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Abstract: Dew point temperature (DPT) is known to fluctuate in space and time regardless of
the climatic zone considered. The accurate estimation of the DPT is highly significant for various
applications of hydro and agro—climatological researches. The current research investigated the
hybridization of a multilayer perceptron (MLP) neural network with nature-inspired optimization
algorithms (i.e., gravitational search (GSA) and firefly (FFA)) to model the DPT of two climatically
contrasted (humid and semi-arid) regions in India. Daily time scale measured weather information,
such as wet bulb temperature (WBT), vapor pressure (VP), relative humidity (RH), and dew point
temperature, was used to build the proposed predictive models. The efficiencies of the proposed
hybrid MLP networks (MLP-FFA and MLP-GSA) were authenticated against standard MLP tuned by
a Levenberg-Marquardt back-propagation algorithm, extreme learning machine (ELM), and support
vector machine (SVM) models. Statistical evaluation metrics such as Nash Sutcliffe efficiency
(NSE), root mean square error (RMSE), and mean absolute error (MAE) were used to validate
the model efficiency. The proposed hybrid MLP models exhibited excellent estimation accuracy.
The hybridization of MLP with nature-inspired optimization algorithms boosted the estimation
accuracy that is clearly owing to the tuning robustness. In general, the applied methodology showed
very convincing results for both inspected climate zones.

Keywords: dew point temperature; firefly algorithm; gravitational search algorithm; humid climate;
hybrid models; nature-inspired optimization; semi-arid region

1. Introduction

Dew point temperature (DPT) is a weather condition that happens when the air is fully saturated
with water vapor and the number of water molecules evaporating from any surface is in equilibrium

Water 2019, 11, 742; d0i:10.3390/w11040742 www.mdpi.com/journal /water


http://www.mdpi.com/journal/water
http://www.mdpi.com
https://orcid.org/0000-0002-0482-1936
https://orcid.org/0000-0003-1771-2496
https://orcid.org/0000-0002-8596-2051
https://orcid.org/0000-0002-6790-2653
https://orcid.org/0000-0003-3647-7137
http://dx.doi.org/10.3390/w11040742
http://www.mdpi.com/journal/water
https://www.mdpi.com/2073-4441/11/4/742?type=check_update&version=2

Water 2019, 11, 742 20f17

with the number of molecules condensing [1]. Fluctuations of DPT in combination with other weather
parameters have a remarkable potential impact on regional agriculture, water supplies, and human
well-being. In addition, it serves as an essential variable to model precipitation and frost processes.
Further, DPT also influences crop yields by the spread of many pathogens through free moisture [2].
Nevertheless, a slow rate of drop in the dew point temperature results in evaporative cooling [3] and,
conversely, a rise in DPT intensifies the impacts of heat waves on the environment [4].

DPT has several characteristics related with atmospheric features. For instance, semi-arid
environments sometimes experience negative dew points, when air temperatures are between 50-60° F
with the relative humidity levels dropping below 10% [5]. On the other hand, dew point values in
the range of 13-20° F are critical and lead to cold nights with possible difficulty in keeping room
temperatures above critical levels. Air holds very little moisture when the dew point is below zero.
In dry seasons, dewfall and direct water vapor adsorption are the main mechanisms that add water
to the soil [6]. Dew recharges the soil moisture in addition to limiting evaporation from soil surface
during the time of dewfall.

Other climate environments, e.g., “humid zones”, especially at the coastal tropics are more likely
to experience dew points compared to arid and semi-arid regions [7]. Some coastal forests have
measurable moisture inputs from condensation onto tall trees which drips, through fall, and some
infiltrates into soil. Seasonal weather conditions also impact an area’s dew point. Strong breezes,
for example, blend diverse layers of air, containing different amounts of water vapor, thus reducing the
atmosphere’s ability to form dew. Nowadays, estimation of DPT is of particular interest to researchers
working in the area of meteorology and climate. This is because it is one among weather parameters to
be considered as an input for climate change impact assessments [8]. In addition, it controls hygroscopic
growth of aerosols, aids in estimating the height of cumulus or stratocumulus cloud bases for aviation
weather forecasts, and helps in developing systems to enhance predictions of hydro—-meteorological
variables at basin scale [9,10].

