
water

Article

A Sensitivity Analysis of Simulated Infiltration Rates
to Uncertain Discretization in the Moisture
Content Domain

Lulu Liu 1 and Han Yu 2,3,*
1 Department of Mathematics, School of Science, Nanjing University of Science and Technology,

Nanjing 210094, China; lulu.liu@njust.edu.cn
2 School of Computer Science and Technology, Nanjing University of Posts and Telecommunications,

Nanjing 210023, China
3 Division of Physical Science and Engineering, King Abdullah University of Science and Technology,

Thuwal 23955-6900, Saudi Arabia
* Correspondence: han.yu@njupt.edu.cn

Received: 25 April 2019; Accepted: 4 June 2019; Published: 7 June 2019
����������
�������

Abstract: An unconditionally mass conservative hydrologic model proposed by Talbot and Ogden
provides an effective and fast technique for estimating region-scale water infiltration. It discretizes soil
moisture content into a proper but uncertain number of hydraulically interacting bins such that each
bin represents a collection of pore sizes. To simulate rainfall-infiltration, a two-step alternating process
runs until completion; and these two steps are surface water infiltration into bins and redistribution
of inter-bin flow. Therefore, a nonlinear dynamical system in time is generated based on different
bin front depths. In this study, using rigorous mathematical analysis first reveals that more bins can
produce larger infiltration fluxes, and the overall flux variation is nonlinear with respect to the number
of bins. It significantly implies that a greater variety of pore sizes produces a larger infiltration rate.
An asymptotic analysis shows a finite change in infiltration rates for an infinite number of bins, which
maximizes the heterogeneity of pore sizes. A corollary proves that the difference in the predicted
infiltration rates using this model can be quantitatively bounded under a specific depth ratio of
the deepest to the shallowest bin fronts. The theoretical results are demonstrated using numerical
experiments in coarse and fine textured soils. Further studies will extend the analysis to the general
selection of a suitable number of bins.
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1. Introduction

The recharge of groundwater [1,2] is critical in many aspects, for example, natural environments,
industry, and agriculture. Therefore, recharging aquifers is urgent in regions with growing
demands [3,4] on water supplies that are the key to the local ecosystem and to economic
development [5,6]. By using either natural or artificial methods to conduct the recharge, estimating
infiltration is usually subject to both uncertainties and multiple types of errors. Moreover, the problem
of rainfall-induced shallow landslides represents the most common natural hazard [7] in some areas of
the world. These landslides are activated by intense rainfall events where water infiltration causes an
increase of both volumetric content and pore pressure, thus worsening the slope stability in landslide
prone areas. Thus, effective and economic numerical models are first needed to simulate the movement
of water in the vadose zone, especially for large-scale distributed hydrologic applications over a
relatively long period [8,9].

Water 2019, 11, 1192; doi:10.3390/w11061192 www.mdpi.com/journal/water

http://www.mdpi.com/journal/water
http://www.mdpi.com
http://www.mdpi.com/2073-4441/11/6/1192?type=check_update&version=1
http://dx.doi.org/10.3390/w11061192
http://www.mdpi.com/journal/water


Water 2019, 11, 1192 2 of 17

For groundwater infiltration there are advanced reservoir modeling methods based on the Richards
equation [10] that can provide exact solutions to estimate infiltration [11,12]. However, these methods
are computationally expensive especially for a large geographic area such as a city or a large ranch
or farm. To simulate the rain-infiltration process over a number of years, they are complicated and
computationally costly since they determine where the water moves in space. The Green–Ampt
model [13], due to its computational convenience, is widely used in estimating infiltration parameters
and states, such as flux, accumulative water content, and infiltration time [14–17]. Nevertheless,
it makes some ideal, although unrealistic assumptions, for instance, it assumes the existence of an
abrupt wetting front, and uniform water content behind the wetting front. To avoid these limitations,
several contributions have modified this model. They can be classified as experimentally based
corrections [18,19], and mathematically or physically based optimizations [20–22]. To avoid the
drawbacks of the Green–Ampt model and rapidly determine how well ground water and aquifers
are recharged only, the Talbot–Ogden model is proposed [23,24] for estimating large-scale surface
water infiltration into various unsaturated soil textures [25] over long periods. Valuable features of
this model are the relatively low computational cost and the large-scale applicability. These features
are essential for integrating the hydrologic–hydrogeologic model into an integrated model for the
identification of water related hazards as well as supporting an early warning system for the reduction
of hydrogeological risk.

