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Abstract: In this work, internal wave generation techniques are developed in an open source
non-hydrostatic wave model (Simulating WAves till SHore, SWASH) for accurate generation of regular
and irregular long-crested waves. Two different internal wave generation techniques are examined:
a source term addition method where additional surface elevation is added to the calculated surface
elevation in a specific location in the domain and a spatially distributed source function where a spatially
distributed mass is added in the continuity equation. These internal wave generation techniques in
combination with numerical wave absorbing sponge layers are proposed as an alternative to the weakly
reflective wave generation boundary to avoid re-reflections in case of dispersive and directional waves.
The implemented techniques are validated against analytical solutions and experimental data including
water surface elevations, orbital velocities, frequency spectra and wave heights. The numerical results
show a very good agreement with the analytical solution and the experimental data indicating that
SWASH with the addition of the proposed internal wave generation technique can be used to study
coastal areas and wave energy converter (WEC) farms even under highly dispersive and directional
waves without any spurious reflection from the wave generator.

Keywords: non-hydrostatic model; SWASH; Internal wave generation; source term addition method;
spatially distributed source function

1. Introduction

Numerical wave propagation models are commonly used as engineering tools for the study of
wave transformation in coastal areas. The number of numerical models based on the Navier-Stokes
equation has recently increased remarkably, since they offer detailed and accurate predictions of
the wave field but at a very high computational cost. As a result, numerical models solving
approximated equations usually averaged over the vertical—like Boussinesq and nonlinear shallow
water equations—are an essential tool, especially when large domains and sea states of several hours
are considered.

Boussinesq-type models [1–3] account for both nonlinearity and frequency-dispersion of the waves by
using high-order derivative terms in the equations. As an alternative, models based on the non-hydrostatic
approach [4–6] can resolve the vertical flow structure and can improve their frequency dispersion by
using additional layers rather than increasing the order of derivatives as in the case of Boussinesq-type
models. A representative model of this latter category is SWASH [7], a phase-resolving wave propagation
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model based on the nonlinear shallow water equations with added non-hydrostatic effects. In the field
of wave transformation in coastal areas, SWASH has already reached a fairly mature stage since it can
incorporate nonlinear shallow-water effects, such as the generation of bound sub- and super-harmonics
and near-resonant triad interactions [8–11].

In order to simulate waves in the nearshore zone correctly, the generation and absorption of waves
at the boundary of models need to be modelled accurately. In the SWASH model, incident waves are
generated by prescribing their horizontal velocity component normal to the boundary of the computational
domain over the vertical direction. Additionally, to absorb and to prevent re-reflections in front of
the numerical wave generator, a weakly reflective wave generation boundary condition [12] is applied
in which the total velocity signal is a superposition of the incident velocity signal and a velocity
signal of the reflected waves [13]. Verbrugghe et al. [14] applied a similar method to create open
boundaries within a Smoothed Particle Hydrodynamics (SPH) solver. However, this method is based
on the assumption that the reflected waves are small amplitude shallow water waves propagating
perpendicular to the boundary of the computational domain and hence this method is weakly reflective
for directional, dispersive waves. Furthermore, Wei and Kirby [15] found that this type of radiation
condition at the wave generator boundary can lead to numerical errors when long time simulations are
performed. Recently, a generating absorbing boundary condition (GABC) has been developed which is
an enhanced type of a weakly reflective wave generation boundary condition and can partially absorb
dispersive and directional waves [16,17]. However, in this method the level of re-reflection strongly
depends on the initial approximations since the characteristics of the reflected waves (i.e., wave angle,
wave celerity) inside the numerical domain cannot be estimated a priori. In general, it is not possible to
find practical boundary conditions that do the above task perfectly.

On the other hand, models utilizing a sponge layer are very effective in absorbing reflected
waves. However, this implies that the waves have to be generated inside the computational domain
instead of on the boundary. This internal wave generation technique in combination with numerical
wave absorbing sponge layers was firstly proposed by Larsen and Dancy [18] for Peregrine’s classical
Boussinesq equations [19]. Later, Lee and Suh [20] and Lee et al. [21] achieved wave generation for
the mild slope equations of Reference [22] and the extended Boussinesq equations of Nwogu [23],
respectively, by applying the source term addition method. Lee et al. [21] have shown empirically that
the velocity of disturbances caused by the incident wave can be properly obtained from the viewpoint
of energy transport. Further, Schäffer and Sørensen [24] theoretically derived the energy velocity by
adding the delta source function to the mass conservation type equation and integrated asymptotically
the resulting equation at the generation point. However, Wei et al. [25] found that the source term addition
method in a single source line may cause high frequency noise in case of non-staggered computational
grid. To deal with this problem, Wei et al. [25] derived a spatially distributed (Gaussian shape)
source function for internal wave generation, where a mass source is added in the continuity equation.
Later, Choi and Yoon [26] and Ha et al. [27] used this technique in a Reynolds-averaged Navier-Stokes
(RANS) equations model and a Navier-Stokes equations (NSE) model, respectively. However, in both
cases they used directly the formula of [25], which was derived from the Boussinesq equations under
the shallow water assumption. Thus, their model was not capable to accurately generating deep water
waves and consequently high-frequency components in case of irregular waves.