Currently, several studies exist in the field of DPT modeling using empirical equations and
machine learning (ML) models. Psychrometric charts or else the Magnus-Tetens equation were often
used to calculate dew point temperature using weather parameters such as humidity ratio, dry bulb
temperature, saturation vapor pressure, etc. [11]. One of the earliest studies conducted on this ground
by Lawrence (2005) [12], established a general mathematical relationship between the dew point
and relative humidity through simple conversion equations. The main drawback of the empirical
formulations is the limitation of the generalization application for a wide range of climatic zones.
In addition, these empirical formulas are processed through a complicated procedure of determinations.
Hence, a new era of application was emphasized to be implemented for the determination of DPT,
through the development of soft computing models.

Over the past two decades, the implementation of the soft computing models has demonstrated
a remarkable progression in various hydrological applications [13-17]. In particular, various
ML models have been explored for the modeling of DPT using neural networks, support vector
machines, neurofuzzy systems, extreme learning machines, evolutionary computing models. etc.
These models usually involve data of various other agro-meteorological parameters as model
inputs to estimate DPT. The neural network based on multistep time lead prediction models
tested by Shank et al. (2008) [18] was successful in predicting year-round DPT more accurately.
The Levenberg-Marquardt feed-forward neural network performed better than the multilinear
regression (MLR) model while estimating the hourly dew point temperature of Geraldton, a climate
station in Canada [19]. Usually, Artificial Neural Network (ANN) models are designed to target
only one output. However, Nadig et al. (2013) [20] designed a combined ANN model (having more
than one output variable) that predicts both air temperature and DPT of a single prediction horizon,
taking into account prediction anomalies. The effect of different climatic variables (sunshine hours, air
temperature, wind speed, relative humidity, and saturation vapor pressure) on daily DPT estimation
was examined by Kisi et al. (2013) [21] using different learning algorithms of neural network and
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adaptive neural fuzzy inference systems (ANFIS). Shiri et al. (2014) [22] tested ANN and gene
expression programming (GEP) models for estimating daily DPT of a station by employing the
weather data of a neighboring station and termed it as cross-station application. A generalized
regression neural network (GRNN) and multilayer perceptron (MLP) neural network using single and
multiple variable input combinations were developed by Kim et al. (2015) [23] to find the best input
combination that estimates daily DPT with high accuracy. Recently, similar studies conducted using
extreme learning machine (ELM) [24], adaptive neurofuzzy inference system (ANFIS) [25], support
vector machine (SVM) [26], gene expression programming (GEP), and multivariate adaptive regression
splines (MARS) [27] estimated/modeled DPT with sufficient levels of accuracy. Genetic algorithm
(GA) based least square SVM and ANFIS models developed by Baghban et al. (2016) [28] predict the
moist air DPT over an extensive range of relative humidity and temperature. Here, GA was employed
to optimize the corresponding parameters of ANFIS and L5S-S5VM models. Several other investigations
have been conducted on dew point temperature prediction [21,29,30]. As a general complement over
the surveyed studies, the application of soft computing techniques revealed an excellent performance
in modeling DPT.

The performance of MLP network architecture is usually dependent on settings of
hyper-parameters (number of layers, layer size, layer type), activation function for each layer,
optimization algorithm, learning rate with momentum coefficient, regularization, and initialization
methods [31]. Hyper-parameters can strongly interact with each other to affect performance. On these
grounds, multilayer perceptron neural networks are known to have some intrinsic disadvantages,
such as slow convergence speed, less generalizing performance, overfitting problems, issues of local
minima, and saddle points, which can trap the optimization algorithm at bad solutions [32,33].
Hence, optimizing the MLP network using nature-inspired optimization algorithms can elevate
the predictability performance of the model [34].