The Talbot–Ogden model is derived from the unsaturated Darcy’s law and conservation of mass
for water moving through a variably saturated porous media. It quickly simulates the infiltration
in the water content-depth (θ-z) domain as its new perspective. In Figure 1, the fundamental idea
in the Talbot–Ogden model is presented. In this model, bins are constructed by discretizing the
moisture content domain as shown in Figure 1a. According to their water content values, they are
independently arranged in parallel, not in series. Bins represent a collection of pore sizes corresponding
to a specific range of moisture content θi ≤ θ ≤ θe in a soil. Within a particular bin, this range of
moisture content can be found throughout the soil over the vertical domain (Figure 1b). Since the
model has only one spatial dimension, this assumption is valid regardless of how sufficiently small
the horizontal discretization is. The Green–Ampt equation is transformed and applied to compute
the depth infiltration independently in each bin. A process called redistribution, which is invoked at
every time step immediately after infiltration, governs the horizontal inter-bin flow along the θ-axis
according to the capillary pressure associated with each bin. This process will take into account all
the saturated bins but not only restricted to the local neighborhoods of different bins. The infiltration
and redistribution are respectively driven by gravitational and relative capillary forces in each bin.
During the infiltration, the capillary pressure and hydraulic conductivity become dynamic, and the
wetting front as in the Green–Ampt model (Figure 1a) may not exist. The discretized water content
domain has also been extended to be affine multi-dimensional [26] for depicting more complicated
pore size distributions. It is an intrinsically mass conservative model that can be applied to various soil
textures [8,23,27]. However, its suitability is directly related to the uncertain number of bins because
the predicted flux is highly nonlinear with respect to the discretization in the moisture content domain.
Therefore, this uncertainty plays an important role under different soil conditions in this model. The
convergence test for choosing a proper number of bins by Talbot and Ogden [23] is more rigorously
analyzed in this work, and its physical meaning, a greater variety of pore sizes leading to a larger
infiltration rate, can be naturally explained from this study. It will also be quantitatively estimated
how an infinite water content discretization affects the flux variation through an asymptotic analysis
by linearly fitting the wetting front. It directly indicates that a particular depth ratio of the deepest to
the shallowest bin fronts can maximize the infiltration flux.
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Figure 1. The mechanism in the Talbot–Ogden model. (a) Bins corresponding to different porosity θ-
values compared to the wetting front in the Green–Ampt model; (b) Different moisture content in a 
soil over the vertical domain. 
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made on the quantitative change of the flux as a function of the number of bins, and this work is 
generalized to an asymptotic analysis that gives an upper bound for infiltration flux variation. In 
Section 3, the infiltration flux variation using this model is firstly estimated from the physical 
parameters of a variety of real soil textures. Infiltration simulations for examples in both coarse and 
fine soil textures are presented using different numbers of bins to validate the theoretical analysis. 
Section 4 is the conclusive part. 
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Figure 1. The mechanism in the Talbot–Ogden model. (a) Bins corresponding to different porosity
θ-values compared to the wetting front in the Green–Ampt model; (b) Different moisture content in a
soil over the vertical domain.

In Section 2, the Talbot–Ogden model is first introduced, which allows us to create a fast solver
to simulate infiltration using finite water content discretization. A detailed sensitivity analysis is
then made on the quantitative change of the flux as a function of the number of bins, and this work
is generalized to an asymptotic analysis that gives an upper bound for infiltration flux variation.
In Section 3, the infiltration flux variation using this model is firstly estimated from the physical
parameters of a variety of real soil textures. Infiltration simulations for examples in both coarse and
fine soil textures are presented using different numbers of bins to validate the theoretical analysis.
Section 4 is the conclusive part.

2. Theory and Methodology

2.1. The Talbot–Ogden Model

Before presenting the Talbot–Ogden model, let us briefly review the Green–Ampt model relevant
to it. The Green–Ampt equation [13], which is based on Darcy’s law, provides a very simple model to
describe the infiltration of water into the subsurface soil. By neglecting the depth of ponded water, the
Green–Ampt equation for vertical infiltration is given by:

f = Ks

(
(θd − θi)Hc

F(t)
+ 1

)
, (1)

where f is the infiltration rate, Ks is saturated hydraulic conductivity, θi is initial moisture content, θd is
the maximum moisture content during infiltration, Hc is the effective capillary drive at the wetting
front, and F(t) is the cumulative infiltration depth at time t.

