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Abstract: The photochemical behavior of doxazosin (DOX) in simulated environmental conditions
using natural waters taken from local rivers as a solvent was studied. The chemical characteristics of
applied waters was done and a correlation analysis was used to explain the impact of individual
parameters of matrix on the rate of the DOX degradation. It was stated that DOX is a photoliable
compound in an aqueous environment. Its degradation is promoted by basic medium, presence
of environmentally important ions such as Cl−, NO3

−, SO4
2− and organic matter. The kinetics of

DOX reactions with OH− and SO4
− radicals were examined individually. The UV/H2O2, classical

Fenton and photo-Fenton processes, were applied for the generation of hydroxyl radicals while the
UV/VIS:Fe2(SO4)3:Na2SO2 system was employed for production of SO4

− radicals. The obtained
results pointed that photo-Fenton, as well as UV/VIS:Fe2(SO4)3:Na2SO2, are very reactive in ratio
to DOX, leading to its complete degradation in a short time. A quantitative density functional
theory (DFT) mechanistic study was carried out in order to explain the molecular mechanism of DOX
degradation using the GAUSSIAN 09 program.

Keywords: doxazosin maleate; advanced oxidation processes; hydroxyl radical; sulfate radical;
photodegradation; DFT study

1. Introduction

Recent environmental studies show an appearance of new atypical compounds in aquatic
ecosystems on a global scale. Called Emerging Organic Contaminants (EOC), they are created by
hundreds of organic compounds belonging to different chemical classes [1]. Some of them are natural
components of an environment, making their presence detectable due to advancements in sample
preparation procedures [2–4], as well as new detection techniques [5–7]. They have been detected
in clean surface waters at few ng dm−3 levels while in polluted waters in the range from a few to
hundreds of µg dm−3 [8,9]. Many EOC-s compounds do not cause acute toxicity, but their presence
in the environment entails a number of adverse changes, including interference in animal as well as
human endocrine systems [1]. Compounds that exhibit such activity or are suspected of it are named
Endocrine Disrupting Compounds (EDC). According to the definition given by The Endocrine Society,
EDCs are: “an exogenous chemical, or mixture of chemicals, that interferes with any aspect of hormone
action” [10]. One of the more numerous groups belonging to EDCs are traces of pharmaceuticals [1,8].
The main identified source of pharmaceuticals in surface freshwater environments are from wastewater
treatment plants (WTP) [11]. Some compounds from the EDC-s group, especially pharmaceuticals,
possess biocidal properties or are resistant to biodegradation, so the WTP-s based on activated sludge
technology are unable to remove all of them [12]. Therefore, the search for improvements that can be

Water 2019, 11, 1001; doi:10.3390/w11051001 www.mdpi.com/journal/water

http://www.mdpi.com/journal/water
http://www.mdpi.com
https://orcid.org/0000-0002-6100-0691
https://orcid.org/0000-0003-1657-1871
http://dx.doi.org/10.3390/w11051001
http://www.mdpi.com/journal/water
https://www.mdpi.com/2073-4441/11/5/1001?type=check_update&version=2


Water 2019, 11, 1001 2 of 16

made to the water purification process is still currently a problem. The following modifications of the
water technology were developed and introduced into practice: membrane bioreactors, purification
ponds with aquatic plants, application of new microorganisms, enzymatic treatments [12] or advanced
oxidation processes (AOPs) [13,14]. The advanced oxidation units are based on oxidation reactions
of reactive chemical species such as hydroxyl, sulfate, chlorine and other radicals with organic
pollutants [13,14]. Although AOPs are considered to be the most effective way for water treatment,
their efficiency depends on many factors such as type of process, type and composition of the polluted
water, and chemical properties of degraded contaminants [15,16]. Additionally, cost of operation as
well as environmental implications should be considered [16]. Therefore, the introduction of AOP into
the treatment process requires the optimization of the chemical conditions of an applied reaction and
recognition of the chemical behavior of a main organic pollutant.