In the present paper, a source term addition method and a spatially distributed source function for
internal wave generation are implemented in the non-hydrostatic model SWASH, in order accurately
generate regular and irregular long-crested waves. In addition, the energy velocity will be derived for
the governing equations of SWASH in case multiple layers are implemented. To the present authors’
knowledge, these internal wave generation techniques which are commonly used in Boussinesq
models [3] and mild-slope wave models [28], have not been derived and used in a non-hydrostatic
wave model before, due to the complexity of the governing equations. So, the main objective
of the present work concerns the implementation of the internal wave generation in SWASH to
accurately generate even highly dispersive and directional waves, while at the same time re-reflections
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at the position of the wave generator are vanishing. Moreover, SWASH has already been used in
the field of marine energy by simulating the wave-induced response of a submerged wave-energy
converter [29]. This kind of application requires a homogeneous wave field in the whole numerical
domain. Thus, the implementation of internal wave generation is important as it introduces noteworthy
improvements in the model, which can then make full use of its benefits for the study of WEC farms.

The paper is structured as follows. The numerical model SWASH is described in Section 2
where the governing equations are presented. The implemented internal wave generation techniques
are derived in Section 3. Section 4 provides a detailed overview of the model results for regular
and irregular long-crested waves. In addition, validation results are presented where the accuracy of
the model is compared with experimental data. The last sections provide conclusions and a summary
discussion of the present study.

2. SWASH Model

2.1. Mathematical Formulation

SWASH is an open source non-hydrostatic wave model [7]. The governing equations of the model
are based on the nonlinear shallow water equations with added non-hydrostatic effects, which are
derived from the incompressible Navier-Stokes equations. The numerical domain is bounded vertically
by the free-surface z = η(x, t) and the bottom z = −d(x), where t is time, d is the still water depth
and x and z are the Cartesian coordinates, where z is directed positive upwards. The equations for
the 2D vertical domain are

∂u
∂x

+
∂w
∂z

= 0 (1)

∂u
∂t

+
∂uu
∂x

+
∂wu
∂z

= −
1
ρ0

∂
(
ph + pnh

)
∂x

+
∂τxz

∂z
+
∂τxx

∂x
(2)

∂w
∂t

+
∂uw
∂x

+
∂ww
∂z

= −
1
ρ0

∂pnh

∂z
+
∂τzz

∂z
+
∂τzx

∂x
(3)

where u(x, z, t) and w(x, z, t) are the horizontal and vertical velocities, ph and pnh are the hydrostatic
and non-hydrostatic pressures, ρ0 is density andτxx, τxz, τzx, τzz are the turbulent stresses. The kinematic
boundary conditions are

w =
∂η
∂t

+ u
∂η
∂x

(z = η) (4)

w = −u
∂d
∂x

(z = −d) (5)

The dynamic boundary conditions at the surface are a constant pressure and no surface stresses.
The free surface elevation η is determined by considering the continuity for the entire water column

∂η
∂t

+
∂
∂x

∫ η

−d
udz = 0 (6)

At the bottom boundary, a bottom stress is included based on a quadratic friction law

τb = cf
U|U|

h
(7)

where h = η+ d is the total water depth, U is the depth averaged velocity and cf is a dimensionless
friction coefficient.

