furthermore, other factors that may affect the magnitude and frequency of floods in the KRB
are associated with human-induced alterations, such as changes in land use, deforestation, and dam
construction. In the KRB, the human activities that can considerably influence flood frequency are
land use changes linked with population increase. For instance, a recent study regarding land use
cover change (LUCC) dynamics in the KRB in Afghanistan highlighted that substantial LUCCs have
occurred during the time interval 2000–2010; among several land cover classes, forest, cultivated
land, and grassland showed dynamical change. During the study period, one-fourth of the forest
area was lost, while cultivated land and grassland showed an increase of 13% and 11%, respectively.
The forest area was mainly transformed into grassland and barren land. Unused land was changed
into built-up areas, up to 2%, and water areas increased by 4%. A total loss of 43% was observed in
forest area [22]. Similarly, LUCCs in the Swat valley have also occurred. Deforestation occurring due
to agriculture expansion was 11.4% at a rate of 0.29%, 77.6% at a rate of 1.98%, and 129.9% at a rate of
3.3%, annually in Kalam, Malam Jaba, and the Swat district areas, respectively. The rangeland has
increased due to the conversion of forest land from 1968–1990, by about 158.7%, 38.18%, and 22.2%
in Kalam, Malam Jaba, and Swat regions, respectively, while a 13.22% increase has occurred from
1990 to 2007 due to the conversion of agriculture land to rangeland [23]. Dir Kohistan areas of the
Hindu Kush Mountains, the northern regions of Pakistan, also showed a 6.4% decrease in forest
cover, 22.1% increase in rangeland, and 2.9% increase in agriculture land [24,25]. Similarly, Ahmad
and Nizami [26] reported a 7.64% decrease in total area under rangeland in Kumrat valley, Hindu
Kush regions. The Mardan city–Kalpani River basin showed an increase in built-up area by 30–60%
during 1990–2010. An increase in built-up area has doubled the impervious surface in Mardan and
the agriculture land has shrunk from 42% to 35% [27]. Similar results were presented for Peshawar,
the capital city of Khyber Pakhtunkhwa province, Pakistan, indicating a 26.59% increase in built-up
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area during 1999–2016 [28]. The Peshawar valley, with a rich history of flooding, provides the junctions
for the Kabul River and its various right and left tributaries.

The above studies clearly show the presence of trends in rainfall regime as well as land use change
in different sub-basins of the KRB. These climate and human interventions may induce non-stationarity
in the flood regime. However, no studies have been reported to examine the presence or absence
of stationarity in the flood regime of the basin. Therefore, it is imperative to study floods with a
non-stationary point of view for the KRB.

Recently, Milly et al. [29] stated that the hypothesis of stationarity must be relinquished and that
“stationarity is dead” and “should not be revived”. The methods used for estimation of hydrologic
indicators should be based on an innovative approach that would be reliable and useful for water
management under a changing environment.

In the literature, various approaches have been reported using probabilistic modeling of flood
frequency in a non-stationary context. Khaliq et al. [2] presented a comprehensive review, including the
incorporation of trends in the parameters of the distributions, the incorporation of trends in statistical
moments, the quantile regression method, and the local likelihood method. The studies of FFA under
non-stationary conditions have mostly assumed trends in time [30–37]. The present study outlined a
Bayesian framework for “at site flood frequency modeling” in stationary and non-stationary conditions.
The fundamental concept is based on the generalized extreme value (GEV) distribution, combined
with Bayesian inference for uncertainty assessment. For this study, a model with trend (non-stationary)
and without trend (stationary) was used.

Previous studies in the KRB were limited to inundation mapping of flood-prone areas with a very
little flow gauge station data, using a traditional frequentist approach [38–42].

The main objectives of the study were: (1) to analyze temporal and spatial trends in the annual
maximum flood regime for the KRB, Pakistan, because no study has yet been reported in the literature
to study the trends in annual extreme data of flood in detail, and (2) to address the non-stationary
modeling of the flood regime in the KRB and its implications for flood management in a changing
environment. We explored the differences between stationary and non-stationary flood quantile
estimates for a given return period using flood frequency curves (FFCs), along with their uncertainty
bounds for risk assessment, to analyze the importance of non-stationary models for improving flood
management in the study area.

2. Study Area and Data Description

2.1. Study Area

The Kabul River basin (KRB), in Pakistan, stretches from 71◦1′55”–72◦56′0” E to 33◦20′9”–36◦50′0”
N, as shown in Figure 1, which covers an area of 33,709 km2. The Kabul River starts at the base of
Unai pass from the Hindu Kush Mountains in Afghanistan and flows eastward, covering a distance
of 700 km to drain into the Indus River, Pakistan [43]. The entire basin covers an area of 87,499 km2.
The elevation in the basin varies substantially from 249 m.a.s.l to 7603 m.a.s.l. High elevation mountains
are mainly located in the north. The average temperature and average precipitation vary significantly
across the River basin. The average temperature is about 13 ◦C. Most of the precipitation occurs in the
northern mountain and highlands, reported up to 1600 mm. [44].

This study explores the part of the KRB that contributes to flooding. The flood problem arises
mainly as the Kabul River enters Pakistan. The Logar River basin, Alingar River basin, and Panjshir
River basin lie in Afghanistan. Three dams—Naghlu, Surobi, and Darunta—are located in Afghanistan
on the Kabul River and Warsak dam is also located on the Kabul River in Pakistan. The study area is
further divided into eight sub-basins: Kabul River basin, Chitral River basin, Main Swat River basin,
Panjkora River basin, Lower Swat River basin, Kalpani River basin, Jindi River basin, and Bara River
basin. The SRTM-DEM (Shuttle Radar Topography Mission–digital elevation model) of 30 m resolution
and the geographical location of the sub-basins are also illustrated in Figure 1.
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Figure 1. Description of Location, SRTM-DEM (Shuttle Radar Topography Mission–digital elevation 
model, meters) and flow gauge stations for the Kabul River basin (KRB), Pakistan. 
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maximum daily peak flow data for the seven flow gauge stations at main rivers sites were obtained 
from Surface Water Hydrology Project of Water and Power Development Authority (SWHP–
WAPDA). The streamflow data of the remaining study sites were obtained from the Hydrology 
Section of the Irrigation Department of Khyber Pakhtunkhwa Province, Pakistan. The study sites that 
had at least 30 years of records were selected. The main characteristics of the sub-basins and the 
respective flow gauge stations in each sub-basin are presented in Table 1 and Figure 1 describes the 
geographical locations of the flow gauge stations in each sub-basin. 

2.3. Flood Generating Mechanism in KRB 

The hydrology of floods is linked to weather and climate as well as to physiographical features 
[45]. The basin has large altitudinal variations from 249 m.a.s.l. to 7603 m.a.s.l. Glacier-melt 
contribution from the upper part of the basin combined with rainfall in the lower part is the most 
likely cause of flooding in the region [38]. In the KRB, floods are mostly generated by monsoon 
rainfall but snow or glacial melt floods have also been observed in some parts of the basin. Snowmelt 
floods are not common. According to the data used in this study, all of the flood peaks were observed 
during the monsoon season, from July to August, in almost all the tributaries of the KRB. The 
historical floods occurred in July 2010, August 1995, and July 1992; all were observed during the 
monsoon. Anjum et al. [46] provided the details regarding rainfall magnitude, intensity, and spatial 
extent for the 2010 event. The South Asian monsoon originating from the Bay of Bengal is the 
dominant weather system for flood generation in the KRB.  

However, the flood of 2005 in the Kabul and Indus Rivers was due to snowmelt as well as rainfall 
in the pre-monsoon period [47]. The flooding behavior of the different tributaries differs according 
to their catchment characteristics. The riverine floods in the Kabul River usually start below the 
Warsak dam, and this phenomenon propagates until its confluence with the Indus River at Khairabad 

Figure 1. Description of Location, SRTM-DEM (Shuttle Radar Topography Mission–digital elevation
model, meters) and flow gauge stations for the Kabul River basin (KRB), Pakistan.

2.2. Flood Data

Twenty-nine flow gauge stations were selected to study the flood regime of the KRB. The annual
maximum daily peak flow data for the seven flow gauge stations at main rivers sites were obtained
from Surface Water Hydrology Project of Water and Power Development Authority (SWHP–WAPDA).
The streamflow data of the remaining study sites were obtained from the Hydrology Section of the
Irrigation Department of Khyber Pakhtunkhwa Province, Pakistan. The study sites that had at least
30 years of records were selected. The main characteristics of the sub-basins and the respective flow
gauge stations in each sub-basin are presented in Table 1 and Figure 1 describes the geographical
locations of the flow gauge stations in each sub-basin.