This paper presents the results of studies on kinetics of doxazosin (DOX) degradation under
influence of light and some selected AOPs. Doxazosin mesylate [(4-amino-6,7-dimethoxy-2-
quinazolinyl)-4-(1,4-benzodioxan-2-yl-carbonyl)-piperazine monomethansulphonate] (Figure 1)
belongs to the group of (α1)-adrenoreceptor antagonists [17]. It is used for the treatment of benign
prostatic hyperplasia [17,18] and blood hypertension [18]. It is well absorbed by the digestive tract after
oral administration. Afterwards, it is partially metabolized and excreted with urine in the unchanged
form (about 4.8%) and in the form of metabolites: products of demethylation (23%) and hydroxylation
(12%) [19]. To the best of our knowledge, DOX chemical behavior under the influence of light or
AOPs has not been reported yet. Among many available AOPs reactions, the runs of UV/Vis direct
photolysis, UV-H2O2, classical and photo-Fenton processes, and oxidation by SO4

· were studied [16].
Attempts have been made to assess the persistence of DOX in aquatic environment and indicate the
environmental factors affecting the rate of its vanishing. For this purpose, DOX degradation rate under
irradiation of sunlight in the presence of natural matrix was determined.

Figure 1. Chemical structure of doxazosin mesylate.

2. Materials and Methods

2.1. Chemicals

Doxazosin mesylate, DOX (Sigma-Aldrich, Germany), a stock solution at the concentration
2 × 10−3 mol dm−3 was prepared by dissolving an appropriate weight in 25 mL of MilliQ water.
Working solutions at the concentrations 1.0 × 10−6, 2.5 × 10−6, 5.0 × 10−6, 10−5, 1.5 × 10−5 and 2 × 10−5

mol dm−3 were prepared by dilution in MilliQ water. Ferric sulfate (Fe2(SO4)3) and anhydrous sodium
sulfite (Na2SO3) were purchased from Chempur, Poland. Standard solution of ferric sulfate (2.5 × 10−3

mol dm−3) was freshly prepared every day by the dissolution of an exact weighted amount in 50 mL of
MilliQ water. Stock solution (5 × 10−3 mol dm−3) of anhydrous sodium sulfite was freshly prepared
every day from the pure product by dissolving an appropriate amount in 100 mL of MilliQ water.
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Acetonitrile and methanol of HPLC grade were supplied by Sigma-Aldrich.
Tert–butyl alcohol (TBA) were purchased from Honeywell, Riedel-de HaënTM.
Hydrogen peroxide (CHEMPUR, Poland) at the concentration of 10−1, 5 × 10−2, 10−2, 2 × 10−2,

2 × 10−3 and 10−3 mol dm−3 were prepared daily by suitably diluting its 30% solution in MilliQ water.
Other reagents used were: Concentrated acetic acid (Sigma-Aldrich, St. Louis, MO, USA),

concentrated ammonium (Sigma-Aldrich), sodium hydroxide and sulfuric acid solutions at the
concentration 1 mol dm−3 (POCh, Gliwice, Poland).

2.2. Irradiation Systems

All irradiation experiments were carried out using UV lamps and solar light simulator.
UV lamps—standard 16AV, (Cobrabid, Poznan, Poland) equipped with two light sources emitting

radiation at 254 and 365 nm was used. All examined samples were irradiated by radiation at 365 nm as
a representation of natural solar radiation UV-A.

Solar light simulator (SUNTEST CPS+, ATLAS, Champaign, IL, USA) emitting radiation in the
range of 300–800 nm was used for experiments in simulated natural conditions.

The intensity of light sources was measured using potassium Reinecke’s salt actinometer.
The intensity (Es) of radiation emitted by UV lamp was found to be 17.39 W m−2 while for the
solar light simulator it was 19.53 W m−2.

2.3. Absorbance Measurements

Monitoring of the current concentration of DOX was carried out spectrophotometically by reading
the absorbance at 246 nm. For qualitative assessment of changes in DOX concentration, a calibration plot
(ABS = 5.2 × 104

± 1.4 × 102 (DOX) + 0.8 × 10−2
± 4.1 ×10−3, r2 = 0.999, where ABS—absorbance, (DOX)

—concentration of DOX in mol dm−3) was constructed for concentrations in the range 10−6–2.0 × 10−5

mol dm−3. The developed spectrophotometric method of DOX determination was characterized by low
LOQ and LOD values equal 7.7 × 10−7 and 2.3 ×10−7 mol dm−3, respectively. All spectrophotometric
measurements were conducted with a Hitachi U-2800A spectrophotometer (Hitachi High-Technologies
Europe GmbH (Mannheim Office), Mannheim, Germany). The following working settings of the
device were used: scan speed 1200 nm min−1 and spectral bandwidth 1.5 nm.