At the outlet of the domain a sponge layer can be employed to minimize reflections. The sponge
layer formula as described in Reference [30] is used, where the free surface elevation η and the velocity
component u are relaxed at every time step.
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In SWASH the full process of wave breaking is not simulated but instead a breaking wave is
considered analogous with a hydraulic bore. However, a high vertical resolution is needed to resolve
accurately this process. Hence, Smit et al. [31] proposed a breaking formulation which can reproduce
wave breaking with a coarse vertical resolution. A hydrostatic pressure distribution is assumed
when ∂η/∂t > a

√
gh, where g is the gravitational acceleration and a is the maximum wave steepness

before breaking.
The numerical implementation is based on an explicit, second order finite difference method

for staggered grids, where the mass and momentum are strictly conserved at a discrete level.
In the horizontal direction rectilinear or orthogonal curvilinear grid can be applied, while in the vertical
direction the computational domain is divided into a fixed number of layers. A more detailed overview
of the numerical methods and equations are given in Reference [7].

2.2. Wave Generation in SWASH

In the SWASH model, incident waves are generated by prescribing their horizontal velocity
component normal to the boundary of the computational domain over the vertical direction. To prevent
re-reflections in front of the numerical wave generator, a weakly reflective wave generation boundary
condition is adopted [12]. For the case of one layer the imposed depth-averaged horizontal velocity
component is given by

u(t) =
ω

kd
ηt +

√
g
d
(ηt − ηi) (8)

whereω is the angular frequency, k is the wave number, d is the still water depth, g is the gravitational
acceleration, ηt is the target surface elevation and ηi is the instantaneous surface elevation. In case of
multiple layers, a hyperbolic cosine distribution is assumed for the horizontal velocity component. As it
can be noticed from the second term of Equation (8), this method is valid only in case that the reflected
waves are shallow water waves propagating perpendicular to the boundary of the computational
domain, since a shallow water phase velocity, C =

√
gd is used. Hence, it is assumed that the high

frequency energy gets dissipated inside the numerical domain before arriving to the wave generation
boundary [31]. In addition, a linear superposition of the incident and reflected wave is assumed
and thus can only be applied to small amplitude waves.

3. Internal Wave Generation

In cases of directional and dispersive waves an internal wave generation technique can be applied
to avoid re-reflections due to the weakly reflective wave generation boundary. Two different internal
wave generation techniques are proposed here and are implemented in the SWASH model. The first
one is a source term addition method proposed by Lee et al. [21], while the second one is a spatially
distributed source function proposed by Wei et al. [25].

3.1. Energy Velocity

At first, a new energy velocity for the system of SWASH equations is mathematically derived
following the methodology of Reference [24] who derived the energy velocity for Nwogu’s Boussinesq
equations. In this paper, the derivation for the case of two equidistant vertical layers is presented,
while the extension to more layers is straightforward.

Bai and Cheung [32] showed that the governing Equations (1)–(3) can be converted into
a Boussinesq form by expressing the non-hydrostatic pressure and vertical velocity component in
terms of surface elevation and horizontal velocity component. Adding a point source to the continuity
equation, the linearized governing equations on a constant depth for the case of two equidistant vertical
layers read

∂η
∂t

+ d
∂u
∂x

= Λ(t)δ(x) (9)
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∂u
∂t

+ g
∂η
∂x
−

5
16

d2 ∂
3u
∂x2∂t

−
1
8

d2 ∂
3û
∂x2∂t

= 0 (10)

∂û
∂t
−

1
8

d2 ∂
3u
∂x2∂t

−
1

16
d2 ∂

3û
∂x2∂t

= 0 (11)

where u is the depth integrated horizontal velocity component, û is the inter-layer velocity variations,
δ is the Dirac delta function and Λ is the source function applied to a single point. From Equation (9)
it can be noticed that the ∂u/∂x term must be the one balancing the Dirac delta function and thus u
and û have a discontinuity.

Taking the time derivative of Equation (10) and eliminating η from Equation (9) gives

∂2u
∂t2 − gd

∂2u
∂x2 −

5
16

d2 ∂
4u

∂x2∂t2 −
1
8

d2 ∂
4û

∂x2∂t2 = −g Λ
∂δ
∂x

(12)

Eliminating the second and third term of Equation (12) using Equation (11) to get

∂2u
∂t2 − 8

g
d

û +
1
2

gd
∂2û
∂x2 −

5
2
∂2û
∂t2 +

1
32

d2 ∂
4û

∂x2∂t2 = −g Λ
∂δ
∂x

(13)

Taking the x derivative two times and eliminating the first term using Equation (11) gives

8
1

d2
∂2û
∂t2 − 8

g
d
∂2û
∂x2 +

1
2

gd
∂4û
∂x4
− 3

∂4û
∂x2∂t2 +

1
32

d2 ∂
6û

∂x4∂t2 = −g Λ
∂3δ

∂x3 (14)