The Talbot–Ogden model discretizes the entire water content domain into bins that flow in soils
based on the porosity [23] and there is only one vertical spatial dimension (Figure 2) in this model.
From the initial moisture content θi to the effective porosity θe there are n bins indexed by j with equal
bin width ∆θ. The midpoint value (j − 1)∆θ + ∆θ/2 represented by θj is the moisture content of the j-th
bin and the depth of its saturated wetting front is zj. The j-th bin is assumed to be either fully saturated
or dry at any depth. The residual moisture content is θr. The rightmost saturated bin is θd. The bins
between θd and θe are unsaturated but can become saturated later. In the Green–Ampt model, the
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cumulative infiltration function F(t) is defined as F(t) = z(θd − θi). If we let f = dF/dt = (θd − θi)dz/dt,
the vertical infiltration formula by substituting this expression into Equation (1) is obtained.

dz
dt

=
1

(θd − θi)

(KsHc

z
+ Ks

)
(2)
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Based on Equation (2), the front of the j-bin grows as:

dz j

dt
=

1
θd − θi

(
K(θd)ψ(θd)

z j
+ K(θd)

)
(3)

Here, ψ represents the capillary pressure.
The vertical infiltration of water in each bin is governed by Equation (3). The horizontal movement

of water through bins is shown in Figure 3. By Equation (3), the infiltration rate dzj/dt is inversely
proportional to zj if the other parameters are constant for the j-th bin. Hence, bins to the right tend to
have greater front depths than the left ones especially in the beginning of infiltration (Figure 3a).
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Due to the capillary effect in soil, water in bins with large θ-values tends to flow to those bins with
smaller θ. This horizontal flow is referred to as the redistribution. It reorganizes the redundant water
collected from those protruding wetting fronts in all saturated bins proportional to the values of the
capillary pressureψ(θj) of every bin participating in the redistribution [23]. In the redistribution process
(Figure 3b), the last deeper bin is defined as the first saturated bin found over the moisture content
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domain along the negative direction of the θ-axis whose front depth is higher than the shallowest
saturated bin. Note that the wetting front depths gradually decrease from left to right after the
redistribution since the capillary pressure in the bins on the left acts immediately on water found at
depth in the bins to the right in this model [23].

The reasons for choosing a fixed moisture content θd for both K(θ) and ψ(θ) in Equation (3) are
found in [23]. Water tends move downward through the saturated bins with large θ-values, which is
the reason that K(θd) is chosen for every bin. However, the capillary pressure in a soil with only lower
moisture content than the current saturated bin is always satisfied prior to the rightmost saturated bin,
which is the reason that ψ(θd) is chosen for every bin. The functions K(θ) and ψ(θ) are from Brooks
and Corey [28], but other soil hydraulic models [29–31] can be used without affecting the analysis and
conclusions in this paper.

Due to the uncertain discretization of the moisture content domain into n bins, a dynamical
system [32] is generated

zt+∆t
j = zt

j +
dzt

j

dt
× ∆t + redistt

j, j = 1 . . . n, t ∈ [0, T], (4)

and
redistt

j = redistt
j

(
ψ(θ1), zt

1,ψ(θ2), zt
2, . . . ,ψ

(
θlast deeper bin

)
, zt

last deeper bin

)
(5)

In Equations (4) and (5), the term redist represents the redistribution as the inter-bin movement
of water.

The second term of the right hand side in Equation (4) comes from Equation (3) as infiltration.
The computation is inexpensive using Equation (4), as for every time step only n ordinary different
equations are solved for the infiltration. The simulation of redistribution takes O(n) operations for all n
bins. In the numerical convergence test by Talbot and Ogden, the largest n is 400 with a time step size
2.5 s for the coarsest soil sand, which provides a fast, accurate solution.

2.2. Instantaneous Infiltration Rates Analysis

The most important quantity in the Talbot–Ogden model is the bin width ∆θ. Therefore, the
range of ∆θ must be selected to match the unsaturated flow in specific soil systems because the flux
is nonlinear with respect to ∆θ. There are two simple assumptions made before analyzing the flux:
(1). θd is assumed to be fixed and independent of the number of bins, which is reasonable since
θd corresponds to the rightmost saturated bin that is changing during the infiltration; (2). All bins
with θi ≤ θ ≤ θd are already saturated. If there are empty bins, it means that the surface water can be
absorbed in the next time step so that the instantaneous infiltration rate equals the precipitation rate.