2.4. Experimental Procedures

All irradiation experiments were conducted in a crystallization dish with 100 mL capacity with
surface area open to atmosphere.

2.5. Direct Photolysis

50 milliliters of working solution of DOX at the concentration of 2.0× 10−5 mol dm−3 was subjected
to irradiation by a UV-lamp emitting radiation at 336 nm or to solar light in a solar simulator chamber.
The spectrum of the solution was recorded every 10 min. A mixture of reagents without DOX irradiated
at the same period of time was applied as a blank.

The pH of the aqueous solution was adjusted with 0.1 mol dm−3 H2SO4 or 0.1 mol dm−3 NaOH.
pH was measured with an Elmetron CP-501 pH-meter (produced by ELMETRON, Zabrze, Poland)
equipped with a pH-electrode EPS-1 (ELMETRON, Zabrze, Poland). The examination of photolysis
in the environmental condition was done in the same manner as described above, using samples of
surface water as a solvent.
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2.6. H2O2—Assisted Photodegradation Process

H2O2-assisted photodegradation was studied using a working solution of DOX at the concentration
2.0x10−5 mol dm−3. For this purpose, an appropriate volume of DOX aqueous solution was mixed
with varying volumes of hydrogen peroxide so as to obtain final concentration of the oxidant in the
range 10−1–10−3 mol dm−3. The pH of prepared mixtures was adjusted by adding a proper portion
of NaOH or H2SO4 solution at the concentration 0.1 mol dm−3. Mixtures prepared in this way were
thereafter subjected to irradiation by UV lamp (λ = 365 nm) for 120 min. The spectrum of the reaction
solution was recorded every 10 min using the irradiated mixture of reagents without DOX as a blank.

2.7. Fenton and Photo-Fenton Processes

The run of Fenton of photo-Fenton process was studied using an aqueous solution of DOX at
concentration 2.0 × 10−5 mol dm−3. For this purpose, a volume of 50 mL of working DOX solution
acidified to an optimal pH by 0.1 mol dm−3 H2SO4 solution was mixed with variable volumes of H2O2

(10−2 mol dm−3) and FeSO4 (10−2 mol dm−3). The molar ratio of Fenton reagent ingredients was kept
1:1, and their final concentrations were 10−4, 5 ×10−5, 10−5 and 5 × 10−6 mol dm−3. Every 10 min,
the spectrum of the reaction mixture was recorded against the mixture of reagents without DOX as
a blank.

In the case of examination of the photo-Fenton process, the prepared mixtures were subjected to
irradiation by UV light at 365 nm.

2.8. Photo Sulfite System

The following procedure was applied: initially, 0.456 mL of the doxazosin standard solution at
the concentration of 2.0 × 10−3 mol dm−3 was introduced into a 50 mL volumetric flask. Next, a small
volume of water was added followed by the introduction of 1 mL of ferric sulphate (VI) at the
concentration of 2.5 × 10−3 mol dm−3 and 1 mL of sodium sulphite at the concentration of 0.05 mol
dm−3. After adding individual reagents, the 50 mL flask was filled to the mark with Milli-Q water.
The prepared mixture was then subject to the irradiation by simulated solar light or UV light at
λ = 365 nm. Like previously, the spectrum of the irradiated mixture was recorded using the irradiated
mixture of reagents without DOX as a blank.

3. Results and Discussion

3.1. Initial Studies

At the beginning of the performed experiments, a UV spectrum of doxazosin aqueous solution
was recorded. Its spectral characteristics possessed three distinct maxima: sharp and intense at 196 and
246 nm, and broad and less intense at 328 nm (Figure 2). The kinetics of doxazosin decay was observed
by monitoring the changes at 246 nm.
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Figure 2. The changes in UV spectrum of aqueous doxazosin solution (c = 2.0 × 10−5 mol dm−3)
subjected to irradiation by simulated solar light at native pH 5.56 versus MilliQ water as a blank.