Integrating 4 times Equation (14) from x = −ε to x = +ε, with the limit ε→ 0 and requiring
the integrals of û to be continuous at x = 0, we get

1
2

gd
(
û+
− û−

)
+

1
32

d2
(
∂2û+

∂t2 −
∂2û−

∂t2

)
= −g Λ (15)

In Equation (15), û is an odd function and thus the left and right contributions are identical.
In SWASH an approximation of the exact linear dispersion relation, which depends on the number

of vertical layers, is used (see Appendix A). For the case of two equidistant layers it is given by

ω2 = gk2d
1 + 1

16 (kd)2

1 + 3
8 (kd)2 + 1

256 (kd)4
(16)

In addition, at the wave generation boundary, apart from the progressive waves, evanescent modes
are included as well. These evanescent modes are a general characteristic of the Equations (9)–(11).
Hence, Equation (16) can be rewritten as

ω2d
g =

ω2
ed

g → (kd)2 1+ 1
16 (kd)2

1+ 3
8 (kd)2+ 1

256 (kd)4 = (ked)2 1+ 1
16 (ked)2

1+ 3
8 (ked)2+ 1

256 (ked)4 (17)

where k and ke are the wave numbers for progressive waves and evanescent modes, respectively.
Equation (17) yields two solutions

(ked)2
→ (kd)2, (ked)2

→ −
1+ 1

16 (kd)2

1
16+

5
256 (kd)2 (18)

Furthermore, away from the source point, x = 0, the solutions of Equations (9)–(11) can be
written as

η = ηp0 exp[i(ωt− kx)] + ηe0 exp[i(ωt− kex)] (19)

u = up0 exp[i(ωt− kx)] + ue0 exp[i(ωt− kex)] (20)

û = ûp0 exp[i(ωt− kx)] + ûe0 exp[i(ωt− kex)] (21)
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where the subscripts p and e stand for progressive and evanescent modes, respectively. By using
Equations (10) and (11), the inter-layer velocity amplitude ûp0 can be expressed in terms of surface
elevation amplitude ηp0

ûp0 = −
1
8

gk
ω

(kd)2

1 + 3
8 (kd)2 + 1

256 (kd)4
ηp0 (22)

In addition, the double integral of û with respect to x gives an odd function and it must vanish
at the source point, x = 0 and thus from Equation (21) we can write

ûe0 = −
ke

2

k2 ûp0 (23)

Finally, Equation (21) at x→ 0+ is imported in Equation (15) and eventually ûe0 and ûp0 are
going to be replaced using Equations (22) and (23) respectively. As a result, Equation (15) becomes

Λ = 2Ceηp (24)

where
ηp = ηp0 exp[iωt] (25)

Ce =
1
8

gk
ω

d

 (kd)2

1 + 3
8 (kd)2 + 1

256 (kd)4

(1− ke
2

k2

)(
1
2
−

1
32
ω2d

g

)
(26)

By eliminatingω and ke using Equations (16) and (18), respectively, it can be noticed that the energy
velocity Ce is equal to the group velocity Cg as it can be calculated from the approximated dispersion
relation by taking the derivative ofωwith respect to k

Ce =
64

√
dg(256 + 32(kd)2 + 5(kd)4)√

(16 + (kd)2)(256 + 96(kd)2 + (kd)4)
3

=
∂ω
∂k

= Cg (27)

Similarly, the energy velocity (group velocity) Ce can be derived for any number of vertical layers.
In Figure 1, the normalised energy velocities Ce/Cg Airy for one, two and three vertical layers are
plotted as a function of dimensionless depth kd. In addition, the range of dimensionless depth kd
as a function of number of vertical layers where the relative error in the normalised energy velocities
Ce/Cg Airy stays below 3% is given in Table 1. It can be observed that by increasing the number of
layers, a better fit is achieved with the exact linear solution Ce/Cg Airy = 1, fact that makes the model
applicable for higher kd values.

Table 1. Range of dimensionless depth kd as a function of number of vertical layers
and the corresponding relative error in the normalised energy velocities Ce/Cg Airy.

Number of Layers kd (-) Error (%)

1 ≤0.55 ≤3
2 ≤6.00 ≤3
3 ≤12.50 ≤3
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3.2. Source Term Addition Method

In the source term addition method proposed by Reference [21], additional surface elevation η∗ is
added with the desired energy to the calculated surface elevation η at the wave generation line for
each time step and is given by

η∗ = 2ηI Ce∆t
∆x

cos θ (28)

where ∆x is the grid size in the x-axis, ∆t is the time step, θ is the angle of the incident wave ray from
x-axis, ηI is the water surface elevation of incident waves and Ce is the energy velocity.