The number of bins and its nonlinear influence on the predicted flux can be considered under
these assumptions. Now the only uncertain quantity in the Talbot–Ogden model is the number of
bins, which means either a finer or a coarser discretization. All other parameters remain constant.
The unsaturated flow divides into two steps within every time step: infiltration and redistribution
(Figure 4).
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The infiltration governs the vertical downward movement of water in every bin. The redistribution
governs the horizontal inter-bin flow. The amount of water redistributed to each bin is proportional to
the local capillary pressure. In Figure 4, redundant water in the protruding bin caused by infiltration is
redistributed to the bins to its left. In the next time step, the process begins with another infiltration
followed by redistribution (Equation (4)). These two processes alternate until the simulation completes.
The strength of the peak in that particular protruding bin with more infiltration will depend on the bin
width ∆θ due to its nonlinearity effect in Equation (4). The redistribution phase moves no surface water
downward into the soil by assumption, but only rearranges the wetting fronts in different bins. Due to
the properties of the decreasing front depths by the redistribution, an analysis of the instantaneous
infiltration rates in the Talbot–Ogden model can be made.

2.2.1. One Bin versus Two Bins

Figure 5 presents the model of one bin and its division into two bins. The rectangle ACHF
represents bin1. Its wetting front is FH, its width is ∆θ1, and its depth is z1. Similarly, the two bins in
Figure 5 are bin2 (ABJI) and bin3 (BCED) with wetting fronts IJ and DE, respectively. Both their bin
widths are equal to ∆θ2, which means ∆θ1 = 2∆θ2. Their front depths are z2 and z3. It is assumed that
the entire water content for the two cases is the same. So, the water in bin1 equals that contained in the
union of bin2 and bin3, that is z1 × ∆θ1 = z2 × ∆θ2 + z3 × ∆θ2. These two cases can be compared. Let
VOnebin and VTwobins denote the instantaneous infiltration rates for each case. VOnebin is calculated by

VOnebin = Vbin1 = dz1
dt × ∆θ1

=
2×∆θ2×K(θd)

θd−θi

(
ψ(θd)

z1
+ 1

) (6)
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VTwobins is calculated by

VTwobins = Vbin2 + Vbin3 =
( dz2

dt + dz3
dt

)
× ∆θ2

=
∆θ2K(θd)
θd−θi

(
ψ(θd)

z2
+

ψ(θd)
z3

+ 2
) (7)

Based on the capillary pressure of the soil, a relationship among depths exists: z2 > z1 > z3, since
left bins always have deeper wetting fronts than the bins to their right. Moreover, if z2 = z3, then



Water 2019, 11, 1192 7 of 17

splitting one bin into two bins reverts back to the one bin case. Now, the difference between the
instantaneous infiltration rates can be computed by subtracting (6) from (7). Thus,

VTwobins −VOnebin = Vbin2 + Vbin3 −Vbin1

=
∆θ2×K(θd)×ψ(θd)

θd−θi

(
(z2−z3)

2

z2z3(z2+z3)

)
≥ 0 (with equality i f z2 = z3).

(8)

Equation (8) uses z1 × ∆θ1 = z2 × ∆θ2 + z3 × ∆θ2. Therefore, when one bin is split into two bins
and all possible pores are saturated, additional water infiltrates into the soil faster. Its increment can be
bounded by (8). Doubling the number of bins leads to a more continuous flow among bins. Hence,
more bins mean a higher infiltration rate. One bin is increased to n bins to prove this assumption.

2.2.2. One Bin versus n Bins

Similarly, n bins can be obtained by equally discretizing the moisture content domain of the
one bin case into n pieces. All other parameters remain constant. In Figure 6, the rectangle ABCD
represents one bin binX. Its depth and bin width are zX and ∆θX, respectively. Then binX is split into n
bins, marked by bin1, bin2, . . . , binn−1, and binn. All these new bins have the same width ∆θ. Their
depths from left to right are z1, z2, . . . , zn−1 and zn. It is similar to the previous example to have
zX × ∆θX = (z1 + z2 + . . .+ zn) × ∆θ, n∆θ = ∆θX = θd − θi, and z1 ≥ z2 ≥ . . . ≥ zn. By geometry there
exists an index l such that z1 ≥ z2 ≥ . . . ≥ zl ≥ zX ≥ zl+1 ≥ . . . ≥ zn. The infiltration rate of binX is

VOnebin = VbinX = dzX
dt × ∆θX

=
∆θXK(θd)
θd−θi

(
ψ(θd)

zX
+ 1

) (9)
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For the n-bin case, the summed infiltration rate is

Vnbins =
n∑

j=1
Vbin j =

n∑
j=1

dz j
dt × ∆θ

=
n∑

j=1

∆θK(θd)
θd−θi

(
ψ(θd)

z j
+ 1

) (10)
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By Equation (9) and Equation (10), the infiltration difference between these two cases is