3.2. Direct Photolysis in Laboratory Conditions

The photostability of doxazosin in laboratory conditions was checked first. For this purpose,
a portion of 50 mL of an aqueous solution of DOX at the concentration 2.0 × 10−5 mol dm−3 was
subjected to irradiation by UV (λ = 365 nm) or simulated solar light. It was stated that DOX is
a photoliable compound. The following changes in its spectral characteristics were observed: the
intensity of the band at 246 nm was gradually decreased while at 328 nm was growing (Figure 2).
The rate of the DOX photodegradation process is affected by the type of light, pH of the reaction
solution, and the kind of accompanied matrix. It was observed that the process of direct photolysis
is more evident under the influence of UV radiation. The obtained results are gathered in Table 1.
Additionally, it was noticed that basic pH promotes DOX decomposition, presumably due to the
hydrolysis process. Stability experiments were performed in order to confirm this assumption. For this
purpose, a series of aqueous solutions of DOX with different pH (in range 1–13) were prepared and
thermostated in 0, 30 and 80 ◦C for 6 h. The used test tubes were wrapped with aluminum foil in
order to protect them against light. The UV spectrum of an examined solution was recorded every
20 minutes. It was stated that DOX is stable in an absence of stressed conditions in acidic, neutral
and basic medium [20]. Slight signs of hydrolysis were observed in basic solutions heated at the
temperature of 80 ◦C. The assayed value of the hydrolysis rate constant at a temperature of 80 ◦C and
in a basic medium was equal to 3 × 10−5 min−1.
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Table 1. The kinetics parameters of doxazosin photodegradation in laboratory solutions and in the presence of natural matrix.

Studied Process Used Irradiation pH k/min−1 t1/2/min % of Degradation

Direct photolysis

UV 365 nm 9 2.2 × 10−3 314 24

UV 254 nm 5.56
9.0

7 × 10−4

4.2 × 10−3
986
164

13
53

Suntest
5.56

9.0

4.3 × 10−3 (0–60 min)
3.0 × 10−3 (61–120 min)
1.6 × 10−2 (0–60 min)

1.7 × 10−3 (61–120 min)

160 (0–60 min)
230 (61–120 min)

44 (0–60 min)
406 (61–120 min)

46

71

Direct photolysis in presence of natural matrix

River I
UV365 nm

7.94
2.60 × 10−3 266 25

Suntest 7.0 × 10−3 98 54

River II
UV365 nm

8.23
2.80 × 10−3 248 27

Suntest 8.5 × 10−3 82 61

River III
UV365 nm

7.54
2.4 × 10−3 290 23

Suntest 14.5 × 10−3 48 80

River IV
UV365 nm

7.29
3.1 × 10−3 223 29

Suntest 11.0 × 10−3 64 70

Carbonate buffer Suntest 8.3 8.0 ×10−3 87 59
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3.3. Factors Influencing Photolysis of Doxazosin in Environmental Conditions

The stability of doxazosin under simulated environmental conditions was checked next. The goal
of this experiment was to answer what the persistence of this compound in natural conditions was.
As the chemical composition of natural surface waters is very complex and difficult for reconstruction,
real samples of water taken from local rivers were used as solvents for preparing working solutions
of DOX. The chemical assessment of the quality of the applied waters showed that the rivers from
which the samples were supplied were unpolluted (Table 2). Only in the case of river 3 did the levels
of SO4

2− and NO3
− ions exceed the acceptable reference values. This river flows through agricultural

areas and the elevated levels of these ions may be caused by run-offs of fertilizers from fields.

Table 2. Chemical characteristics of the used waters.

Parameter

River 1 River 2 River 3 River 4
Reference

Value
Ref.53◦7′ N;