Table 1. Basic information of flow gauges and sub-basins in the KRB, Pakistan.

Site# Sub Basin and Flow Gauge Stations Basin Area
(km2)

Coefficient of
Variation (Cv)

Number of Years
of Record

Kabul River Basin 87,499

1 Kabul River at Warsak 0.292 52 (1965–2016)
2 Kabul River at Nowshera 0.433 55 (1962–2016)
3 Shahalam River 0.724 30 (1987–2016)
4 Naguman River 0.829 30 (1987–2016)
5 Adezai River 0.739 30 (1987–2016)

Chitral River Basin 11,396

6 Chitral River 0.2 50 (1964–2013)

Panjkora River Basin 5917

7 Panjkora River 0.859 33 (1984–2016)
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Table 1. Cont.

Site# Sub Basin and Flow Gauge Stations Basin Area
(km2)

Coefficient of
Variation (Cv)

Number of Years
of Record

Main Swat River Basin 6066

8 Swat River at Kalam 0.2 59 (1961–2009)
9 Swat River at Chakdara 0.336 49 (1961–2009)
10 Swat River at Khawazakela 0.84 34 (1983–2016)
11 Swat River at Ningolai 1.425 31(1986–2016)

Lower Swat River Basin 2685

12 Swat River at Munda Head Works 0.744 55 (1962–2016)
13 Khiyali River at Charsada Road 0.815 48 (1969–2016)
14 Jundi Nullah at Tangi 3.06 37 (1974–2011)

Jindi River Basin 13

15 Jindi River 0.684 48 (1969–2016)

Kalpani River Basin 2830

16 Naranji Nullah 0.975 49 (1968–2016)
17 Badri Nullah 0.893 45 (1966–2010)
18 Kalpani River at Mardan 1.476 33 (1984–2016)
19 Kalpani River at Risalpur 0.752 33 (1984–2016)
20 Dagi Nullah 1.01 33 (1984–2016)
21 Bagiari Nullah 0.917 30 (1987–2016)
22 Lund Khawar West 1.13 30 (1987–2016)

Bara River Basin 3388

23 Budni Nullah 1.28 43 (1974–2016)
24 Bara River at Kohat Bridge 1.69 34 (1983–2016)
25 Khuderzai Nullah 1.65 32 (1980–2011)
26 Chillah Nullah at Pabi 1.15 32 (1980–2011)
27 Hakim Garhi Nullah 0.6 31 (1980–2010)
28 Wazir Garhi Nullah 1.69 30 (1981–2010)
29 Muqam Nullah 0.781 30 (1981–2010)

2.3. Flood Generating Mechanism in KRB

The hydrology of floods is linked to weather and climate as well as to physiographical features [45].
The basin has large altitudinal variations from 249 m.a.s.l. to 7603 m.a.s.l. Glacier-melt contribution
from the upper part of the basin combined with rainfall in the lower part is the most likely cause of
flooding in the region [38]. In the KRB, floods are mostly generated by monsoon rainfall but snow
or glacial melt floods have also been observed in some parts of the basin. Snowmelt floods are not
common. According to the data used in this study, all of the flood peaks were observed during
the monsoon season, from July to August, in almost all the tributaries of the KRB. The historical
floods occurred in July 2010, August 1995, and July 1992; all were observed during the monsoon.
Anjum et al. [46] provided the details regarding rainfall magnitude, intensity, and spatial extent for the
2010 event. The South Asian monsoon originating from the Bay of Bengal is the dominant weather
system for flood generation in the KRB.

However, the flood of 2005 in the Kabul and Indus Rivers was due to snowmelt as well as rainfall
in the pre-monsoon period [47]. The flooding behavior of the different tributaries differs according to
their catchment characteristics. The riverine floods in the Kabul River usually start below the Warsak
dam, and this phenomenon propagates until its confluence with the Indus River at Khairabad near
Attock. Riverine floods also occur in the Swat River in the Lower Swat catchment. In the rest of the
KRB, flash flooding is a common disaster, along with landslides and torrential rains [45].
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3. Methods

3.1. Preliminary Analysis

3.1.1. Trend Analysis

The non-parametric rank-based Mann–Kendall (MK) [48,49] test was used to detect trends in
annual maximum flood series. The trend analysis was performed to show a clear understanding of
the whole study area, while an objective criterion (means if statistically significant trend exists) was
adopted for the non-stationary modeling of flood regime. The Mann–Kendall test was applied at
different significance levels. The autocorrelation function (ACF) was also computed, before applying
the Mann–Kendall (MK) test to check the presence of serial correlations in the annual maximum
flood series.

3.1.2. Selection of Extreme Value Distribution

The Bayesian method using the GEV distribution is getting attention for analyzing hydrological
extremes. The current study also utilized the GEV distribution, which is the integration of Gumbel,
Fréchet, and Weibull distributions, and developed on the limit theorems for block maxima or annual
maxima [50]. Mathematically, the cumulative distribution of the GEV can be written as [51]:

ψ(x) = exp

−(1 + ξ
(x− µ
σ

))−1
ξ

,
(
1 + ξ

(x− µ
σ

))
> 0, (1)

where ψ(x) is expressed as
(
1 + ξ

( x−µ
σ

))
> 0; somewhere else, ψ(x) is either 0 or 1 [52].

The location parameter (µ), describes the center of the GEV distribution, the scale parameter
(σ) describes the deviation around (µ), and the shape parameter (ξ) describes the tail behavior of
the distribution. When ξ→ 0, ξ < 0, and ξ > 0, GEV approaches the Gumbel, Weibull, and Fréchet
distributions, respectively.

3.1.3. Goodness of Fit Statistics to GEV Distribution

The goodness of fit analysis of annual maximum peak flow data to the GEV distribution was
performed in order to investigate whether the historical data belonged to the said GEV distribution.
The Anderson–Darling (AD) [53] and Kolmogorov–Smirnov (K-S) [54] tests were performed for this
purpose, using an EasyFit software (version 5.6, MathWave Technologies) [55]. EasyFit estimated
the parameters of the GEV distribution based on maximum likelihood (ML) estimation, using equal
probability sampling. The parameters estimated using the EasyFit software were used to assess the
goodness of fit by AD and K-S statistics.

The K-S statistic (D) is based on the largest vertical difference between the theoretical and the
empirical cumulative distribution function as shown below:

D = m1≤i≤n(ψ(xi) −
i− 1

n
,

i
n
− ψ(xi)). (2)

The Anderson–Darling procedure compares the fit of an observed cumulative distribution function
to an expected cumulative distribution function. This test gives more weight to tails than the K-S test.

A2 = −n−
1
n

∑n

i = 1
(2i− 1) × [lnψ(xi) + ln(1−ψ(xn−i+1))]. (3)

H0: The data follow the specified distribution;
Ha: The data do not follow the specified distribution.
The hypothesis regarding the distributional form was rejected at the significance level of 0.05

(alpha) if the test statistic, A2 or D, was greater than the critical value of 2.5018 and 0.18482, respectively.
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Moreover, the outlier’s detection in the annual extreme data of flood series was also performed
using the Chauvenet’s Criterion [56].

3.2. Model Design

The extreme value theory of stationary random process is based on that the statistical properties
of extremes—here, the distribution parameters θ = (µ, σ, ξ) are free from time dependency [57],
while in a non-stationary random process, the parameters of the said distribution function rely on
time-dependency, and the properties of the distribution also vary with time [58]. For this study, two
cases were considered.

(1) Stationary Case: all the model parameters were considered constant.
(2) Non-stationary Case: the location parameter (µ) was considered a function of time, as shown in

Equation (4), while scale and shape parameters were kept constant:

µ(t) = µ1t + µ0, (4)

where t is time, θ = (µ1, µ0) are the regression parameters [50,57–60]. The location parameter was
calculated for each study site in the stationary case and non-stationary case.