Vnbins −VOnebin =

 n∑
j=1

Vbin j

−VbinX

=
∆θ×K(θd)×ψ(θd)

θd−θi

 n∑
j=1

1
z j
−

n
zX


=

∆θ×K(θd)×ψ(θd)
θd−θi

 n∑
j=1

1
z j
−

n2
n∑

j=1
z j

 ≥ 0

(11)

Note that the last step of Equation (11) uses

n∑
j=1

z j

n
≥

 n∏
j=1

z j


1
n

≥
n

n∑
j=1

1
z j

. (12)

Therefore from Equation (11), which means Vnbins − VOnebin ≥ 0, more bins in the model result in a
greater infiltration rate.

Now, n1 bins is increased to n2 bins, where n2 and n1 are integers and n2 > n1. This case resembles
the extension from one bin to dn2/n1e bins. The difference in infiltration rates between these n1 and
n2 bins is bounded by Vn2bins −Vn1bins ≈ Vdn2/n1ebins −VOnebin. By Equation (11), we can conclude that
if a soil texture can be fitted by a finer discretization, its overall conductivity becomes higher in the
Talbot–Ogden model. We found the infiltration rate using asymptotic analysis.

2.3. Asymptotic Analyses and Its Physical Meaning

Asymptotic analysis is used when the number of bins increases toward infinity. Equation (11) and
the assumption n∆θ = θd − θi are used first:

Vnbins −VOnebin = K(θd) ×ψ(θd)


1
n

n∑
j=1

1
z j
−

n
n∑

j=1
z j

 (13)

Before asymptotic analysis, the wetting front curve is loosely assumed to approximate a straight
slanted line (Figure 7) in theθ-z domain. This assumption can also be demonstrated by the water content
profiles in the solutions of the Richards Equation using Hydrus-1D [27] under many circumstances.
Although it is only an approximation, all the wetting fronts in this model decrease from z1 to zn

(Figure 6) after redistribution in every time step. When n→∞, the effect of the number of bins on the
instantaneous infiltration rate in the Talbot–Ogden model is:

lim
n→∞

(Vnbins −VOnebin)

= lim
n→∞

K(θd) ×ψ(θd) ×


(z1−zn)

n∑
j=1

1
zj

n(z1−zn)
−

z1−zn
z1−zn

n

n∑
j=1

z j




= K(θd) ×ψ(θd) ×

(
1

z1−zn

∫ z1
zn

1
z dz− z1−zn∫ z1

zn
zdz

)
= K(θd) ×ψ(θd) ×

(
1

z1−zn
ln z1

zn
−

2
z1+zn

)
.

(14)
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Equation (14) is obtained by the fundamental law of integration, which is the Newton–Leibniz
rule. Summing the reciprocals and then taking the average results in a positive number. Therefore, in
the integration the lower bound is 1/zn, and the upper bound is 1/z1.

Moreover, z1 corresponds to the deepest saturated bin, whereas zn corresponds to the shallowest
one. For convenience let zi and zd denote these two depths, respectively, because of the moisture
content they represent. Thus, when n→∞,

‖Vnbins −VOnebin‖L1
= lim

n→∞
(Vnbins −VOnebin)

= K(θd) ×ψ(θd) ×
(

1
zi−zd

ln zi
zd
−

2
zi+zd

) (15)

What Equation (15) tells us is that the variation in infiltration rate depends only on the depths
corresponding to the initial porosity θi and the moisture content θd of the rightmost saturated bin.
These two special bins are actually the deepest and the shallowest ones, respectively. An interpretation
is that the whole wetting front is pushed downward by water in the largest saturated porosity θd and
is prevented from progressing by water in the initial moisture content θi. Therefore, the advancement
of the wetting front is a compromise between these two bins. Interestingly, the unit of length does
not count in the expression, and the quantity 1

zi−zd
ln zi

zd
−

2
zi+zd

is dimensional and is meaningful in
physics. However, its value needs some further research, which is crucial for this model. The following
practical case is presented: suppose the two wetting fronts satisfy

∃δ > 0 and N̂ ∈ Z+, such that zd(t) + N̂δ ≥ zi(t) ≥ zd(t) + δ, f or all t.