23◦7′ E
53◦29′ N;
22◦44′ E

52◦20′ N;
23◦03′ E

52◦57′ N;
22◦57′ E

pH 7.94 8.23 7.54 7.29 3–11 44, 45

Conductivity/µS/cm 530 560 330 460 10–4000 46

SO4
2−/mg L−1 15.16 77.33 116.40 14.10 10–80 47

NO3
−/mg L−1 70.00 22.84 21.88 35.58 <50 44, 45, 48

Cl−/mg L−1 41.40 10.70 199.00 35.50 0.4–170 49

HCO3
−/mval L−1 5.80 5.00 4.80 5.60 <14 45

Ca/mg L−1 101.70 9.29 9.29 75.80 <250 50

Mg/mg L−1 5.98 2.82 2.57 6.20 <150 50

Fediss/mg L−1 0.33 0.23 0.04 0.77 <2 51

TOC (total organic
carbon)/mg L−1 4.40 1.74 1.69 1.62 <40 52

O2(diss)/mg L−1 10.88 54.70 37.30 15.40 >4 53

The photochemical experiments proved that natural waters created an effective chemical
system [21]. The observed decomposition rates were similar and strongly dependent on the kind
of irradiation used. It was observed that rates of the degradation of DOX under influence of solar
light ran two to five times faster than those of the UV-induced process (Table 1) and varied in the
range of 7.0 × 10−3–14.5 × 10−3 min−1. The photolysis experiments with laboratory solutions of
DOX in the presence of carbonate ions (pH 8.3) implied that DOX is photoliable compounds and
its photodecomposition proceeds mainly via direct photolysis. The created intermediate products,
radicals, were initiating a chain process which is inhibited in the presence of radical quenchers such
as organic matter or carbonate ions. It was observed that the presence of carbonate and bicarbonate
ions did not affect the rate of studied process. This observation allowed us to conclude that the
degradation of DOX was independent of changes in the concentration of free radicals in the irradiated
solution, but a situation in natural environment was more complicated. This medium is rich in organic
matter and a variety of inorganic ions. It is known that dissolved organic matter is photoliable and its
products launch a series of reactions with accompanied chemical species [22,23]. If the decomposition
of DOX occurs as a result of direct photolysis alone, the rate of its decomposition in the presence of
such complex matrix should decrease due to competition for light access. The observed rate of DOX
degradation was at least twice higher than this for laboratory solutions. Not so high acceleration of
the degradation rate in the presence of the matrix from river 1 could be attributed to a decrease in an
energy flux attained by the doxazosin molecules. The acceleration of the decomposition rate, especially
visible in the water from river 3, was probably caused by the presence of a variety of inorganic ions
which are photosensitive. The photochemical reactions of chloride, nitrate and sulfate ions created a
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complicated chain of radical reactions which led to the generation of hydrogen peroxide and hydroxyl,
sulfate and nitrate radicals, as well as other radicals [24–27]. The high rate of DOX disappearance in
the presence of matrix from the river 3 can be explained as a synergistic action of the system rich in
reactive species derived from inorganic ions and organic matter. Chloride radicals can be generated as
a result of the direct photolysis:

Cl− + hν→ Cl· + e− (1)

Cl· + Cl−↔ Cl2 (2)

or as the result of their interaction with other oxidants, among other excited triplet states of organic
sensitizers (3SENS*) [25]:

OH· + Cl−↔ HOCl−↔ OH− + Cl (3)

HOCl·−↔ H+
↔ H2O + Cl (4)

HOCl·− + Cl−↔ O− + Cl2 (5)

SO4
·
→ SO4

2− + Cl (6)

3SENS* + Cl−→ SENS·−+ Cl· or 3SENS* + 2Cl−→ SENS·−+ Cl2 (7)

The photochemical reactions of NO3
− contribute to an increase of the overall concentration of

reactive species in the reaction environment as a consequence of the following processes [27,28]:

NO3
− + hν→ NO3

−*
→ NO2

−+ O(3P) (8)

or NO3
− + hν→ NO3

−*
→ NO2

· + O·− (9)

O·− + H+
↔
·OH (10)

The following equilibria are established in the presence of sulfate ions [29]:

H+ + SO4
2−
↔ HSO4

− (11)

SO4
2− + Cl· ↔ SO4·

− + Cl− (12)

The HSO4
− ion reacts with OH· radical producing less reactive sulfate radical which however,

is involved in the production of more reactive species [29]:

SO4·
− + H2O→ H+ + SO4

2− + HO (13)

SO4·
− + OH−→ SO4

2− + HO (14)

The acceleration of the decomposition rate of the DOX solution with matrix from river 4 can be
assigned to the photo-Fenton process occurring in the presence of dissolved organic matter which is
responsible for production of the reactive radicals (HO, O(3P), O−, H2O2) [30,31].

The obtained results pointed out that the decomposition of doxazosin in a natural environment is
a very complex process that depends on the chemical composition of an accompanied matrix. It can be
stated that the photoreactions of the matrix lead to the increase of the overall concentration of highly
reactive radicals such as HO·, which is predominant and mainly responsible for the acceleration of
DOX decomposition rate [32].