3.2.1. Bayes Theorem for GEV Distribution

Let θ be the parameter of given distribution and let Y = {y1, y2, . . . , yn} be the set of n observations.
According to the Bayes theorem, the probability of θ given Y (posterior) is proportional to the product
of the probability of θ (prior) and the probability of Y given θ (likelihood function). Assuming the
independence between the observations, Y:

P(θ|Y) ∝
n∏

i = 1

P(θ) × P(yi
∣∣∣θ). (5)

Here, the likelihood function is the GEV distribution and θ is the vector containing the parameters
of GEV distribution to be estimated. In the stationary case, θ = (µ, σ, ξ). By assuming independent
GEV parameters:

P(µ, σ, ξ
∣∣∣Y) ∝ n∏

i = 1

P(µ) × P(σ) × P(ξ) × P
(
yi
∣∣∣µ , σ, ξ

)
. (6)

In the case of non-stationary analysis, θ contains an additional parameter, which is time-dependent
here, i.e., µ(t), hence, the Bayes theorem for estimation of GEV parameters under the non-stationary
case can be expressed as [57,60]:

P(θ|Y, t) ∝
n∏

i = 1

P(θ) × P(yi
∣∣∣θ, t). (7)

The resulting posterior distributions P(θ|Y, t) provide information on the distribution parameters
(µ1, µ0, σ, ξ).

3.2.2. Prior Distribution

A Bayesian model utilizes a prior belief to calculate the posterior belief. For the current study,
we utilized NEVA (non-stationary extreme value analysis, Matlab Package) [60–62] for our analysis.
In NEVA, the priors are non-informative normal distributions, for location and scale parameters,
while the priors for the shape parameter are a normal distribution, with a standard deviation of 0.3,
as suggested by [57,60,62]. Initially, the shape parameter was considered a non-informative prior:

ξ ~ N (−5, 5), (8)
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if the value of the shape parameter in the posterior distribution exceeded beyond the plausible limit
(−5, 5), as suggested by Martins and Stedinger [63]. Then, we modified the priors for shape parameter,
considering partial pooling of information across sites that had similar flood types, for improving the
flood quantiles estimates for “at site modeling” using the regional information. The shape parameter
was considered an informative prior and the range of priors for shape parameter was:

ξ ~ N (0, Ksi). (9)

where, the Ksi stands for the shape parameter value of the site of interest from where it was exchanged.
However, the location and scale parameter across sites were not shared.

3.2.3. Parameters Estimation and Convergence Criterion

To estimate the parameters inferred by Bayes, the Differential Evolution Markov Chain (DE-MC) is
integrated to generate a large number of realizations from the parameters’ posterior distributions [64,65].
The DE-MC attributes to the genetic algorithm Differential Evolution (DE) for global optimization over
real parameter space with the Markov Chain Monte Carlo (MCMC) approach [64,65]. Here, the target
posterior distributions were sampled through five Markov Chains constructed in parallel. These chains
were allowed to learn from each other by generating candidate draws based on two random parent
Markov Chains, rather than running independently. Therefore, it had the advantages of simplicity,
speed of calculation, and convergence over the conventional MCMC. The initial numbers of burned
samples were 6000 and numbers of evaluations were 10,000 for each study site. The R-hat criterion,
suggested by Gelman and Shirley [66], was used to assess convergence, where R-hat should remain
below 1.1.

Uncertainty estimates for FFCs are crucial for risk assessment and decision making. By combining
DE-MC with Bayesian inference, the posterior probability intervals or credible intervals and uncertainty
bounds of estimated return levels based on the sampled parameters could be obtained simultaneously
for FFCs. For example, for a time series of annual maximum peak flow, the time-variant parameter
(µ(t)) was derived by computing the 95th percentile of DE-MC sampled µ(t), (i.e., the 95th percentile
of µ(t = 1), . . . , µ(t = 100)). These model parameters were then used to develop the stationary and
non-stationary FFCs.

FFCs could also be drawn at 50% Bayesian credible intervals or at any other desired intervals.

3.2.4. Model Evaluation

In order to evaluate the suitability of the stationary versus non-stationary models, a Bayes
factor K was calculated based on the posterior distributions of sampled parameters of both models.
The stationary model was considered a null model M1, while the non-stationary model M2 was
considered an alternative.

A value of Bayes factor > 1 denotes the stationary model is favored, while a value < 1 argues in
the favor of the non-stationary model. Similarly, a value approaching +infinity favors the stationary
model, and −infinity favors non-stationary models. Equation (10) represents the computation of Bayes
factor, as follows:

K =
Pr(DA

∣∣∣M1)

Pr(DA
∣∣∣M2)

=

∫
Pr(θ1

∣∣∣M1)Pr(DA|θ1M1)dθ1∫
Pr(θ2

∣∣∣M2
)
Pr(DA

∣∣∣∣θ2M2)dθ2

. (10)

The term DA denotes input data, and θ stands for model parameters. The term Pr (DA|M) can be
expressed using Monte Carlo integration estimation as follows:

Pr(DA|M) =

 1
m

∑
mi = 1

Pr (DA
∣∣∣∣θ(i), M)

−1

−1

. (11)

For more details see [67].
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4. Results and Discussion

4.1. Temporal and Spatial Trends in Flood Regime

The trend magnitude for each station is presented in Table 2. Trend analysis results demonstrated
the significant trend by 37.93% of the flow gauge stations in the entire basin; among them, 27.6%
showed a significant increasing trend at the 0.05 significance level and 10.34% of the stations showed a
significant decreasing trend at the significance level of 0.05. Moreover, 6.9% of the flow gauge stations
also revealed a significant increasing trend at the significance level of 0.1. Non-significant trends
were also exhibited by 31% of the flow gauge stations. The Chitral River at Chitral, the Kalpani River
at Risalpur, the Kalpani River at Mardan, the Swat River at Chakdara, the Swat River at Ningolai,
the Adezai River, the Naranji Nullah, the Bagiari Nullah, the Lund Khawar West, and the Bara River
at Kohat Bridge displayed a significant increasing trend (Site #5, 6, 9, 11, 16, 18, 19, 21, 22, and 24),
while the Swat River at Khawazakhela, the Naguman River, and the Badri Nullah showed a significant
decreasing trend. The Khiyali River, the Panjkora River, and the Jundi Nullah at Tangi represented a
moderate increasing trend, while the Kabul River at Warsak, the Swat River at Kalam, the Swat River
at Munda Head Works, the Budni Nullah, and the Khuderzai Nullah displayed a moderate decreasing
trend. Moreover, the main flow gauge station—the Kabul River at Nowshera—did not show any
significant trend.

Table 2. Description of trends in the annual maximum flood regime across the KRB, Pakistan.

Site # Mann–Kendall
(Test-Z) Site # Mann–Kendall

(Test-Z) Site # Mann–Kendall
(Test-Z)

1 −1.54 11 4.78 *** 21 3.28 **
2 −0.35 12 −0.89 22 2.83 **
3 0.41 13 1.18 23 −1.28
4 −2.02 * 14 0.86 24 2.28 *
5 2.61 ** 15 −0.37 25 −1.19
6 2.80 ** 16 1.79 + 26 −0.67
7 0.93 17 −3.07 ** 27 0.34
8 −1.36 18 3.24 ** 28 −0.54
9 1.73 + 19 2.13 * 29 −0.83
10 −2.36 * 20 0.16

*** Trend is significant at α = 0.001, ** Trend is significant at α = 0.01, * Trend is significant at α = 0.05, + Trend
significant at α = 0.1.

Figure 2 represents the basin-wide spatial distribution of trends in the flood regime, which
showed that the flood regime of the Chitral River, the Kalpani River, and the Main Swat River basins
exhibited significant increasing trends. However, the Swat River at Khawazakhela and the Badri
Nullah represented a significant decreasing trend.

The Lower Swat River, the Kabul sub-basin, and the Jindi River basins showed non-significant trends.
Especially for the southwestern part of the KRB, the Bara River at Kohat Bridge showed

non-stationarity in the flood regime due to a significant increasing trend, while all other flow
gauge stations in the Bara River basin showed insignificant trends.

The change in flood regime was found to be more evident for the northern and northeastern part
of the KRB as compared to the central and southwestern parts of the KRB. Consequently, the overall
basin showed large spatial variations. However, the basin did not represent a regular spatial pattern.
These spatial variations may be due to climatology, topography, and complex orography of the KRB in
the HKH region. However, the temporal changes in the flood regime might be attributable to regional
environmental change. The results of trend analysis were consistent with previous studies [68–70],
but these studies used only two to three flow gauges.
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4.2. Evaluation of Goodness of Fit for Annual Extreme Data of Flood

An objective criterion as suggested by Rosner et al. [71] was adopted to evaluate the goodness
of fit of the annual maximum flood series, with GEV and non-stationary temporal trend modeling
of the flood regime, i.e., only the sites showing significant trends in their flood regime were selected.
The study sites under consideration showed proper fitting using the AD test and the value of test
statistics for all the sites using the AD test was less than the critical value of 2.5018. While using the
K-S test, all the sites showed proper fitting except site 21, but it was included in the analysis because it
satisfied the AD test. Table 3 provides the results of the test statistics and estimated GEV parameters
using ML. The p-value belongs to K-S test only.

