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Abstract: The efficacy of germicidal ultraviolet (UV-C) light emitting diodes (LEDs) was evaluated
for inactivating human enteroviruses included on the United States Environmental Protection Agency
(EPA)’s Contaminant Candidate List (CCL). A UV-C LED device, emitting at peaks of 260 nm and
280 nm and the combination of 260/280 nm together, was used to measure and compare potential
synergistic effects of dual wavelengths for disinfecting viral organisms. The 260 nm LED proved to be
the most effective at inactivating the CCL enteroviruses tested. To obtain 2-log10 inactivation credit for
the 260 nm LED, the fluences (UV doses) required are approximately 8 mJ/cm2 for coxsackievirus A10
and poliovirus 1, 10 mJ/cm2 for enterovirus 70, and 13 mJ/cm2 for echovirus 30. No synergistic effect
was detected when evaluating the log inactivation of enteroviruses irradiated by the dual-wavelength
UV-C LEDs.

Keywords: ultraviolet disinfection; dual-wavelength; UV-C LEDs; human enteroviruses; viral
inactivation efficacy; synergy

1. Introduction

Human enteroviruses are a significant cause of waterborne disease, resulting in gastrointestinal
and upper respiratory tract infections, as well as more severe illnesses, such as viral meningitis
and encephalitis [1,2]. Non-polio enteroviruses cause about 10 to 15 million infections each year
in the United States [3]. Enterovirus 71, as well as poliovirus, were listed in the top five global
infectious disease threats determined by the Centers for Disease Control and Prevention (CDC) [4].
While most infected people with non-polio enteroviruses have mild illness, these viruses can cause
infections in infants and other immunocompromised individuals with serious complications [3].
Human enteroviruses are often detected in wastewater effluents [5–7]. Since 2003, these viruses have
been listed on the United States Environmental Protection Agency (USEPA)’s Contaminant Candidate
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List (CCL) as waterborne pathogens that could warrant inclusion in future regulations under the Safe
Drinking Water Act [8].

Drinking water treatment plants have the disinfection capabilities to achieve effective viral
inactivation through various disinfection barriers during the course of treatment processes. Unlike
chemical disinfectants, such as chlorine and ozone, ultraviolet (UV) light has been successfully adapted
for treating these waterborne pathogens without the formation of carcinogenic disinfection by-products
(DBPs) in drinking water treatment systems [9–11]. However, conventional low-pressure (LP) mercury
vapor lamps have some practical limitations in water treatment applications, such as limitations in
energy efficiency and, more importantly, potential mercury contamination from accidental breakage or
improper disposal of the lamps.

Emerging UV light emitting diodes (LEDs) technology has enormous potential in potable water
disinfection applications. UV LEDs are well suited for point-of-use (POU) devices since LEDs
are smaller, lighter, less fragile, and mercury-free [12]. Moreover, UV LEDs offer the flexibility to
use preferred germicidal wavelengths, which range from 254–280 nm (i.e., germicidal ultraviolet
(UV-C)) [13–19]. Extensive studies have been conducted on microorganism inactivation using UV-C
LEDs [20–25]. However, most studies have focused primarily on microbial indicators and, to date,
limited studies targeting waterborne pathogens have been reported. Most recently, Rattanakul and
Oguma [25] showed inactivation efficacy of Pseudomonas aeruginosa and Legionella pneumophila, using
UV LEDs with peak wavelength emissions at 265 and 280 nm. Beck et al. [26] reported comprehensive
results of dual-wavelength UV-C LEDs emitting at peaks of 260 nm, 280 nm, and the combination
of 260/280 nm together against a suite of waterborne microorganisms, including human adenovirus,
which is one of the most resistant pathogens to UV irradiation. To our knowledge, the efficacy of
inactivation of other human enteric viruses by a polychromatic light spectrum of UV-C LED has not
yet been reported. The main objective of this study was to investigate the efficacy of dual-wavelength
UV-C LEDs for inactivating four serotype representatives of human enterovirus species.

2. Materials and Methods

Representative serotypes of the four human enteric species (Enterovirus A–D) [27] were selected
as test viruses, including coxsackievirus A10 (CVA10, Kowalik strain), echovirus 30 (Echo30,
Bastianni strain), poliovirus 1 (PV1, Mahoney strain), and enterovirus 70 (EV70, J670/71 strain)
respectively. The enteroviruses were obtained from the American Type Culture Collection (Manassas,
VA, USA) and propagated in buffalo green monkey kidney (BGMK) cells, as described previously [28].
UV-exposure experiments against these enteroviruses were performed as described previously [26].
Briefly, bench-scale performance evaluation was conducted using a collimated beam (CB) apparatus
with LEDs with peak emissions of 260 nm, 280 nm, and the combination of 260/280 nm together.
The incident irradiances of the CB apparatus at the center of the dish, measured at the weighted average
wavelengths of the three emissions with an ILT1400 radiometer and SED240/W detector (International
Light Technologies, Peabody, MA, USA), were 0.194 mW/cm2, 0.314 mW/cm2, and 0.473 mW/cm2