3.4. Kinetics of DOX Decomposition Under Influence of Some Advanced Oxidation Processes

Four advanced oxidation systems: UV/H2O2, classical, and photocatalytic Fenton reaction,
and photo-sulfite systems were chosen from among a number of possible AOPs methods, and their
efficiency in DOX degradation were examined. The kinetics of DOX decomposition under the influence
of UV/H2O2, system was studied first. The influence of an oxidant concentration in the range 10−4–10−2
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mol dm−3 and pH (3.85–8) was checked. It was stated that the degradation of DOX in the UV/H2O2

system fit the pseudo-first order reaction. An addition of hydrogen peroxide caused a three-to-eight-fold
increase in the reaction rate in comparison to the direct photolysis process. The observed enhancement
depends on the used light, concentration of oxidant, and pH (Tables 1 and 3). It was noted that the
increase in hydrogen peroxide concentration increased the reaction rate, but this augmentation was
rather slight. The 100-fold reinforcement in the oxidant concentration amplified the reaction rate by
only 7%. Analogically, as in the case of direct photolysis, the basic pH promoted the studied process,
as the acidic pH of the rate of reaction was almost negligible. The role of the oxidant and light was
checked next. For this purpose, two series of DOX aqueous solutions at pH 8 with the concentrations
2.0 × 10−5 mol dm−3 and 2.5 × 10−5 mol dm−3 were prepared. Appropriate volumes of H2O2 working
solutions were added to each test tube so that the concentration of the oxidant was in the range
10−5–5 × 10−4 mol dm−3. Each test tube was wrapped with aluminum foil in order to protect against
light and subsequently left at ambient temperature for 24 h. Thereafter, the spectra of each mixture
were recorded. No changes in the spectral characteristics of doxazosin were observed, which proves
the important dual role of light in this process. On the one hand, light induces the process of direct
DOX photolysis, while on the other hand it breaks down the dihydrogen peroxide into hydroxyl
radicals according to the reaction [33]:

H2O2 + hν→ 2OH· (15)

Considering the above findings, it could be concluded that the observed enhancement in the rate
of DOX degradation is a sum of the two above processes.

The classical Fenton system consisting of a solution of inorganic ferrous salt and hydrogen peroxide was
examined next. The operation of the Fenton system is very complex and not fully known yet. The reaction
mechanism involves the generation of hydroxyl radical according to the following reaction) [34]:

Fe2+ + H2O2→ Fe3+ + OH· + OH− (16)

Its efficiency in the degradation of organic pollutants is affected by the concentration of reagents, their
molar ratio, and pH of reaction medium. In order to select the optimal concentrations of Fenton reagent
components allowed to follow DOX degradation kinetics, a series of experiments were carried out using
different concentrations of ingredients at their molar ratio of 1: 1. For this purpose, the concentrations in
the range 5 × 10−6–5 × 10−4 mol dm−3 were applied. The second order kinetics was assumed for studied
Fenton and photo-Fenton systems. It was stated that at the lowest examined concentration, the observed
process proceeded too slowly, but when the highest one was used, the total disappearance of the drug was
observed in five minutes after the initiation of the reaction. The Fenton reagent with the concentration of
10−4 mol dm−3 of the components was selected for further testing, resulting in the determination of the
kinetic parameters of DOX degradation with good precision. The influence of pH was checked next; it is
known that the optimal working pH for the studied process is contained in the range 2–5 [34]. At an excess
of hydrogen ions, less reactive positively charged ferrous species are formed [35]. Additionally, the surplus
of hydrogen ions act as radical scavengers according to the following reaction:

H+ + ·OH→ H2O (17)

The precipitation of Fe(II) and Fe(III) hydroxides is observed at pH > 5. In order to select the best
pH for the DOX degradation, rates of reaction at various pH values in the range 2–5 were measured.
The obtained output showed that pH 3.5 was optimal for the studied process.

The influence of molar ratio of the Fenton reagent constituents on kinetics of DOX degradation
was checked. The following molar ratios of nH2O2:nFe(III) = 1:1, 2:1, 10:1, and 1:2, 1:5, 1:10 were used.
The obtained results demonstrated (Table 3) that the use of an excess of hydrogen peroxide in ratio to
ferrous ions promotes the degradation process while the reverse ratio is unfavorable for the course
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of the reaction. Following this, the effect of UV radiation on the course of the DOX decomposition
reaction with the Fenton reagent was examined. The results shown in Table 3 proved that application
of light enhanced the efficiency of the Fenton process due to the following process [34]:

Fe3+ + hν + H2O→ Fe2+ + ·OH + H+ (18)

The regeneration of ferrous ions increased the overall concentration of hydroxide radicals and
slowed down an increase in pH of reaction medium [34].