Outliers were also detected in the data of the annual maximum flood series for the KRB. Table 4
demonstrates the outliers present in the data of selected study sites. Sites 5, 6, 16, 18, 19, 21, and 24
displayed the extreme flood of 2010 as an outlier in the data. Site 6 also revealed the flood of 2005
(1603 m3 s−1) as an outlier, as per evaluation criterion. Similar to site 6, site 9 also represented two
outliers in its flood series. The outlier 1918 m3 s−1 represents the flood of 1992, and the corresponding
value of 1602 m3 s−1 represents the flood of 1987 for site 9.

For Site 11, the 1475 m3 s−1 value corresponds to the flood of 2016 in the Swat River basin,
the sub-basin of the KRB. The flood discharge of 37 m3 s−1 at Lund Khawar West (Site 22) in 1997
was also recorded as an outlier. Despite the existence of outliers, the data series belongs to the GEV
distribution as per AD and K-S test statistics.
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Table 3. The goodness of fit statistics of annual maximum daily peak flow to generalized extreme value
(GEV) distribution.

Site # Gauge
Stations

GEV
Parameters

Anderson–Darling Test Kolmogorov–Smirnov Test

A-D Statistics K-S Statistics p-Value

5 Adezai River
ξ = 0.07899
σ = 454.66
µ = 521.18

0.6903 0.15394 0.43251

6 Chitral River
ξ = 0.00307
σ = 143.37
µ = 1026.5

0.22503 0.06435 0.97732

9 Swat River at
Chakdara

ξ = 0.13247
σ = 152.1
µ = 646.8

0.66053 0.10305 0.59055

11 Swat River at
Ningolai

ξ = 0.52162
σ = 103.82
µ = 83.499

0.60066 0.1453 0.48501

16 Naranji Nullah
ξ = 0.25789
σ = 77.168
µ = 81.939

0.19219 0.06263 0.98424

18 Kalpani River
at Mardan

ξ = 0.55205
σ = 106.9
µ = 77.204

1.2218 0.17818 0.21796

19 Kalpani River
at Risalpur

ξ = 0.20781
σ = 441.0
µ = 604.88

0.42201 0.10944 0.7987

21 Bagiari Nullah
ξ = 0.06073
σ = 112.05
µ = 94.608

1.838 0.22761 0.08399

22 Lund Khawar
West

ξ = 0.37899
σ = 3.7993
µ = 3.164

0.48511 0.12903 0.7523

24 Bara River at
Kohat Bridge

ξ = 0.57308
σ = 16.871
µ = 9.4788

1.2595 0.15782 0.33006

Table 4. Representation of detected outliers, as per Chauvenet’s criterion.

Site # Station Name Historical Extreme
(Outliers)

Observed
Value

Critical
Value

5 Adezai River 2285 2.449 2.394
6 Chitral River 1633/1603 2.941/2.76 2.576
9 Swat River at Chakdara 1918/1602 4.6/3.35 2.576

11 Swat River at Ningolai 1475 3.447 2.406
16 Naranji Nullah 850 4.748 2.576
18 Kalpani River at Mardan 1499 3.182 2.429
19 Kalpani River at Risalpur 3358 3.316 2.418
21 Bagiari Nullah 473 2.102 2.394
22 Lund Khawar West 37 3.235 2.394
24 Bara River at Kohat Bridge 331 4.234 2.44

4.3. Regionalization of Shape Parameter for Flash Floods Across the KRB

The shape parameter of the GEV distribution is important for the estimation of flood quantiles.
Initially, non-informative priors for shape parameter were used for the Bayesian analysis of annual
maximum flood regime for the selected study sites that had non-stationarity, due to the existence
of temporal trends. About 30% of the study sites yielded a value of shape parameter in posterior
distribution that exceeded beyond the plausible limit (−5, 5) as suggested by Martins and Stedinger [63],
causing the degeneration of the GEV distribution. In order to avoid this, homogeneous sites were
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identified. Halbert et al., Kuczera, Kyselý et al., Sun et al., and Viglione et al. [72–76] state that the
use of regional information will improve the flood frequency estimation and reduce the uncertainty
for sites having short records. Table 5 illustrates the correlation matrix for the selected study sites,
which demonstrates that hierarchical clustering is possible based on the correlation between the annual
maximum flood series of the selected study sites.

Table 5. Correlation matrix for the selected study sites.

Site # 5 6 9 11 16 18 19 21 22 24

5 1 0.24 −0.04 0.63 0.35 0.61 0.14 0.25 0.39 0.48
6 0.24 1 0.29 0.11 0.42 0.33 0.42 0.37 0.38 0.41
9 −0.04 0.29 1 0.11 0.11 −0.05 −0.22 −0.02 −0.17 0.04

11 0.63 0.11 0.11 1 0.2 0.59 0.04 0.49 0.6 0.21
16 0.35 0.42 0.12 0.2 1 0.41 0.47 0.29 0.32 0.63
18 0.61 0.33 −0.05 0.59 0.41 1 0.63 0.53 0.52 0.54
19 0.14 0.42 −0.22 0.04 0.47 0.63 1 0.65 0.64 0.42
21 0.25 0.37 −0.02 0.49 0.29 0.53 0.65 1 0.41 0.2
22 0.39 0.38 −0.17 0.6 0.32 0.52 0.64 0.41 1 0.47
24 0.48 0.41 0.04 0.21 0.63 0.54 0.42 0.2 0.47 1

A positive correlation is present between the sites. Although site 9 possesses the least positive
correlation with site 6, site 6 has more positive correlations with other sites, hence why all the sites are
considered homogenous. All the sites also possess “flash” flood type. Moreover, all the sites could
also be considered homogenous because of the existence of trends in their flood regime. Sun et al. [77]
also highlighted the clustering of temporal trends and exchange of shape parameter for the Bayesian
analysis of annual maximum floods across Germany.

Furthermore, the utilization of ML for the estimation of the shape parameter for GEV distribution
was found reliable for large records—at least 50 year [78]. After considering all the study sites as
homogenous based on the correlations between sites, similar flood type, and existence of trends,
Naranji Nullah (site 16), with a sufficiently long record, was considered the benchmark site. The shape
parameter estimated by ML was approximately 0.26 for site #16. This value of shape parameter (0.26)
was further recognized for all the study sites as an informative prior in the Bayesian model. This is like
partial pooling of information across homogenous sites, which ultimately improved the flood quantiles
estimates using the regional information as compared to non-informative priors on shape parameter.
Lima et al. [79] used the basin’s average shape parameter value in local and regional hierarchical
Bayesian models to solve the issue of sites where the shape parameter value exceeds beyond (−5–5).
Lima et al. [79] used the prior for shape parameter as non-informative, but this study considers the
priors on shape parameter to be informative priors.

4.4. Comparison between Stationary and Non-Stationary Bayesian Models

Non-stationary FFCs were constructed for the flow gauges with significant increasing trends in
their flood series and compared with their stationary FFCs, considering the entire data series without
the elimination of outliers. Table 6 demonstrates the results at the 95% Bayesian credible interval for
all the selected study sites in the KRB. The stationary model showed overestimation as compared to
the non-stationary model for a 100-year flood (The flood having a probability of exceedance of 0.01)
by 1494 m3 s−1 (+34.9%) for the Adezai River at Adezai Bridge (site 5). The value of the Bayes factor
was 0.0058, which was less than 1, so the non-stationary model was favored. The maximum peak
flood observed at the Adezai River was 2285 m3 s−1, during the historic flood of 2010 in the KRB.
The non-stationary model reasonably described the historical peak flood (Figure 3). Similar behavior
was observed for the other study sites, 11, 18, 21, 22, and 24 (Table 6 and Figures 4–8).
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Table 6. Comparison between 100-year flood estimates using the stationary and non-stationary Bayesian models for “at site modeling” for the KRB, Pakistan.