3.3. Spatially Distributed Source Function

In the spatially distributed source function proposed by Reference [25], a spatially distributed
mass is added in the continuity equation. Hence, the spatially distributed source function is applied on
an area in contrast to the source term addition method which is applied on a line as it is demonstrated
in Figure 2. For a single wave component, the source function can be defined as follows

f(x, y, t) = g(x)Dcos(ωt− kysinθ) (29)

where D is the source function amplitude and g(x) is the shape of the source function which can be
arbitrarily chosen. Here, a smooth Gaussian shape has been applied. Wei et al. [25] derived the source
function amplitude D for the extended Boussinesq equations of [23] and is given by

D =
2η0(ω

2
−α1gk4d3)cos θ

ωkI(1−α(kd)2)
(30)

where α = −0.390, α1 = α+ 1/3 and I is the integral defined by

I =

√
π

β
exp

− (kcosθ)2

4β

 (31)
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where β = 20/W2 and W is the width of the source area.
Equation (30) is derived for the extended Boussinesq equations of Nwogu and thus cannot be

applied directly to the SWASH equations for the case of multiple layers. However, Equation (30) can
be written in terms of the energy velocity as

D = 2Ceη0
cos θ

I
(32)

Equation (32) can be implemented in SWASH by using the energy velocity that corresponds to
the number of vertical layers used in the model. The energy velocity for the case of two vertical layers
has already been derived in Section 3.1. In this way, we overcome the limitation that [26,27] observed,
where their models, using Equation (30), were not applicable to deep water conditions.
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4. Model Tests

The internal wave generation techniques, implemented in SWASH as described in Section 3,
have been used to generate regular and irregular long-crested waves. The obtained results are validated
against analytical solutions and experimental data including water surface elevations, orbital velocities,
frequency spectra and wave heights.

4.1. Regular Waves

Firstly, the applicability and accuracy of the internal wave generation techniques to generate
linear regular waves in transitional and deep water conditions are examined. The numerical basin is
similar to the one in Figure 2 with sponge layers at the left and right boundaries with a width of 3L
(where L is the wave length) and a flat bottom. The internal wave generator is positioned at a distance
of 3L from the sponge layer. Two different wave conditions are examined: one in transitional water
(kd = π/6) and one in deep water (kd = π, highly dispersive wave). For dimensionless depth kd = π/6
one vertical layer is applied while for dimensionless depth kd = π two equidistant vertical layers are
applied in order to keep the relative error below 3% (Figure 1, Table 1). For both cases, the grid cell size
is chosen so that ∆x = L/50, while the time step is equal to ∆t ≈ T/350, where T is the wave period.
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In Figure 3, the normalised water surface elevation η/η0 calculated using the source term addition
method (blue dashed lines) and the spatially distributed source function (red dashed lines) is presented.
The computed results at a distance of 1L from the internal generator and at a time period of t = 10T to
t = 18T are compared to the results of the analytical solution (solid black lines) for the same conditions.
The agreement is very good while the behavior of the two internal wave generation techniques is
similar, with a small deviation for the case of the highly dispersive wave (Figure 3c,d). For the latter
case, the spatially distributed source function provides a slightly better fit with the analytical solution.
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Figure 3. Comparison between computed (dashed lines) and target (solid lines) normalised water
surface elevation η/η0 for the case of linear waves with dimensionless depth (a,b) kd = π/6 (one layer)
and (c,d) kd = π (two equidistant layers).

In order to check the capability of the model for handling reflected dispersive waves
a computational domain with a sponge layer at the left boundary and a fully reflective wall at the right
boundary is used. The internal wave generator is positioned at the middle of the computational
domain which has a total length of 12L. The wave height is H = 0.02 m, the wave period is T = 3 s
and the water depth is d = 10 m. These wave conditions give a dimensionless depth of kd = 4.5
and thus two equidistant vertical layers are applied. The model is applied with a grid cell size of
∆x = 0.3 m and a time step of ∆t = 0.0125 s.

Figure 4 shows a snapshot of normalised water surface elevation η/η0 at t = 50T generated
using the source term addition method (blue solid line) and the spatially distributed source function
(red dashed line). The two computed profiles are identical, while their agreement with the analytical
solution (black markers) is excellent.