After an extensive and thorough analysis of the existing literature, the development of hybrid
MLP networks was anticipated to be the feasible optimal solution to model DPT. Hence, in the
present study, two hybrid approaches, namely the MLP neural network coupled with the gravitational
search and firefly optimizer algorithms (MLP-GSA and MLP-FFA) are introduced to enhance the
efficiency of daily DPT estimates of semi-arid (Hyderabad) and humid (Bajpe) regions of India.
The gravitational search algorithm (GSA), applied in this research, is a nature-inspired metaheuristic
optimization tool grounded on the gravitational law and mass interactions [35] and, similarly,
the mathematical formulations of the firefly algorithm (FFA) are constituted on the flashing behavior
of fireflies [36]. Both of these algorithms have demonstrated their capability to search for the global
optimum solution [37,38]. The weather information, including wet bulb temperature, relative humidity,
and vapor pressure, are used as model inputs to estimate daily DPT. The performance of these hybrid
MLP systems, related to the estimation of daily DPT, is compared to those obtained in our previous
study from the use of SVM and ELM [26], thus allowing a comparative study of all the methods.

2. Theoretical Overview

2.1. Multilayer Perceptron Neural Network

In the current study, a multilayer perceptron (MLP) neural network was employed since it is
one of the predominant versions of neural network models used globally [39]. MLP has been widely
used in hydrological modeling owing to its simplicity, robustness, and the advantage from error back
propagation [40-42]. The network structure includes three layers of nodes (neurons), namely, the input,
hidden, and output layer, as presented in Figure 1. The active input layer receives the data supplied
by the user and passes to the hidden layer, which is sandwiched across the input and output layers.
Weights are specified for all the connections. Biases and activation functions are proposed for each
of the hidden and output nodes. The MLP network learns from a predefined set of an input-output
pair in two cycles—propagate and adapt cycle. The back-propagation algorithm is generally used
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to train the MLP network, which involves a learning rate parameter that aids in adapting all the
weights and biases to the optimal values. The weights are adjusted in a way that minimizes the
error. These steps are repeated until the error for the entire set is acceptably low with the provision
of sufficient training [43]. In the present study, the sigmoid and linear activation functions were
considered during network calibration in the hidden and output layers, respectively. The relatively
fast Levenberg-Marquardt (LM) back propagation learning algorithm with adaptive momentum was
used for escalating the convergence speed of the MLP. This architecture is also well-known for arriving
at the best combination of initial weights and biases which minimizes the cost function (mean square
error (MSE) statistic) and lead to a global optimal solution of the problem. More theoretical details
and description with regard to the multilayer perceptron model can be found in previous research
works [44-46].

Input Layer Hidden Layer Output Layer

k
A_,‘ =B, + 2 wij X X;

i=1

Figure 1. Artificial neural network (MLP) structure.

2.2. Hybridized MLP-FFA Models

Among several nature-inspired optimisation algorithms, the firefly algorithm (FFA) proposed
recently by the authors of [36] provides a great flexibility to hybridize with MLP neural network to
make an efficient implementation for any kind of time-series analysis tasks. The firefly algorithm is a
nature-inspired, swarm intelligence technique derived from the flashing and attraction behavior of
fireflies. Its metaheuristic property allows users to search for optimal parameters of the multilayer
perceptron model. Every individual firefly is distinguished by its light intensity and the degree of
attractiveness. In this context, FFA is incorporated with MLP to update the weights, bias, and number
of hidden neurons of the neural network. In every iteration, the deviation of modeled output from
that of the expected is found in terms of ‘error criteria/cost function’—for example, in this case, mean
square error (MSE), to upgrade the model parameters in successive steps. If the stopping criterion
(i.e., the MSE = 0) is not met, the variations of light intensity and change in the attractiveness of all the
flies are updated again and ranked. The MLP training process continues until the stopping criterion is
met. Each splendid firefly can draw the attention of its neighborhood fireflies, regardless of their sex,
and the attractiveness is relative to its brightness, which makes the exploration of optimal search space
progressively productive [47]. The essential errand in the design of the MLP-FFA model is defining
the objective function and formulating the variations of light intensity and attractiveness of fireflies.
The intensity of light emitted from fireflies diminishes with the distance from its source and due to
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absorption by the media. Mathematically, the light intensity ‘I’ varies exponentially with the distance
r and light absorption parameter vy, which is represented as follows [36,47,48]:

I=1,-¢7, 1)

where I, is the initial light intensity at the source (i.e., at the distance r = 0) and  is the light absorption
coefficient. Since it is assumed that the attractiveness of firefly is directly proportional to the light
intensity I, the firefly’s light attractive coefficient § is defined in the similar way as the light intensity
coefficient I. That is:

B=Po-e ", @)

where B, is the initial light attractiveness at r = 0. The Cartesian distance between any two fireflies i
and j at x; and x; is given by:

Y (xip — xjx)2, ®)

k=1

rij = ||xi + x|, =

where d is the number of dimensions and k represents component in spatial co-ordinate. The next
movement of a firefly i towards another brightest firefly j is given by:

xI:-I—l =X+ Axir (4)

Axi = Bo - e,,y,z<xj — X;) + a€j, ®)

where the 1st term in Equation (5) emerges due to the attraction effect and the 2nd term represents the
randomization parameter, with « as a scaling co-efficient whose values are registered between 0 and
1, while ¢, is a vector of random variables derived from different distributions, such as the uniform
distribution, Gaussian distribution, and Lévy flight. For details related to the mathematics of FFA,
one can refer to the following literature: References [36,47,48]. Figure 2 demonstrates a schematic
perspective of the process of obtaining the optimal hidden layer weights of MLP with the use of the
firefly algorithm for the estimation of daily dew point temperature. The hybrid MLP-FFA algorithm
has been successfully implemented to model pan evaporation [41], water quality parameters—the
BOD and DO of Langat river [49], lake water level prediction [50], and wind speed prediction [51].
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Figure 2. Schematic structure of the hybrid multilayer perceptron—firefly algorithm (MLP-FFA)
and MLP-gravitational search algorithm (MLP-GSA) methods applied for dew point
temperature estimation.
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2.3. Hybridized MLP-GSA Model

The gravitational dearch algorithm (GSA) was introduced by Reference [35]. GSA is based on
the concept of the population search of the Newtonian gravity principle. In the present study, GSA
is used for arriving at optimal weights and biases of the MLP network which satisfy the minimum
error criteria. Initially, to evaluate an agent’s fitness, preferably any error criteria of the fitness function,
such as MSE, should be defined along with a strategy to encode the optimal weights and biases of
the MLP network [52]. The positions of ‘agents’, also referred to as ‘objects’, are the solutions in the
GSA population and the fitness function is determined by the gravitational and inertial masses of the
agents. Due to gravitational force, all the lighter objects are attracted towards the object with heavier
mass in proportion to their distances, thus representing a global movement (exploration step) of the
objects. The slow movement of heavier objects (good solutions) guarantees the exploitation step of
the GSA algorithm. The optimization process of GSA starts with the positioning of agents randomly
with random velocity values and initialization of the gravitational constant. Consequently, the fitness
of each agent according to the defined objective function is evaluated, and the gravitational constant,
G(t), is updated. At a specific time , the force acting on object ‘i’ due to the movement of object /' is
defined by:

Fg»(f) _ G(t)Mpi(t) X Maj(t) ( d

ol CIOREAC)E ®)

where M,; is the active gravitational mass related to agent ‘j’ and M, is the passive gravitational mass
related to agent ‘i’. The gravitational constant G(t) and the Euclidian distance R;j(t) between two
agents ‘i’ and ‘j’ are calculated as follows:

G(t) = G, -exp <W> , @)

maxiter

Rij(t) = [|Xi(t), X;(t)]

y (®)

where w is the descending coefficient, G, is the initial gravitational constant, ‘iter’ is the current iteration,
and ‘maxiter’ is the maximum number of iterations. In a ‘d’ dimensional problem space, the total force
that acts on agent ‘i’ is given by:
N
= ) rand; Fl] )
j=Lj#1

where rand jisa random number in the interval [0, 1]. Based on the law of motion, the acceleration of
all agents at time ‘t/, and in d** direction is calculated as follows:

(10)

RS
—~
~~
~—
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=
—~
N
~

where Mj; is the inertial mass of i agent. Furthermore, the searching strategy of an agent is dependent
on the velocity and position of agents which are calculated as follows:

v (t+1) = rand; x 0 (t) +a%(t), (11)

(1) = xd(8) +of (£ +1). (12)

The updating process is repeated as long as the stopping criterion is not satisfied. When a certain
stopping criterion is met, or soon after the maximum number of iterations are reached, the GSA
algorithm ceases. The superiority of GSA is due to two steps: Exploration (potential to navigate in the
space) and exploitation (potential to search optima around the best solution). For additional details
related to GSA, one may refer to Xing and Gao (2014) [53] and Jadidi et al. (2013) [54]. The schematic
structure of the MLP-GSA is shown in Figure 2.
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3. Study Area and Data Description