If lim
t→∞

zd(t)→∞, then the following limits hold:

lim
zd→∞

(
1

zi − zd
ln

zi
zd
−

2
zi + zd

)
≤ lim

zd→∞

(
1
δ

ln
(
1 +

N̂δ
zd

)
−

2
2zd + N̂δ

)
= 0 (16)

and

lim
zd→∞

(
1

zi − zd
ln

zi
zd
−

2
zi + zd

)
≥ lim

zd→∞

(
1

N̂δ
ln

(
1 +

δ
zd

)
−

2
2zd + δ

)
= 0. (17)

Therefore, it follows that

lim
zd→∞

(
1

zi − zd
ln

zi
zd
−

2
zi + zd

)
= 0. (18)

Equation (18) means that if the wetting fronts corresponding to the initial moisture content θi
and the effective porosity θe are within some distance from each other in depth, the infiltration in the
Talbot–Ogden model will eventually become a steady state flow. However, a transformation will make
this discussion easier.
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Without loss of generality, let zi = rzd with r > 1, then a function D(r) characterizing the difference
between Vnbins and VOnebin, is defined by D(r) = ln(r)/(r − 1) − 2/(r + 1). It follows that

‖Vnbins −VOnebin‖L1
=

K(θd) ×ψ(θd)

zd
×D(r). (19)

The potential maximum or minimum of D(r) can be attained by taking its derivative

dD(r)
dr

= −
ln(r)

(r + 1)2 +
1

r(r− 1)
+

2

(r + 1)2 , (20)

which has a zero point at r ≈ 8.16. There are also two limits for two extreme cases:

lim
r→1+

D(r) = lim
r→1+

(r+1)ln(r)−2(r−1)
r2−1

= 0,
(21)

and
lim

r→+∞
D(r) = lim

r→+∞

[
1

r−1 ln(r) − 2
r+1

]
= 0.

(22)

Equation (21) corresponds to the Green–Ampt model. Equation (22) means that if the deepest
wetting front is too far away from the shallowest one, then the infiltration rate also tends to the one bin
case (Figure 8).Water 2019, 11, x FOR PEER REVIEW 11 of 18 
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The curve in Figure 8 very clearly shows the change in D(r). With the maximum value of D(r), it is
able to bound ‖Vnbins −VOnebin‖L1

. Note that

‖Vnbins −VOnebin‖L1
=

K(θd)×ψ(θd)
zd

×D(r)

≤

0.0748×Ks×ψb×

(
θd−θi
θe−θi

)3+ 1
λ

zd
(by Brooks and Corey)

(23)

where λ denotes the pore size distribution index [14]. If θd = θe, then the hydraulic models used in
inequality (23) are unimportant because K(θd) = Ks and ψ(θd) = ψb always hold. In this situation, hence,

‖Vnbins −VOnebin‖L1
≤ 0.0748×

Ks ×ψb

zd
, (24)



Water 2019, 11, 1192 11 of 17

the upper bound of the infiltration rate error can be calculated. Note that if a soil texture is chosen, then
zd can grow as a function of time and the rainfall rate, therefore making this upper bound decrease
with respect to time.

3. Numerical Experiments

In this section, the flux variation upper bound is calculated from the physical parameters of a
variety of soil textures. Numerical tests are then carried out to simulate infiltration and verify our
analysis in the previous section.

If zd is fixed in Equation (24), what is important is the product of saturated hydraulic conductivity
Ks and the bubbling pressure ψb. Therefore, 0.0748·Ksψb gives a bound for discrepancy of infiltration
rates. In Table 1 [23], Ksψb decreases from coarser to finer soils. The one exception is between clay
loam and silty clay loam. In general, the upper bound of ‖Vnbins −VOnebin‖L1

becomes larger with
coarser soils. Significantly, this finding means that if the soil is finer, then the infiltration will not be
distinguishable based on a change in the number of bins. However, in coarse textured soil systems, the
number of bins is more important than in finer ones. This is the reason why more bins may be required
to test the coarser soil: the outcome varies in a wider range.

Table 1. Parameters of different soil systems.

Texture Ks (cm/h) ψb (cm) Ksψb (cm2/h) 0.0748·Ksψb (cm/h)

Sand 23.56 7.26 171.05 12.795
Loamy sand 5.98 8.69 51.18 3.828
Sandy loam 2.18 14.66 31.96 2.391

Loam 1.32 11.15 14.72 1.101
Silt loam 0.68 20.79 14.14 1.058

Sandy clay loam 0.30 28.08 8.42 0.630
Clay loam 0.20 25.89 5.17 0.386

Silty clay loam 0.20 32.56 6.51 0.487
Sandy clay 0.12 29.17 3.50 0.262

Silt clay 0.10 34.19 3.42 0.256
Clay 0.06 37.30 2.24 0.168

From the last column of Table 1, if zd is fixed and not too deep nor too shallow, then the value
0.0748·Ksψb is in fact a certain bound for the variation in infiltration rate. This condition means that if
the rainfall rate is around that value or of the same scale for a specific soil system, then the choice of a
proper number of bins to make the simulation realistic is needed. Hence, the choice of the number
of bins should be determined at least by both the soil and rainfall rates. Note that when zd is very
large in inequality (24), the bound becomes small, which means the Talbot–Ogden model acts as the
Green–Ampt model or the Richards model for the steady state flow.