Site # Station Name Historical
Extreme m3 s−1

Stationary
m3 s−1

Non-Stationary
m3 s−1

Difference b/w
Stationary &

Non-Stationary m3 s−1

Percent
Difference (%)

Bayes
Factor

% Difference between
Preferred Model and

Historical Extreme

5 Adezai River 2285 4276 2782 1494 34.9 0.0058 17.86
6 Chitral River 1633 1895 1918 −23 −1.19 0.068 14.85
9 Swat River at Chakdara 1918 1991 2686 −695 −25.8 7.06 3.8

11 Swat River at Ningolai 1475 2891 2528 363 12.5 0.0065 41.65
16 Naranji Nullah 850 1127 1222 −95 −7.7 9.55 24.6
18 Kalpani River at Mardan 1499 3881 2887 1054 27.15 −Infinity 48.14
19 Kalpani River at Risalpur 3358 4918 5140 −222 −4.31 0.4348 34.66
21 Bagiari Nullah 473 1666 819 847 50.8 0.0321 42.24
22 Lund Khawar West 37 76 51 25 32.89 0.11 27.45
24 Bara River at Kohat Bridge 331 686.7 357.5 330.9 48.18 −Infinity 7.2
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On the other hand, the stationary model also underestimated the 100-year flood as compared to
the non-stationary model. For example, the stationary model underestimated the 100-year flood by
23 m3 s−1 (−1.19%) as compared to the non-stationary model (Figure 9, the Chitral River at Chitral).
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The value of the Bayes factor was 0.068, which was less than 1, so the non-stationary model was
favored. This behavior was obvious for study sites 6 and 19 (Table 6, Figures 9 and 10).
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Furthermore, for study sites possessing trends at the significance level of 0.1 (although the trends
were modeled at 0.1% for these sites), the non-stationary model overestimated the 100-year flood as
compared to the stationary model, and the corresponding value of the Bayes factor was greater than 1.
This ultimately favors the stationary model for sites 9 and 16 (Table 6, Figures 11 and 12).
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The non-stationary model was found to be reliable for the sites to study the annual maximum
flood regime, which exhibits significant trends at α = 0.05. The uncertainty bounds of most of the
study sites were high because of the higher value of coefficient of variation, except site 6, where the
value of coefficient of variation was 0.2 (see Table 1 and Figure 9). The uncertainty bound could also be
higher due to the existence of outliers in the data series. The removal of outliers in the data series can
reduce uncertainty.

4.5. Performance of Bayesian Models to Predict the Extreme Floods

The Bayesian models were again re-run for all the study sites before the commencement year
of the extreme flood event that we labeled an outlier for all the study sites. Similarly, the objective
criterion was adopted again (if a trend exists then modeling was performed using the non-stationary
Bayesian model, otherwise only the stationary Bayesian model was used). Table 7 describes the results
of the corresponding stationary and non-stationary Bayesian models.

The Bayesian models performed well, predicting the extreme floods satisfactorily for all the study
sites except sites 9 and 22 (see Table 7 and Figures 13–22). The stationary Bayesian model was found
reliable for sites 5, 6, 11, 16, 21, and 24. However, the non-stationary model was favored as compared
to the stationary model as per the Bayes factor criterion (see Table 7) for sites 6, 18, 19, and 21. Despite
the existence of a significant trend at site 11, the stationary model was favored as per the Bayes factor
criterion, as well as predicting the extreme flood of 2016.

The outlier’s removal improved the fitting of the FFCs as compared to considering the entire data
series and also reduced the uncertainty (see Figures 13–22).

Statistical modeling of extremes in hydrology is exciting and challenging, and opens the door for
further studies. For example, for study site 9 (the Swat River at Chakdara), it is better to consider the
entire data series, and for better fitting, the incorporation of monsoon rainfall as a covariate might be
fruitful. The modeling could also be performed by considering other distributions in the Bayesian
framework or using the traditional frequentist framework.

Finally, from a regional perspective, the region is heterogeneous due to large altitudinal variations.
Due to the regional heterogeneity associated with elevation, it seems to be quite difficult to develop a
regional Bayesian model for the whole KRB, but efforts should be made to develop a regional Bayesian
model at sub-basin or catchment scales in future studies by further pooling of information for other
parameters, like location and scale, across sites. Moreover, the studies are also required to deeply
understand the impact of climate or dominating weather patterns, such as the South Asian monsoon,
low climate variability El-Niño Southern Oscillation and Indian Ocean Dipole (ENSO, IOD, etc.) and
human factors, such as land use cover change (LUCC), population increase, and reservoir construction,
on the flood regime of the KRB [1,13,80–83].
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Table 7. Performance of Bayesian models for predicting the extreme floods in the KRB, Pakistan.

Site # Time Series
Length

Extreme Event
(Year)

Mann–Kendall
(Test-Z)

Stationary
m3 s−1

Non-Stationary
m3 s−1

Difference between
Stationary and

Non-Stationary m3 s−1

Percent
Difference (%) Bayes Factor

5 1987–2009 2010 −0.05 3300 N/A N/A N/A N/A
6 1964–2004 2005/2010 2.88 ** 1701 1978 277 14 0.0054
9 1961–1991 1992 1.42 1746 N/A N/A N/A N/A

11 1986–2015 2016 4.49 *** 2211 1295 916 41.43 15.167
16 1968–2009 2010 1.31 850.8 N/A N/A N/A N/A
18 1984–2009 2010 2.29 * 1472 1085 387 26.3 0.1208
19 1984–2009 2010 2.76 ** 4580 3595 990 21.6 0.008
21 1987–2009 2010 2.2 * 1469 704 765 52 0.016
22 1987–1996 1997 −0.28 30.38 N/A N/A N/A N/A
24 1983–2009 2010 1.15 339.6 355 15.4 4.33 +Infinity

*** Trend is significant at α = 0.001, ** Trend is significant at α = 0.01, * Trend is significant at α = 0.05, N/A, Non-stationary Bayesian modeling not applicable because of insignificant or
no trend.
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5. Conclusions

Analyzing the flood regime and its non-stationary modeling in a Bayesian framework for the
KRB was the main objective of the present study. To achieve this, a Mann–Kendall trend analysis was
performed to explore the flood regime of the KRB in detail, and finally, the stationary and non-stationary
Bayesian models with informed priors on shape parameter for GEV distribution were developed,
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and their results were compared by using the corresponding FFCs, along with their uncertainty bounds.
We utilized the annual extreme data of flood series for the study area, with a maximum record of
1962–2016 (55 years) and a minimum of 1987–2016 (30 years). The key findings of the study are
described below:

1. Trend analysis showed a mixture of increasing and decreasing trends at different gauges in the
KRB at α = 0.05. The Chitral River, Kalpani River, Main Swat River, and Bara River basins showed
significant increasing trends, and the Panjkora River basin displayed a moderate increasing trend
in its annual maximum flood regime. However, the Lower Swat and Kabul sub-basins showed
decreasing trends, except for the Adezai River in the Kabul sub-basin, which showed a significant
increasing trend.

2. The overall basin was under critical change and signals of clear non-stationarity in the flood
regime were evident at various spatial scales throughout the basin.

3. The presence of a significant trend and significant difference in flood estimates for 100-year flood
between stationary and non-stationary FFCs were found that represent the clear violation from
the so-called stationary assumption.

4. The non-stationary Bayesian model was found to be reliable for the study sites that had a
significant trend at α = 0.05, while the stationary model overestimated or underestimated the
flood risk for these sites. On the other hand, the stationary Bayesian model performed better for
the study sites for trends at α = 0.1, while the non-stationary Bayesian model overestimated or
underestimated the flood risk for such sites.

5. The use of informed priors on the shape parameter based on regional information improved the
estimation of flood quantiles and reduced the uncertainty.

6. Proper consideration should be given to identify the outliers while using Bayesian models.
7. The presence of non-stationarity in the flood regime of the KRB has substantial implications for

flood management and water resources development. A design with stationary assumption
will cause two major concerns: under estimation or overestimation of design for structural
and non-structural measures in the KRB. An event-based design may also overestimate or
underestimate the risk in hydraulic design that was intended. Some previous studies in other
parts of world also provided similar results [1,13,31,84–86].

The study will be helpful for sustainable flood management and provide a reference for studying
floods in a changing environment for hydrologists, water resources managers, decision makers,
and concerned organizations.

Author Contributions: This research article, A.M. and S.J. formulated research design, plan, organized research
flow and manuscript write up. A.M. performed analysis, S.J. supervised research work and contributed in the
interpretation of results and discussions, R.M. and M.A. contributed in drafting and map preparations and J.Y.
was involved in short listing data sets from 45 flow gauge stations to 29 for the current study. All the authors
contributed well to writing at various stages.