for the 260 nm LED, the 280 nm LED, and the combination of 260/280 nm together (38%—260 nm
and 62%—280 nm), respectively. The applied average fluences throughout each water sample were
determined according to published methods for CB tests with polychromatic sources [26,29,30]. Fluence
calculations incorporated the incident irradiance, the UV LED emission spectra, divergence of the light,
reflection off the surface of the water, non-uniformity of the light across the petri dish (petri factor of
0.87–0.93), and the water absorbance.

Triplicate CB tests were performed with mixed stocks of four viruses. Infectious virus
concentrations were determined using an integrated cell culture reverse transcriptase quantitative
polymerase chain reaction (ICC-RTqPCR), as described previously [31,32]. Log10 inactivation of
enteroviruses (I) is defined by Equation (1):
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I = − log10

(
Nd
N0

)
(1)

where N0 and Nd (MPN/mL) are the initial concentration and the concentration of infectious
enteroviruses after a specified UV dose, respectively. The log10 inactivation was estimated for four
human enteroviruses at four different UV fluences (5 mJ/cm2, 10 mJ/cm2, 15 mJ/cm2, and 20 mJ/cm2),
using a dual-wavelength UV-C LED device emitting a polychromatic light spectrum with the peaks at
259.6 nm and 276.6 nm. For the comparison of UV dose response of enteroviruses to low-pressure (LP)
UV at 254 nm, the log10 inactivation rates of LP UV were adapted from Ryu et al. [32].

Analysis of variance (ANOVA) tests were performed to determine if there was a significant
difference in inactivation efficacy of the tested four enteroviruses among different wavelength spectra
(e.g., 260 nm, 280 nm, and 260/280 nm). P values of <0.05 were considered statistically significant.

3. Results and Discussion

The CB experiments were designed to test the effectiveness of irradiation from individual LED
260 nm and 280 nm and the simultaneous irradiation of LED 260/280 nm at inactivating the selected
viruses. The log10 inactivation results after each of the irradiation scenarios (e.g., 260 nm, 280 nm,
and 260/280 nm) to each of the four viruses are presented in Figure 1. The tailing for Echo30 and
EV70 was observed at 15 mJ/cm2 of UV fluence, possibly due to assay limitations (i.e., detection limit).
To achieve a 2-log10 reduction in infectious virus (i.e., 99% reduction) by the most effective wavelength,
260 nm LED, averaged UV doses were approximately 8 mJ/cm2 for CVA10 and PV1, 10 mJ/cm2 for
EV70, and 13 mJ/cm2 for Echo30 (Figure 1). In comparison, for a 2-log10 reduction using 280 nm LED,
the required doses were averaged to approximately 12 mJ/cm2 for CVA10 and EV70, 11 mJ/cm2 for
PV1, and 15 mJ/cm2 for Echo30 (Figure 1), indicating that light at a wavelength of 280 nm was less
effective for inactivating enteroviruses.

The 5 mJ/cm2 of UV dose using 260 nm LED can provide at least 1-log10 inactivation of all the
enteroviruses tested (Figure A1). When 280 nm LED was used for the same UV dose, only EV70
showed over 1-log10 inactivation, whereas less than 1-log10 inactivation of the other enteroviruses was
achieved. EV70 at 280 nm light spectrum showed the best efficacy of log10 inactivation but significantly
less inactivation efficacy than that of 260 nm irradiation (i.e., 1.1 vs. 1.6 log10 reduction for 5 mJ/cm2 of
UV fluence, p = 0.01). At 280 nm light spectrum, the other viruses showed relatively low performance
with log10 reduction range of 0.5–0.8 (Figure A1). Simultaneous irradiation at 260/280 nm LED was
either as effective as 260 nm alone (EV70, Echo30) or less effective (CVA10, PV1). In addition, all UV-C
LED wavelengths were more effective than LP-UV at 254 nm (Figure 1), which supports previously
published reports [32,33]. Gerba et al. [33] showed that a UV dose of 14 mJ/cm2 to 18 mJ/cm2 resulted
in a 2-log10 inactivation credit of enteric viruses, excluding adenovirus using LP mercury vapor UV
lamp. These UV doses for enteric viruses tested yielded much greater inactivation rate constants than
viral indicators (e.g., MS2 and Qβ bacteriophages) [25,26], suggesting that these bacteriophages could
be used as conservative viral indicators in UV disinfection studies.
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Figure 1. Log10 inactivation of four human enteroviruses after exposure to germicidal ultraviolet light 
emitting diodes (UV-C LEDs) and low-pressure UV (LPUV) at 254 nm ((a) Coxsackievirus A10, (b) 
Echovirus 30, (c) Poliovirus 1, and (d) Enterovirus 70). Arrow (↑) represents detection limit. Each data 
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Figure 1. Log10 inactivation of four human enteroviruses after exposure to germicidal ultraviolet
light emitting diodes (UV-C LEDs) and low-pressure UV (LPUV) at 254 nm ((a) Coxsackievirus A10,
(b) Echovirus 30, (c) Poliovirus 1, and (d) Enterovirus 70). Arrow (↑) represents detection limit.
Each data point is an arithmetic average of log10 inactivation from independent triplicate collimated
beam (CB) tests. Refer to Figure A1 for more detailed statistics, including standard deviation. The log10