Recently, the use of sulphate radicals to remove organic compounds from waters has attracted more
attention due to their stability and high oxidation potential (2.5–3.1 V vs. NHE) [36]. Additionally, they
can work in a wide range of pH, so a rigid control of this parameter is not necessary [37,38].
The prevailing type of oxidant in the reaction environment depends on value of the initial pH. It was
found that SO4·

− radicals predominate at the acidic pH, while at the basic pH ·OH radicals are
responsible for oxidation of organic compounds [37,38]. The only disadvantage of using sulphate
radicals is the necessity to activate precursors to obtain the right concentration of the oxidant [37,38].
An alternative to conventional methods for production of SO4·

− radicals ferric sulphate-sodium sulphite
system in the presence of light was proposed [39]. This system is based on Fe-catalyzed sulphite
oxidation and photochemical cycle of Fe(III)-Fe(II) species. For this reason, it can be considered a
modification of the Fenton system [39]:

Fe3+ + HSO3
−
↔ FeSO3

+ + H+ (19)

FeSO3
+
→ Fe2+ + SO3

·− (20)

SO3
·− + O2→ SO5

·− (21)

SO5
·− + HSO3

−
→ SO4

·− + SO4
2− (22)

SO5
·− + SO5

·−
↔ 2SO4

·− + O2 (23)

SO5
·− + SO5

·−
↔ SO3

·− + HSO5
− (24)

Fe2+ + HSO5
−
→ SO4

·− + Fe3+ + OH− (25)

FeSO3
+ + light→ Fe2+ + SO3

·− (26)

FeOH2+ + light→ Fe2+ + ·OH (27)

The results of the above chain of reactions is a mixture of a variety of radicals where SO4·
− and

·OH are predominant [39].
The kinetics of DOX degradation under the influence of UV/Vis-Fe(III)-sulphite system was examined.

For this purpose, a series of DOX solutions at concentration 2.0 × 10−5 mol dm−3 were mixed with variable
volumes of ferric sulphate solution at the concentration 2.5 × 10−3 mol dm−3 and sodium sulphite at the
concentration 5 × 10−2 mol dm−3. The applied concentrations of reagents are shown in Table 3.

The obtained results showed that the efficiency of light- Fe(III)-sulphite system depends on the
molar ratio of reagents and the applied light. It was observed that the use of 10-fold excess of Na2SO3

in ratio to Fe2(SO4)3 and irradiation by solar light resulted in total DOX decomposition in 90 minutes.
In order to recognize the main oxidizing agent in the light- Fe(III)-sulphite system the scavenging
experiments for the degradation of DOX were performed by adding tert-butyl alcohol (TBA) to the
reaction medium. The applied final concentration of TBA was 0.5 mol dm−3 while ferric sulphate and
sodium sulphite were 10−3, respectively. The kinetic graphs of DOX concentration changes without
the presence of TBA outlined in Figure 3, show that DOX degradation by the Fe(III)-sulphite process is
mainly caused by sulphate radicals’ oxidative action. At the presence of tert-butyl alcohol, the lesser
extent of DOX decay was achieved by approximately 20%. This effect was particularly pronounced in
an initial stage of the reaction. As the rate of TBA reaction with hydroxyl radicals is approximately
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1000-fold greater than that with sulphate radicals [39], it could be concluded that SO4
·− radicals are the

major reactive species responsible for DOX degradation.

Table 3. Kinetic parameters of DOX degradation in advanced oxidation systems.