Funding: This research was funded by CAS-TWAS President Fellowship Program for doctoral students and the
Strategic Priority Research Program of the Chinese Academy of Sciences [XDA20010201].

Acknowledgments: The authors acknowledge SWHP (Surface Water Hydrology Project) WAPDA Pakistan and
Irrigation Department Khyber Pakhtunkhwa, Pakistan to provide data for this study.

Conflicts of Interest: The authors declare no conflicts of interests.

References

1. López, J.; Francés, F. Non-stationary flood frequency analysis in continental Spanish rivers, using climate
and reservoir indices as external covariates. Hydrol. Earth Syst. Sci. 2013, 17, 3189–3203. [CrossRef]

2. Khaliq, M.; Ouarda, T.; Ondo, J.-C.; Gachon, P.; Bobée, B. Frequency analysis of a sequence of dependent
and/or non-stationary hydro-meteorological observations: A review. J. Hydrol. 2006, 329, 534–552. [CrossRef]

http://dx.doi.org/10.5194/hess-17-3189-2013
http://dx.doi.org/10.1016/j.jhydrol.2006.03.004


Water 2019, 11, 1246 27 of 30

3. Stedinger, J.R.; Vogel, R.; Foufoula-Georgiou, E. Frequency analysis of extreme events. Handb. Hydrol. 1993,
18, 68.

4. Salas, J. Analysis and Modeling of Hydrologic Time Series in Hand Book of Hydrology; Maidment, D.R., Ed.;
McGraw Hill Book Co.: New York, NY, USA, 1993.

5. Council, N.R. Decade-to-Century-Scale Climate Variability and Change: A Science Strategy; National Academies
Press: Washington, DC, USA, 1998.

6. Norrant, C.; Douguédroit, A. Monthly and daily precipitation trends in the Mediterranean (1950–2000).
Theor. Appl. Climatol. 2006, 83, 89–106. [CrossRef]

7. Mudelsee, M.; Börngen, M.; Tetzlaff, G.; Grünewald, U. No upward trends in the occurrence of extreme
floods in central Europe. Nature 2003, 425, 166–169. [CrossRef]

8. Douglas, E.; Vogel, R.; Kroll, C. Trends in floods and low flows in the United States: Impact of spatial
correlation. J. Hydrol. 2000, 240, 90–105. [CrossRef]

9. Franks, S.W. Identification of a change in climate state using regional flood data. Hydrol. Earth Syst. Sci.
2002, 6, 11–16. [CrossRef]

10. Milly, P.C.; Dunne, K.A.; Vecchia, A.V. Global pattern of trends in streamflow and water availability in a
changing climate. Nature 2005, 438, 347–350. [CrossRef]

11. Villarini, G.; Serinaldi, F.; Smith, J.A.; Krajewski, W.F. On the stationarity of annual flood peaks in the
continental united states during the 20th century. Water Resour. Res. 2009, 45. [CrossRef]

12. Wilson, D.; Hisdal, H.; Lawrence, D. Has streamflow changed in the nordic countries?–recent trends and
comparisons to hydrological projections. J. Hydrol. 2010, 394, 334–346. [CrossRef]

13. Villarini, G.; Smith, J.A.; Serinaldi, F.; Bales, J.; Bates, P.D.; Krajewski, W.F. Flood frequency analysis for
nonstationary annual peak records in an urban drainage basin. Adv. Water Resour. 2009, 32, 1255–1266.
[CrossRef]

14. Vogel, R.M.; Yaindl, C.; Walter, M. Nonstationarity: Flood magnification and recurrence reduction factors in
the United States. J. Am. Water Resour. Assoc. 2011, 47, 464–474. [CrossRef]

15. Hejazi, M.I.; Markus, M. Impacts of urbanization and climate variability on floods in northeastern Illinois.
J. Hydrol. Eng. 2009, 14, 606–616. [CrossRef]

16. Held, I.M.; Soden, B.J. Robust responses of the hydrological cycle to global warming. J. Clim. 2006, 19,
5686–5699. [CrossRef]

17. Allen, M.R.; Smith, L.A. Monte carlo ssa: Detecting irregular oscillations in the presence of colored noise.
J. Clim. 1996, 9, 3373–3404. [CrossRef]

18. Zaman, C.Q.U.; Mahmood, A.; Rasul, G.; Afzal, M. Climate Change Indicators of Pakistan; Report No:
PMD-22/2009; Pakistan Meteorological Department: Islamabad, Pakistan, 2009.

19. Ahmad, I.; Tang, D.; Wang, T.; Wang, M.; Wagan, B. Precipitation trends over time using mann-kendall and
spearman’s rho tests in Swat river basin, Pakistan. Adv. Meteorol. 2015, 2015, 431860. [CrossRef]

20. Khalid, S.; Rehman, S.U.; Shah, S.M.A.; Naz, A.; Saeed, B.; Alam, S.; Ali, F.; Gul, H. Hydro-meteorological
characteristics of Chitral river basin at the peak of the Hindukush range. Nat. Sci. 2013, 5, 987. [CrossRef]

21. Hartmann, H.; Buchanan, H. Trends in extreme precipitation events in the Indus river basin and flooding in
Pakistan. Atmos. Ocean 2014, 52, 77–91. [CrossRef]

22. Najmuddin, O.; Deng, X.; Siqi, J. Scenario analysis of land use change in Kabul river basin–a river basin with
rapid socio-economic changes in Afghanistan. Phys. Chem. Earth Parts A B C 2017, 101, 121–136. [CrossRef]

23. Qasim, M.; Hubacek, K.; Termansen, M.; Khan, A. Spatial and temporal dynamics of land use pattern in
district Swat, Hindu Kush Himalayan region of Pakistan. Appl. Geogr. 2011, 31, 820–828. [CrossRef]

24. Ullah, S.; Farooq, M.; Shafique, M.; Siyab, M.A.; Kareem, F.; Dees, M. Spatial assessment of forest cover and
land-use changes in the Hindu-Kush mountain ranges of northern Pakistan. J. Mt. Sci. 2016, 13, 1229–1237.
[CrossRef]

25. Sajjad, A.; Adnan, S.; Hussain, A. Forest land cover change from year 2000 to 2012 of tehsil Barawal Dir
Upper Pakistan. Int. J. Adv. Res. Biol. Sci. 2016, 3, 144–154.

26. Ahmad, A.; Nizami, S.M. Carbon stocks of different land uses in the Kumrat valley, Hindu Kush region of
Pakistan. J. For. Res. 2015, 26, 57–64. [CrossRef]

27. Yar, P.; Atta-ur-Rahman, M.A.K.; Samiullah, S. Spatio-temporal analysis of urban expansion on farmland and
its impact on the agricultural land use of Mardan city, Pakistan. Proc. Pak. Acad. Sci. B Life Environ. Sci. 2016,
53, 35–46.

http://dx.doi.org/10.1007/s00704-005-0163-y
http://dx.doi.org/10.1038/nature01928
http://dx.doi.org/10.1016/S0022-1694(00)00336-X
http://dx.doi.org/10.5194/hess-6-11-2002
http://dx.doi.org/10.1038/nature04312
http://dx.doi.org/10.1029/2008WR007645
http://dx.doi.org/10.1016/j.jhydrol.2010.09.010
http://dx.doi.org/10.1016/j.advwatres.2009.05.003
http://dx.doi.org/10.1111/j.1752-1688.2011.00541.x
http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0000020
http://dx.doi.org/10.1175/JCLI3990.1
http://dx.doi.org/10.1175/1520-0442(1996)009&lt;3373:MCSDIO&gt;2.0.CO;2
http://dx.doi.org/10.1155/2015/431860
http://dx.doi.org/10.4236/ns.2013.59120
http://dx.doi.org/10.1080/07055900.2013.859124
http://dx.doi.org/10.1016/j.pce.2017.06.002
http://dx.doi.org/10.1016/j.apgeog.2010.08.008
http://dx.doi.org/10.1007/s11629-015-3456-3
http://dx.doi.org/10.1007/s11676-014-0008-6


Water 2019, 11, 1246 28 of 30

28. Raziq, A.; Xu, A.; Li, Y.; Zhao, Q. Monitoring of land use/land cover changes and urban sprawl in peshawar
city in khyber pakhtunkhwa: An application of geo-information techniques using of multi-temporal satellite
data. J. Remote Sens. GIS 2016, 5. [CrossRef]

29. Milly, P.C.; Betancourt, J.; Falkenmark, M.; Hirsch, R.M.; Kundzewicz, Z.W.; Lettenmaier, D.P.; Stouffer, R.J.
Stationarity is dead: Whither water management? Science 2008, 319, 573–574. [CrossRef] [PubMed]

30. Delgado, J.M.; Apel, H.; Merz, B. Flood trends and variability in the Mekong river. Hydrol. Earth Syst. Sci.
2010, 14, 407–418. [CrossRef]

31. Leclerc, M.; Ouarda, T.B. Non-stationary regional flood frequency analysis at ungauged sites. J. Hydrol. 2007,
343, 254–265. [CrossRef]

32. Olsen, J.R.; Lambert, J.H.; Haimes, Y.Y. Risk of extreme events under nonstationary conditions. Risk Anal.
1998, 18, 497–510. [CrossRef]

33. McNeil, A.J.; Saladin, T. Developing Scenarios for Future Extreme Losses Using the Pot Method. In Extremes
and Integrated Risk Management; Embrechts, P., Ed.; CiteseerX: Zurich, Switzerland, 2000; pp. 253–267.