Using the Talbot–Ogden method it is possible to simulate this infiltration process by choosing
some parameters, including an appropriate number of bins. If the proper number of bins is relatively
large, then the modeled soil lets water quickly pass through it, which indicates that an underground
reservoir recharges quicker. On the other hand, if fewer bins are needed, then the model indicates that
this soil has a good capacity to retain water, which is beneficial for growing plants and for agriculture.
In general, the number of bins may indicate the pore size categories that can be modeled in the soil
for infiltration.

The comparison of instantaneous infiltration rates computed by Talbot–Ogden method and
Hydrus-1D is tested. In this work, the main focus is the influence of the number of bins on the
infiltration rates in the Talbot–Ogden method. The soil parameters used are listed in Table 2 [14]. The
time step ∆t is set as 10 s for all the simulations to guarantee the comparison consistency. Figure 9
shows the infiltration rate curves corresponding to different numbers of bins for three soil textures.
These three types are sand, sandy clay, and silt loam. Different rainfall rates are used because each soil
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type can generate comparable data only under the proper rainfall rate. One continuous rainfall is one
pulse. There are two pulses, and each lasts for 1.5 h. The numbers of bins used in testing are 25, 125,
and 250.Water 2019, 11, x FOR PEER REVIEW 13 of 18 
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Table 2. Soil textures and parameters used in model evaluation.

Soil Ks (cm/h) ψb (cm) θr θi θe λ

Sandy clay 0.12 29.17 0.109 0.239 0.321 0.223
Silt loam 0.68 20.79 0.015 0.133 0.486 0.234

Sand 23.56 7.26 0.02 0.033 0.417 0.694

With an increase in the numbers of bins, the infiltration rate in any soil system rises. During
the second precipitation, this phenomenon is even more obvious than in the first one. The reason is
explained by the analysis given in Section 2. At the beginning of the second rainfall there are already
some dry pores with larger pores that correspond to θ near θe, which is to the right of the moisture
content domain. The depth zd is very small at this moment so that the change in infiltration rate is
more sensitive to the perturbation of the numbers of bins than that in the first pulse. Mathematically,
if zd < 1 cm (the unit is consistent with that in Table 1), the upper bounds given by inequality (24)
and Table 1 are relatively easier to approach during the second pulse, thus verifying the analysis in
Section 2.

The quadratic or root mean squared (RMS) difference in the instantaneous infiltration rates
calculated at every time step with 25 bins and 125 or 250 bins, are defined as

RMS1 =

√√√√√√√ N1∑
time step=1

(
f time step
25 bins − f time step

125 bins

)2

N1
(25)

and

RMS2 =

√√√√√√√ N2∑
time step=1

(
f time step
25 bins − f time step

250 bins

)2

N2
, (26)

where f represents the instantaneous infiltration rates as computed for different numbers of bins,
respectively, and N is the number of f values in the interval for which RMS is calculated. In Table 3, the
columns of RMS values and their comparisons show that the effect on the infiltration rate becomes
smaller with an increase in the number of bins. In the fourth column of Table 3, the decreasing
RMS1/RMS2 values indicate that the coarser the soil texture is, the more sensitive the infiltration rate is
to the change in the number of bins, especially at the beginning of this change. This phenomenon can
be attributed to the relatively large range of infiltration change for coarser soils as shown in Table 1.
Note that the root mean square values in Table 3 also satisfy RMS1,2 < 0.0748·Ksψb.

Table 3. Influence of the number of bins on the infiltration in the Talbot–Ogden model.

Type RMS1 (cm/h) RMS2 (cm/h) RMS1/RMS2 (%) 0.0748·Ksψb (cm/h)

Sandy Clay 0.0171 0.0182 94.11 0.262
Silt Loam 0.1256 0.1515 82.91 1.058

Sand 1.9330 2.6853 71.99 12.795

Root mean sqaure1 = The difference of infiltration rates between 25 and 125 bins; Root mean square2 = The difference
of infiltration rates between 25 and 250 bins.