The waves that are generated at the internal wave generator propagate towards both ends
of the domain. The waves are fully reflected at the right boundary and then are fully absorbed
at the sponge layer. This, together with the fact that the target wave is a linear wave and that the length
of the numerical domain is an integer multiple of the wave length, results in a profile that is a standing
wave with perfect nodal points. In addition, the results show that the reflected waves pass through
the generation area without distortion and that the sponge layer is capable of absorbing the highly
dispersive wave. It has to be mentioned that the weakly reflective wave generation (Section 2.2)
cannot be applied in this case since the assumption that the reflected waves are shallow water waves

propagating with a phase velocity of C =
√

gd is violated.
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Figure 4. Snapshot of normalised water surface elevation η/η0 at t = 50T using two internal wave
generation techniques and the analytical solution (black markers) for the case of deep water linear
waves (H = 0.02 m, T = 3.0 s, d = 10 m, two equidistant layers) with a sponge layer at the left boundary
and a fully reflective wall at the right boundary.

In the proposed internal wave generation techniques, the horizontal velocity component is not
prescribed over the vertical direction in contrast to the weakly reflective wave generation (Section 2.2).
However, as it can be observed from Figure 5 the horizontal and vertical velocity profiles are correctly
calculated for both internal wave generation techniques at a distance of 1L from the generation point.
The wave conditions are the same as in the previous test, while ten equidistant vertical layers have
been applied in order to achieve a good agreement with the analytical hyperbolic profile.

Here, it has to be mentioned that in case of deep water waves, when coarse vertical resolution is
applied, the weakly reflective wave generation technique needs calibration to generate the target wave
height, since the hyperbolic profile of the horizontal velocity component cannot be accurately described
by a small number of vertical layers. On the other hand, the internal wave generation techniques that
are presented in this paper do not need calibration, since the source is directly linked with the surface
elevation instead of the velocity component.

In all the previous tests in this section, linear waves have been examined. In order to study
the behaviour of the internal wave generation techniques under non-linear waves, waves with different
wave heights are tested. The internal wave generator is positioned at the middle of the computational
domain which has a total length of 32L with sponge layers at the left and right boundaries and a flat
bottom. The wave heights are H = 0.1 m, 1 m, 2 m, 3 m, while the wave period is T = 6 s and the water
depth is d = 10 m. These wave conditions give a dimensionless depth of kd = 1.3 and thus two equidistant
vertical layers are applied. The model is applied with a grid cell size of ∆x = 2.0 m and a time step of
∆t = 0.025 s.

Figure 6 shows snapshots of normalised water surface elevation η/η0 at t = 50T for the different
wave heights. Profiles generated using the spatially distributed source function are only presented
here since the source term addition method becomes unstable for high wave heights. From Figure 6,
it can be observed that by increasing the ratio H/d, the waves are transforming from linear (Figure 6a)
to non-linear where the wave crests are becoming sharper and the wave troughs flatter.
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Figure 6. Snapshot of normalised water surface elevation η/η0 at t = 50T using the spatially
distributed source function wave generation technique for (a) H/d = 0.01 (linear), (b) H/d = 0.1,
(c) H/d = 0.2 and (d) H/d = 0.3.
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4.2. Irregular Waves

We consider two test cases of uni-directional irregular waves fitting a JONSWAP (Joint North
Sea Wave Observation Project) spectrum, with a significant wave height, Hs = 0.5 m, a water depth,
d = 10 m, a peak enhancement factor, γ = 3.3 and two different peak wave periods, Tp = 12 s and Tp = 8 s.
The frequency range is confined between 0.5fp and 3fp. The internal wave generator is positioned
at the middle of the computational domain and sponge layers are placed at the left and right boundaries.
For both test cases, the model is applied with a grid cell size of ∆x = 1.0 m and a time step of ∆t = 0.025 s.
However, for the case of Tp = 8 s two equidistant vertical layers have been applied to correctly describe
the high-frequency part of the spectrum in contrast to the case of Tp = 12 s where one layer is enough.