34. Stedinger, J.R.; Crainiceanu, C.M. Climate Variability and Flood-Risk Management. In Risk-Based Decision
Making in Water Resources IX; ASCE: Reston, VA, USA, 2001; pp. 77–86.

35. Strupczewski, W.; Singh, V.; Mitosek, H. Non-stationary approach to at-site flood frequency modelling. III.
Flood analysis of Polish rivers. J. Hydrol. 2001, 248, 152–167. [CrossRef]

36. He, Y.; Bárdossy, A.; Brommundt, J. Non-Stationary Flood Frequency Analysis in Southern Germany.
In Proceedings of the Seventh International Conference on Hydroscience and Engineering, Philadelphia, PA,
USA, 10–13 September 2006.

37. Renard, B.; Lang, M.; Bois, P. Statistical analysis of extreme events in a non-stationary context via a bayesian
framework: Case study with peak-over-threshold data. Stoch. Environ. Res. Risk Assess. 2006, 21, 97–112.
[CrossRef]

38. Khattak, M.; Anwar, F.; Sheraz, K.; Saeed, T.; Sharif, M.; Ahmed, A. Floodplain mapping using hec-ras and
arcgis: A case study of Kabul river. Arab. J. Sci. Eng. (Springer Sci. Bus. Media BV) 2016, 41, 1375–1390.
[CrossRef]

39. Sayama, T.; Ozawa, G.; Kawakami, T.; Nabesaka, S.; Fukami, K. Rainfall–runoff–inundation analysis of the
2010 Pakistan flood in the Kabul river basin. Hydrol. Sci. J. 2012, 57, 298–312. [CrossRef]

40. Bahadar, I.; Shafique, M.; Khan, T.; Tabassum, I.; Ali, M.Z. Flood hazard assessment using hydro-dynamic
model and gis/rs tools: A case study of Babuzai-Kabal tehsil Swat basin, Pakistan. J. Himal. Earth Sci. 2015,
48, 129–138.

41. Aziz, A. Rainfall-runoff modeling of the trans-boundary Kabul river basin using integrated flood analysis
system (ifas). Pak. J. Meteorol. 2014, 10, 75–81.

42. Ullah, S.; Farooq, M.; Sarwar, T.; Tareen, M.J.; Wahid, M.A. Flood modeling and simulations using
hydrodynamic model and aster dem—A case study of Kalpani river. Arab. J. Geosci. 2016, 9, 439. [CrossRef]

43. Mack, T.J.; Chornack, M.P.; Taher, M.R. Groundwater-level trends and implications for sustainable water use
in the Kabul basin, afghanistan. Environ. Syst. Decis. 2013, 33, 457–467. [CrossRef]

44. Lashkaripour, G.R.; Hussaini, S. Water resource management in Kabul river basin, Eastern Afghanistan.
Environmentalist 2008, 28, 253–260. [CrossRef]

45. Tariq, M.A.U.R.; Van de Giesen, N. Floods and flood management in Pakistan. Phys. Chem. Earth Parts A B C
2012, 47, 11–20. [CrossRef]

46. Anjum, M.N.; Ding, Y.; Shangguan, D.; Ijaz, M.W.; Zhang, S. Evaluation of high-resolution satellite-based
real-time and post-real-time precipitation estimates during 2010 extreme flood event in Swat river basin,
Hindukush region. Adv. Meteorol. 2016, 2016, 2604980. [CrossRef]

47. Rasul, G.; Dahe, Q.; Chaudhry, Q. Global warming and melting glaciers along southern slopes of HKH range.
Pak. J. Meteorol. 2008, 5, 63–76.

48. Mann, H.B. Nonparametric tests against trend. Econom. J. Econom. Soc. 1945, 13, 245–259. [CrossRef]
49. Kendall, M. Rank Correlation Methods; Charles Griffin: London, UK, 1975.
50. Katz, R.W. Statistics of extremes in climate change. Clim. Chang. 2010, 100, 71–76. [CrossRef]
51. Coles, S.; Bawa, J.; Trenner, L.; Dorazio, P. An Introduction to Statistical Modeling of Extreme Values; Springer:

Berlin/Heidelberg, Germany, 2001; Volume 208.
52. Smith, R. Extreme value statistics in meteorology and the environment. Environ. Stat. 2001, 8, 300–357.

http://dx.doi.org/10.4172/2469-4134.1000174
http://dx.doi.org/10.1126/science.1151915
http://www.ncbi.nlm.nih.gov/pubmed/18239110
http://dx.doi.org/10.5194/hess-14-407-2010
http://dx.doi.org/10.1016/j.jhydrol.2007.06.021
http://dx.doi.org/10.1111/j.1539-6924.1998.tb00364.x
http://dx.doi.org/10.1016/S0022-1694(01)00399-7
http://dx.doi.org/10.1007/s00477-006-0047-4
http://dx.doi.org/10.1007/s13369-015-1915-3
http://dx.doi.org/10.1080/02626667.2011.644245
http://dx.doi.org/10.1007/s12517-016-2457-z
http://dx.doi.org/10.1007/s10669-013-9455-4
http://dx.doi.org/10.1007/s10669-007-9136-2
http://dx.doi.org/10.1016/j.pce.2011.08.014
http://dx.doi.org/10.1155/2016/2604980
http://dx.doi.org/10.2307/1907187
http://dx.doi.org/10.1007/s10584-010-9834-5


Water 2019, 11, 1246 29 of 30

53. Shukla, R.K.; Trivedi, M.; Kumar, M. On the proficient use of gev distribution: A case study of subtropical
monsoon region in India. arXiv 2012, arXiv:1203.0642.

54. Massey, F.J., Jr. The kolmogorov-Smirnov test for goodness of fit. J. Am. Stat. Assoc. 1951, 46, 68–78. [CrossRef]
55. Mehrannia, H.; Pakgohar, A. Using easy fit software for goodness-of-fit test and data generation. Int. J. Math.

Arch. 2014, 5, 118–124.
56. Lin, L.; Sherman, P.D. Cleaning Data the Chauvenet Way. In Proceedings of the SouthEast SAS Users Group,

Hilton Head Island, SC, USA, 4–6 November 2007; SESUG Proceedings, Paper SA11.
57. Renard, B.; Sun, X.; Lang, M. Bayesian Methods for Non-Stationary Extreme Value Analysis. In Extremes in a

Changing Climate; Springer: Berlin/Heidelberg, Germany, 2013; pp. 39–95.
58. Meehl, G.A.; Karl, T.; Easterling, D.R.; Changnon, S.; Pielke, R., Jr.; Changnon, D.; Evans, J.; Groisman, P.Y.;

Knutson, T.R.; Kunkel, K.E. An introduction to trends in extreme weather and climate events: Observations,
socioeconomic impacts, terrestrial ecological impacts, and model projections. Bull. Am. Meteorol. Soc. 2000,
81, 413–416. [CrossRef]

59. Gilleland, E.; Katz, R.W. New software to analyze how extremes change over time. Eos Trans. Am. Geophys.
Union 2011, 92, 13–14. [CrossRef]

60. Cheng, L.; AghaKouchak, A.; Gilleland, E.; Katz, R.W. Non-stationary extreme value analysis in a changing
climate. Clim. Chang. 2014, 127, 353–369. [CrossRef]

61. Stephenson, A.; Tawn, J. Bayesian inference for extremes: Accounting for the three extremal types. Extremes
2004, 7, 291–307. [CrossRef]