Figure 10a shows how infiltration behaves when the number of bins increases rapidly. There are
three arrays of data for comparison: one with 100 bins, another with 500 bins, and the rest with bins.
The rainfall rate is set to 2 cm/h, and two pulses are selected with each lasting 1.5 h. Figure 10b shows
similar results but with a coarser soil system silt loam. Let N denote the number of time steps where
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infiltration discrepancies appear corresponding to different numbers of bins, the following equation is
used to calculate the influence of the rapid increase in the number of bins:

In f luence o f large number o f bins(x) =

√√√√√√ N∑
i=1

(
Vi,100 bin−Vi,x bin

Vi,100 bin

)2

N
× 100%. (27)
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Figure 10. Infiltration in (a) sandy clay loam, and (b) silt loam with a large increase in the number
of bins.

For the three cases in Figure 10a,b, the use of (27) yields Table 4. In Table 4, for sand clay loam, the
difference in average infiltration rates using 100 bins and bins is

2.0 cm/h× 8.56% = 0.1712 cm/h < 0.0748 ·Ksψb = 0.630 cm/h. (28)

Table 4. Influence of large number of bins on the infiltration rate compared with 100 bins as the baseline.

Number of Bins (x) Sand Clay Loam Silt Loam

500 8.04% 17.48%
8.56% 24.32%
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Similarly, for silt loam, their difference is

3.5 cm/h× 24.32% = 0.8512 cm/h < 0.0748 ·Ksψb = 1.058 cm/h. (29)

In Equations (28) and (29) show that if the number of bins increases by 100 times, then the
increment in the infiltration rates is still bounded by the data in Table 1. In fact, the increment of
infiltration rate is more significant from 100 bins to 500 bins. These results show that infiltration in the
finer soil system is less sensitive to the rapid increase in the number of bins than the coarser one, which
is consistent with the analysis in Equation (24) and Table 1.

4. Conclusions

A sensitivity analysis of the instantaneous infiltration rates in the Talbot–Ogden model is developed
with rigorous mathematical deduction and reasonable physical assumptions. This analysis starts
from the two-bin case to the n-bin case. It is concluded that the infiltration rate increases with finer
discretization in the moisture content domain. Numerical experiments on the overall infiltration
rates have confirmed this theoretical conclusion. Therefore, the choice of the number of bins is very
important for different soil textures. When θd approaches θe, the Talbot–Ogden model always generates
higher infiltration fluxes than the Green–Ampt model, where K = Ks and Hc = −ψb are set.

An asymptotic analysis is also made on estimating the largest infiltration rates. Using the loose
assumption of a line-shaped wetting front, the asymptotic analysis provides an upper bound of the
infiltration rate difference resulting from two arbitrarily different moisture content discretizations. The
numerical experiments then illustrate this result. These upper bounds for different soil textures can
determine the accuracy of the Talbot–Ogden model in predicting the fluxes in various environments.
Note that if the wetting front is apparently nonlinear, which is possible in the Talbot–Ogden model
especially when precipitations are intermittent, then this asymptotic analysis may be adjusted to be
piecewise for different intervals of the moisture content domain. The nonlinearity can be handled
using exponential functions (i.e., zα, α > 1) to approximate the depths of the wetting fronts.

There are basically two factors determining the infiltration rates in the Talbot–Ogden model. One
is the number of bins by the n-bin case analysis and the other is the front depth discrepancy between
the leftmost bin and the rightmost bin in our asymptotic analysis. Moreover, it is intrinsically mass
conservative and is always computable.

The analysis will be extended to predicting the infiltration rate variation as a function of time
but not only restricted to the instantaneous moment. Meanwhile, bugs and cracks can be easily
incorporated into this model, although this will make the flux analysis more complicated. This model
can also be extended to heterogeneous soil textures by solving stacked homogeneous soil layers, which
is future work.
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Physical Notations and Units

Variable Physical Meaning Unit

Ks Saturated hydraulic conductivity [LT−1]
K Hydraulic conductivity [LT−1]
ψb Bubbling pressure [L]
ψ Capillary pressure [L]
Hc Suction head/Effective capillary pressure [L]
θ Moisture content or porosity [L3L−3]
θi Initial moisture content [L3L−3]
θd The maximum moisture content during infiltration [L3L−3]
θe Effective moisture content [L3L−3]
θr The residual water content [L3L−3]
∆θ Bin width after discretization [L3L−3]
f, V Infiltration rate [LT−1]
F Total water in soil [L]
t Time [T]
z Infiltration depth [L]
zd Front depth of the bin associated with θd [L]
zwe Front depth of the bin associated with θe [L]
zwi Front depth of the bin associated with θi [L]
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