In Figure 7, a comparison is made between the target frequency spectrum (St) and the simulated
frequency spectra generated using the two internal wave generation techniques for the cases of
Tp = 12 s (Figure 7a) and Tp = 8 s (Figure 7b). The surface elevations η at the electronic wave gauges,
which are positioned at a distance of 3Lp (where Lp is the wave length corresponding to the peak
period) from the internal wave generator, are recorded from t = 25Tp to t = 300Tp with a sampling
interval of 0.2 s. The recorded data are processed in segments of 2048 points per segment. A taper
window and an overlap of 20% are used for smoother and statistically more significant spectral
estimates. The resulting frequency spectra agree very well with St apart from the one that corresponds
to the source term addition method for the case of Tp = 12 s, where high-frequency noise can be
observed. In addition, it is found that the magnitude of this noise strongly depends on the grid
resolution since a coarser resolution leads to less noise. Moreover, the small difference around the peak
of the frequency spectrum in Figure 7b could be caused by numerical dissipation since the electronic
wave gauges are positioned at a distance of 3Lp from the internal wave generator.
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Figure 7. Comparison between the frequency spectra resulting from using two internal wave generation
techniques and the target frequency spectrum St for irregular waves with Hs = 0.5 m, d = 10 m (a) Tp = 12 s
(one layer) and (b) Tp = 8 s (two equidistant layers).

4.3. Oblique Waves in a Basin with Constant Depth

In this section, oblique waves are generated in a basin with constant depth by using the spatially
distributed source function wave generation technique. The numerical basin is 190 m long, 90 m
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wide and 1 m deep. Sponge layers are placed at the left and right boundaries with a width of 50 m
while periodic boundaries are applied at the top and bottom of the domain. The internal wave
generator is parallel to the y-axis and is positioned at a distance of 100 m (x = 0) from the left boundary.
The wave height is H = 0.01 m, the wave period is T = 4 s and the wave propagation angle is θ = 15◦.
The grid cell size is chosen so that ∆x = ∆y = 0.15 m. In order to obtain a steady state wave field,
waves are generated for a duration of 180 s with a time step ∆t = 0.0125 s.

Figures 8 and 9 present comparisons between the computed normalised water surface elevation
η/η0 at t = 40T and the corresponding analytical solution. It can be observed that the computed
solution coincides with the analytical solution except for the region of the sponge layers. The excellent
agreement indicates that the spatially distributed source function implemented in SWASH is able to
accurately generate directional waves.
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elevation η/η0 at t = 40T for the case of oblique linear waves (H = 0.01 m, T = 4.0 s, d = 1.0 m
and θ = 15◦): (a) cross section at y = 45 m, (b) cross section at x = 0 m.
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4.4. Wave Propagation over a Shoal in a Three-Dimensional Numerical Basin

Finally, a three-dimensional version of the developed model with the spatially distributed source
function wave generation technique is applied to study regular waves propagating over a shoal.
The experiment conducted by Reference [33] has served as a standard test case for validating phase
resolving wave models.

The bathymetry of the experimental setup consist of an elliptic shoal resting on a plane sloping
seabed and the entire slope is turned at an angle of 20◦ with respect to the x-axis. Detailed information
on the geometry can be found in Reference [33]. The numerical basin is 45 m long (−20 < y < 25)
and 20 m wide (−10 < x < 10). The internal wave generator is parallel to the x-axis and is positioned
at a distance of 10 m (y = −10 m) from the bottom boundary. The remaining numerical domain includes
two sidewalls at x = −10 m and x = 10 m and two sponge layers at y = −15 m and y = 20 m with
a width of 5 m.

The wave height is H = 0.0464 m, the wave period is T = 1 s and the water depth at the position
of the internal wave generator is d = 0.45 m. These wave conditions give a dimensionless depth of
kd = 1.9 and thus two equidistant vertical layers are applied. The model runs for 50 s without any
stability issues since the reflected waves that are reaching the offshore boundary are absorbed by
the sponge layer, which is positioned behind the internal wave generator. The model is applied with
a grid cell size of ∆x = ∆y = 0.05 m, while the time step is automatically adjusted during the simulation
depending on the CFL (Courant–Friedrichs–Lewy) condition where a maximum CFL value of 0.5
is used.

Figure 10 shows the plan view of the normalised wave height H/H0 (where H is the local wave
height and H0 is the wave height at the wave generation boundary) in the whole computational domain
where the diffraction and refraction patterns of the waves are visible. The wave heights of the model
are obtained by averaging those of the last ten wave periods of the simulation (from t = 40 s to t = 50 s).
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Figure 11 shows the comparison of normalised wave heights H/H0 between numerical model
results (red lines) and experimental data (black circles) along eight measurement transects. Additionally,
in order to evaluate the model, the root mean square error (RMSE) and the Skill factor for the normalised
wave heights of each section are calculated as:

RMSE =

√∑N
i = 1(Pi−Oi)

2

N Skill = 1−

√∑N
i = 1(Pi−Oi)

2∑N
i = 1 Oi

2
(33)

where O and P indicate the observed and predicted values, respectively. Very good agreement between
the numerical model and the experimental model is observed (Figure 11 and Table 2).
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Table 2. Root mean square error (RMSE) and Skill factor of the normalised wave heights for each section.