62. Ragno, E.; AghaKouchak, A.; Love, C.A.; Cheng, L.; Vahedifard, F.; Lima, C.H. Quantifying changes in future
intensity-duration-frequency curves using multimodel ensemble simulations. Water Resour. Res. 2018, 54,
1751–1764. [CrossRef]

63. Martins, E.S.; Stedinger, J.R. Generalized maximum-likelihood generalized extreme-value quantile estimators
for hydrologic data. Water Resour. Res. 2000, 36, 737–744. [CrossRef]

64. Ter Braak, C.J. A Markov chain monte carlo version of the genetic algorithm differential evolution: Easy
bayesian computing for real parameter spaces. Stat. Comput. 2006, 16, 239–249. [CrossRef]

65. Vrugt, J.A.; Ter Braak, C.; Diks, C.; Robinson, B.A.; Hyman, J.M.; Higdon, D. Accelerating markov chain
monte carlo simulation by differential evolution with self-adaptive randomized subspace sampling. Int. J.
Nonlinear Sci. Numer. Simul. 2009, 10, 273–290. [CrossRef]

66. Gelman, A.; Shirley, K. Inference from Simulations and Monitoring Convergence. In Handbook. Markov Chain
Monte Carlo; CRC Press: Boca Raton, FA, USA, 2011; pp. 163–174.

67. Kass, R. Re kass and ae raftery. J. Am. Stat. Assoc. 1995, 90, 773–795. [CrossRef]
68. Khan, A. Analysis of streamflow data for trend detection on major rivers of the indus basin. J. Himal. Earth

Sci. Vol. 2015, 48, 99–111.
69. Khan, K.; Yaseen, M.; Latif, Y.; Nabi, G. Detection of river flow trends and variability analysis of Upper Indus

basin, pakistan. Sci. Int. 2015, 27, 1261–1270.
70. Sharif, M.; Archer, D.; Fowler, H.; Forsythe, N. Trends in timing and magnitude of flow in the Upper Indus

basin. Hydrol. Earth Syst. Sci. 2013, 17, 1503–1516. [CrossRef]
71. Rosner, A.; Vogel, R.M.; Kirshen, P.H. A risk-based approach to flood management decisions in a nonstationary

world. Water Resour. Res. 2014, 50, 1928–1942. [CrossRef]
72. Sun, X.; Thyer, M.; Renard, B.; Lang, M. A general regional frequency analysis framework for quantifying

local-scale climate effects: A case study of enso effects on southeast Queensland rainfall. J. Hydrol. 2014, 512,
53–68. [CrossRef]

73. Halbert, K.; Nguyen, C.C.; Payrastre, O.; Gaume, E. Reducing uncertainty in flood frequency analyses:
A comparison of local and regional approaches involving information on extreme historical floods. J. Hydrol.
2016, 541, 90–98. [CrossRef]

74. Kyselý, J.; Gaál, L.; Picek, J. Comparison of regional and at-site approaches to modelling probabilities of
heavy precipitation. Int. J. Climatol. 2011, 31, 1457–1472. [CrossRef]

75. Viglione, A.; Merz, R.; Salinas, J.L.; Blöschl, G. Flood frequency hydrology: 3. A bayesian analysis.
Water Resour. Res. 2013, 49, 675–692. [CrossRef]

76. Kuczera, G. Combining site-specific and regional information: An empirical bayes approach. Water Resour.
Res. 1982, 18, 306–314. [CrossRef]

http://dx.doi.org/10.1080/01621459.1951.10500769
http://dx.doi.org/10.1175/1520-0477(2000)081&lt;0413:AITTIE&gt;2.3.CO;2
http://dx.doi.org/10.1029/2011EO020001
http://dx.doi.org/10.1007/s10584-014-1254-5
http://dx.doi.org/10.1007/s10687-004-3479-6
http://dx.doi.org/10.1002/2017WR021975
http://dx.doi.org/10.1029/1999WR900330
http://dx.doi.org/10.1007/s11222-006-8769-1
http://dx.doi.org/10.1515/IJNSNS.2009.10.3.273
http://dx.doi.org/10.1080/01621459.1995.10476572
http://dx.doi.org/10.5194/hess-17-1503-2013
http://dx.doi.org/10.1002/2013WR014561
http://dx.doi.org/10.1016/j.jhydrol.2014.02.025
http://dx.doi.org/10.1016/j.jhydrol.2016.01.017
http://dx.doi.org/10.1002/joc.2182
http://dx.doi.org/10.1029/2011WR010782
http://dx.doi.org/10.1029/WR018i002p00306


Water 2019, 11, 1246 30 of 30

77. Sun, X.; Lall, U.; Merz, B.; Dung, N.V. Hierarchical bayesian clustering for nonstationary flood frequency
analysis: Application to trends of annual maximum flow in Germany. Water Resour. Res. 2015, 51, 6586–6601.
[CrossRef]

78. Katz, R.W.; Parlange, M.B.; Naveau, P. Statistics of extremes in hydrology. Adv Water Resour. 2002, 25,
1287–1304. [CrossRef]

79. Lima, C.H.; Lall, U.; Troy, T.; Devineni, N. A hierarchical bayesian gev model for improving local and regional
flood quantile estimates. J. Hydrol. 2016, 541, 816–823. [CrossRef]

80. Kwon, H.H.; Brown, C.; Lall, U. Climate informed flood frequency analysis and prediction in Montana using
hierarchical bayesian modeling. Geophys. Res. Lett. 2008, 35. [CrossRef]

81. Steinschneider, S.; Lall, U. A hierarchical bayesian regional model for nonstationary precipitation extremes
in northern california conditioned on tropical moisture exports. Water Resour. Res. 2015, 51, 1472–1492.
[CrossRef]

82. Lima, C.H.; Lall, U.; Troy, T.J.; Devineni, N. A climate informed model for nonstationary flood risk prediction:
Application to negro river at Manaus, Amazonia. J. Hydrol. 2015, 522, 594–602. [CrossRef]

83. Machado, M.J.; Botero, B.; López, J.; Francés, F.; Díez-Herrero, A.; Benito, G. Flood frequency analysis of
historical flood data under stationary and non-stationary modelling. Hydrol. Earth Syst. Sci. 2015, 19,
2561–2576. [CrossRef]

84. Šraj, M.; Viglione, A.; Parajka, J.; Blöschl, G. The influence of non-stationarity in extreme hydrological events
on flood frequency estimation. J. Hydrol. Hydromech. 2016, 64, 426–437. [CrossRef]

85. Hounkpè, J.; Diekkrüger, B.; Badou, D.F.; Afouda, A.A. Non-stationary flood frequency analysis in the
Ouémé river basin, Benin Republic. Hydrology 2015, 2, 210–229. [CrossRef]

86. Xiong, L.; Du, T.; Xu, C.-Y.; Guo, S.; Jiang, C.; Gippel, C.J. Non-stationary annual maximum flood frequency
analysis using the norming constants method to consider non-stationarity in the annual daily flow series.
Water Resour. Manag. 2015, 29, 3615–3633. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1002/2015WR017117
http://dx.doi.org/10.1016/S0309-1708(02)00056-8
http://dx.doi.org/10.1016/j.jhydrol.2016.07.042
http://dx.doi.org/10.1029/2007GL032220
http://dx.doi.org/10.1002/2014WR016664
http://dx.doi.org/10.1016/j.jhydrol.2015.01.009
http://dx.doi.org/10.5194/hess-19-2561-2015
http://dx.doi.org/10.1515/johh-2016-0032
http://dx.doi.org/10.3390/hydrology2040210
http://dx.doi.org/10.1007/s11269-015-1019-6
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Study Area and Data Description 
	Study Area 
	Flood Data 
	Flood Generating Mechanism in KRB 

	Methods 
	Preliminary Analysis 
	Trend Analysis 
	Selection of Extreme Value Distribution 
	Goodness of Fit Statistics to GEV Distribution 

	Model Design 
	Bayes Theorem for GEV Distribution 
	Prior Distribution 
	Parameters Estimation and Convergence Criterion 
	Model Evaluation 


	Results and Discussion 
	Temporal and Spatial Trends in Flood Regime 
	Evaluation of Goodness of Fit for Annual Extreme Data of Flood 
	Regionalization of Shape Parameter for Flash Floods Across the KRB 
	Comparison between Stationary and Non-Stationary Bayesian Models 
	Performance of Bayesian Models to Predict the Extreme Floods 

	Conclusions 
	References