inactivation rates LPUV at 254 nm were adapted from Ryu et al. [32].

Overall, the 260 nm light spectrum was most effective at inactivating all the enteroviruses tested,
followed by the 260/280 nm light spectrum, and lastly, the 280 nm light spectrum (Figure 1). These
results support our previous study with MS2 bacteriophage (an RNA virus), which also reported no
synergistic inactivation of RNA viruses by the 260/280 nm combination [26]. Most recently, Rattanakul
and Oguma [25] reported that 265 nm UV-LED was the most effective fluence for disinfecting bacterial
pathogens and Qβ bacteriophage (an RNA virus) when compared to 280 and 300 nm UV-LEDs and
LP UV at 254 nm. Several studies have also shown that the MS2 virus is more susceptible to UV
light at 260 nm than at 280 nm [34,35]. A relative peak at 260 nm for the UV absorbance of MS2 RNA
and in the MS2 action spectrum [34] indicates that this wavelength is most effective for viral RNA
damage. The sufficient fluence of UV light at specific nucleic acid absorbing wavelengths inactivates
microorganisms by impeding the replication of their DNA or RNA molecules [9,36,37]. While nucleic
acids absorb UV light between 240 and 280 nm, both DNA and RNA have peak adsorption at or
near 260 nm [20]. Unlike conventional monochromatic UV light from a LP mercury vapor lamp
(at 254 nm), polychromatic UV-C LED produces a broader band of light emission. For example, an
LED with a 260-nm peak emission wavelength has a spectral range of 250 nm to 270 nm, which
covers the peak nucleic acid adsorption range of nucleic acid molecules. However, peak absorption
distribution is dependent on the specific target organism that has an absorption maximum between
254 and 280 nm [9,18]. On the other hand, human adenovirus (a DNA virus) showed relatively high
inactivation efficacy at 280 nm [26]. Given that the UV absorbance of protein has a relative peak
near 280 nm [38], protein damage plays an important role in adenovirus inactivation [39]. Unlike
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human adenovirus, human enteroviruses showed less resistance to UV light of 280 nm, suggesting
a less important role of viral proteins in the infectious process. Further study on viral inactivation
mechanisms across the germicidal UV spectrum is needed.

4. Conclusions

This research utilized a germicidal UV-C LED device emitting a polychromatic light spectrum
around the peak at 260 and 280 nm to evaluate its efficacy at inactivating human enteroviruses in
water. The comparison of log10 inactivation of microorganisms irradiated individually by 260 and
280 nm UV LED units and the log10 inactivation achieved from the combined 260/280 irradiation
shows no synergistic effects. Irradiation of 260 nm peak light spectrum is more effective for the
inactivation of human enteroviruses. Overall, UV LEDs showed the capability to effectively inactivate
the CCL enteroviruses tested. The higher efficacy of the 260 nm LED encourages further studies on its
applicability for sustainable water treatment and other CCL pathogens. UV-LEDs also have several
practical advantages that allow for a device effective at the point of use (POU). This would disinfect
drinking water prior to public consumption. As waterborne pathogens continue to pose a public
health threat, the development of novel technologies—such as LED POU devices—will be important
to promote safe drinking water.
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Figure A1. Comparison results of log10 inactivation rate from the 5 mJ/cm2 (a), 10 mJ/cm2 (b),
and 15 mJ/cm2 (c) irradiation of UV-C LEDs for four human enteroviruses. The error bars represent 1
standard deviation. Symbol (�) represents the p value of <0.05 among three wavelengths, as determined
by ANOVA. Echo30 and EV70 for a UV dose of 15 mJ/cm2 were not determined. The log10 inactivation
rates by low-pressure UV (LPUV) at 254 nm were estimated using UV dose–response curves with a UV
dose range of 10–30 mJ/cm2, adapted from Ryu et al. [32].
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