Studied Process Concentration of
H2O2/mol dm−3

Concentration of
Fe2+/mol dm−3 pH k/min−1 t1/2/min % of

Degradation

UV/H2O2 5 × 10−4 11.6 × 10−3 59.7 72

10−4 11.9 × 10−3 58.5 73

10−2 - 8 12.10 × 10−3 57.2 73.5

5 × 10−2 12.50 × 10−3 55.5 74.5

Classical Fenton
reaction

k/min−1mol−1 dm3

10−4 10−4 52.5 982 15

2 × 10−4 10−4 127.6 535 27

10 × 10−4 10−4 332.8 200 48

10−4 2 × 10−4 51.2 956 12

10−4 5 × 10−4 45.0 1351 11

10−4 10 × 10−4 5.5 9823 1.5

Photo-Fenton
reaction

10−4 10−4 86.6 657 25

2 × 10−4 10−4 296.0 244 46

10 × 10−4 10−4 3308.0 31 100

10−4 2 × 10−4 3.5 71.8 785 21

10−4 5 × 10−4 265.0 239 50

10−4 10 × 10−4 53.0 1002 17

UV/Fe(III)-SO3
2−

Concentration of
Fe2(SO4)3/mol dm−3

Concentration of
Na2SO3/mol dm−3

5 × 10−5 10−3 2538 22 61

5 × 10−5 2 × 10−3 1324 41 63

5 × 10−5 3 × 10−3 715 77 59

5 × 10−5 4 × 10−3 394 58 58

10−4 10−3 7892 7 75

1.5 × 10−4 10−3 587 93 66

2 × 10−4 10−3 544 100 64

Vis/Fe(III)-SO3
2 10−4 10−3 1986 3 100

Vis/Fe(III)-SO3
2/TBA 10−4 10−3 75

Figure 3. Changes in DOX concentration under influence of Vis-Fe(III)-sulphite system in presence and
without TBA.
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3.5. A DFT Mechanistic Study of the DOX Decomposition

In order to gain a deeper understanding of the initial stages of the process of molecular degradation
of doxazosin, a quantitative DFT mechanistic study was carried out. The calculations were performed
with the GAUSSIAN 09 program [40]. To accurately capture properties of the transition states, a DFT
functional M06-2X [41], designed especially for the chemical kinetics, was utilized in combination
with a Dunning’s correlation consistent basis set cc-pVDZ. This theory level is sufficient to capture the
physical change along the reaction coordinate for processes investigated here. To model the solvent
(water) effect, the CPCM approach was used [42], as implemented in the G09 program. The reaction
course is outlined in Figure 4, and all the species involved are pictured in Figure 5. As seen from
Figure 4, the reaction is initialized by the addition of the –OH group to the aromatic carbon (atom 7). It is
well known that such processes go through short-lived intermediate (thermodynamically controlled
step) and transition states (kinetic control) to form an adduct vulnerable to further degradation. It starts
with breaking the bond between the addition center and neighboring nitrogen (N10), which is followed
by the internal H transfer to form an intermediate (IM3) with keto and amino groups on the bond
breaking sites (atoms C7 and N10). The actual destruction of the molecular structure occurs via
breaking bond between N3 and C7. Recently, a scheme of the DOX decomposition based on the
B3LYP results was proposed [43]. The favorable pathway takes place by cracking bonds N12-C15 and
N12-C16. We tried to reproduce this scheme; however, at the M06-2X/cc-pVDZ theory level, no proper
transition states leading to ring degradation were found despite many attempts. Nevertheless, since
the molecule break-up proposed here starts at the closest vicinity of the bonds N12-C15 and N12-C16
(see Figure 5), our results led to the products with similar molecular masses as those proposed in [43].
As such, their experimental analysis supports both proposed pathways.

Figure 4. Energy profile of the proposed reaction mechanism (in terms of ∆G values, kcal/mol).
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Figure 5. The optimized (at the M06-2X/cc-pVDZ level) geometries of the species involved in the
reaction scheme from Figure 4.

4. Conclusions

The obtained results show that doxazosin is a photoliable compound. Experiments done with
laboratory solutions demonstrated that DOX direct photolysis is promoted by the basic medium and
proceeds faster under the influence of UV light. It was stated that observed degradation of DOX is the
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result of direct photolysis. The presence of natural matrix acted as a photosensitizer and accelerated
the degradation process. The presented surface waters natural radicals made DOX more sensitive to
visible light. The run of DOX degradation under influence of some AOP-s were examined. Among the
processes taken under consideration, photo-Fenton reaction and Vis/Fe(III)-SO3

2− appeared to be the
most efficient.

The DFT mechanistic study provided an understanding of the role of OH− ion in the photolysis
process and pointed out which transformations of molecule lead to its decomposition. It was stated
that the initial step of the process is the formation of unstable adduct by bonding the −OH group to
the C7 carbon of the aromatic ring. The calculation pointed to the dissociation of the bond between
N3 and C7, which lead to molecule disintegration, followed by the internal H transfer and formation
of the IM3 intermediate.
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