Section 1 2 3 4 5 6 7 8

RMSE 0.056 0.116 0.102 0.074 0.103 0.082 0.157 0.108
Skill 0.944 0.884 0.901 0.929 0.902 0.889 0.901 0.865

5. Conclusions

In the present paper new internal wave generation techniques have been developed in an open
source non-hydrostatic wave model, SWASH, for accurate generation of regular and irregular
long-crested waves.

Initially, two different internal wave generation techniques have been developed and implemented
in SWASH model. The first one is a source term addition method based on the method proposed by
Lee et al. [21], while the second one is a spatially distributed source function based on the method
proposed by Wei et al. [25]. These techniques need an extension of the numerical domain to
accommodate the sponge layer and the source area contrary to the weakly reflective wave generation
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boundary. Thus, the computational cost increases 15–30%, where the lower values stand for larger
computational domains. However, the main advantage of the internal wave generation is that in
cases of directional and dispersive waves the reflected waves are absorbed by the sponge layer
that is positioned behind the internal wave generator in contrast with the weakly reflective wave
generation boundary, which is not valid for these wave conditions due to the limitations as described
in Section 2.2. Hence, the internal wave generation has a big advantage when wave energy converter
(WEC) farms and man-made structures (e.g., breakwaters, artificial reefs, artificial islands) are examined,
since the radiated and reflected waves, respectively, cannot be estimated a priori. In the source term
addition method additional surface elevation is added to the calculated surface elevation while in
the spatially distributed source function a spatially distributed mass is added in the continuity equation.
In both cases, the source term propagates with a velocity which is called the energy velocity which for
the system of SWASH equations is mathematically derived in Section 3.1.

Then, these wave generation techniques has been used to generate regular and irregular
long-crested waves. The results indicate that the developed model is capable of reproducing the target
surface elevations as well as the target frequency spectrum. The overall performance of the spatially
distributed source function is better than the source term addition method since the latter becomes
unstable for large wave heights and may cause high frequency noise. Finally, the developed model is also
used to study wave transformation over an elliptic shoal (Berkhoff shoal experiment) where very good
agreement is observed between the numerical model and the experimental results. The aforementioned
observations reveal that the spatially distributed source function developed here in SWASH can be
successfully used to study coastal areas and wave energy converter (WEC) farms even under highly
dispersive and directional waves, while at the same time re-reflections at the position of the wave
generator are vanishing.
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Appendix A Derivation of Linear Dispersion Relation

The approximation of the exact linear dispersion relation for the case of two vertical layers is
derived here. For the derivation, the linearized equations of [32] are used

∂η
∂t

+ d
∂u
∂x

= 0 (A1)

∂u
∂t

+ g
∂η
∂x
−

5
16

d2 ∂
3u
∂x2∂t

−
1
8

d2 ∂
3û
∂x2∂t

= 0 (A2)

∂û
∂t
−

1
8

d2 ∂
3u
∂x2∂t

−
1

16
d2 ∂

3û
∂x2∂t

= 0 (A3)

The plane wave solutions of Equations (A1)–(A3) can be written as

η = η0 exp[i(ωt− kx)] (A4)

u = u0 exp[i(ωt− kx)] (A5)

û = û0 exp[i(ωt− kx)] (A6)
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Substituting Equations (A4)–(A6) into Equations (A1)–(A3) we get

η0 =
kd
ω

u0 (A7)

η0 =
ω

gk

(
u0 +

5
16

(kd)2u0 +
1
8
(kd)2û0

)
(A8)

û0 = −
1
8 (kd)2

1 + 1
16 (kd)2 u0 (A9)

Substituting Equation (A7) into Equation (A8) and eliminating the inter-layer velocity amplitude
û0 using Equation (A9) the linear dispersion relationship can be obtained

ω2 = gk2d
1 + 1

16 (kd)2

1 + 3
8 (kd)2 + 1

256 (kd)4
(A10)

In the same way, the linear dispersion relationship for one layer and three equidistant layers is
given by

ω2 = gk2d
1

1 + 1
4 (kd)2 (A11)

ω2 = gk2d
1 + 5

54 (kd)2 + 1
1296 (kd)4

1 + 5
12 (kd)2 + 5

432 (kd)4 + 1
46656 (kd)6

(A12)
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