The two regions of interest investigated in the present research belong to diverse climatic
zones, and the purpose was to estimate the DPT using two hybrid MLP neural network models,
namely, the MLP-FFA and MLP-GSA models. The performance of these was compared with that
of the standalone MLP, SVM, and ELM models. The weather information pertaining to the Bajpe
and Hyderabad locations of the time-period 2006-2009 procured from the Indian Meteorological
Department (IMD), India were used for DPT modeling. Most of the Western ghat region around the
Bajpe weather station (17.44° N, 78.47° E) witnesses a humid tropical climate and the deccan plateau in
the vicinity of Hyderabad weather station (12.94° N, 74.82° E) experiences a semi-arid or steppe climate.
Bajpe experiences a shorter dry season and falls under the category of a tropical monsoon climate
(Am) as per the Koppen-Geiger climate classification system [55]. The average annual temperature
and rainfall in and around Bajpe is 27.0°C and 3700 mm, respectively, with high humidity levels
above 75% on an average. The climate of Hyderabad is hot semi-arid and is classified as BSh in the
Koppen—Geiger system. This region receives medium annual rainfall (ranging from 300 to 600 mm)
with humidity levels in 30-55% range. Figure 3 presents the location map of the Bajpe and Hyderabad
weather stations.
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Figure 3. The coordinate of the inspected meteorological stations.

This study sourced daily weather data from the Indian Meteorological Department that include
four attributes, namely, the vapor pressure, wet bulb temperature, relative humidity, and DPT of
Bajpe and Hyderabad locations measured at two times of a day on the 3rd hour and 12th hour UTC.
The Bajpe weather data comprised 669 daily observations of the time period—January 2005 to October
2006. The training dataset included daily data of the 16-month time period starting from January 2005
to April 2006 and the residual data of the time period—May 2006 to October 2006—was hoarded for
model testing. In the same way, the Hyderabad weather data included 1047 daily observations from
the time period of January 2007 to December 2009. The model calibration embraced weather data
of a 26-month time period from January 2007 to February 2009, and the residual data of a 10-month
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time period from March 2009 to December 2009 were hoarded for testing of the developed models.
The most influential weather parameters that supplement as inputs for DPT estimation were found
by cross-correlation analysis. The vapor pressure, wet bulb temperature, and relative humidity were
found to have good correlation with DPT (refer to Table 1) and were hence considered as input
attributes. Table 2 presents the statistical parameters such as mean, maximum (Max), minimum (Min),
standard deviation (5.Dev.), skewness (Skew), and variance (Var.) of weather parameters employed in
the study.

Table 1. Correlation coefficient statistic of DPT with other model input attributes.

Bajpe Station Hyderabad Station
Correlation 3,4 your UTC  12th Hour UTC  3rd Hour UTC  12th Hour UTC
Co-Efficient
DPT (°C) DPT (°C) DPT (°C) DPT (°C)
WBT (°C) 0.97 0.9 0.9 0.87
RH (%) 0.75 0.8 0.69 0.83
VP (hPa) 0.99 0.99 0.98 0.99
DPT (°C) 1 1 1 1
Table 2. Statistical parameters of the dataset.
TRAIN TEST
WBT (°C) RH (%) VP (hPa) DPT(°C) WBT(°C) RH (%) VP (hPa) DPT (°C)
3rd Hour UTC
Min 15.6 39 11.7 9.3 22.6 73 253 22.1
Max 244 78 279 229 24.8 84 29.3 237
Mean 23.1 77 25.95 21.65 24.6 82.5 29.1 23.6
S.Dev. 1.83 1.41 2.75 1.76 0.28 212 0.28 0.14
Var. 3.38 2 7.6 3.12 0.08 4.5 0.08 0.02
. Skew. -0.97 -0.83 —1.04 —1.46 1.17 0.72 0.18 0.19
Bajpe
Station 12th Hour UTC
Min 19.8 27 13.3 11.2 25 65 27.6 227
Max 24.8 66 27.1 224 25.8 82 31.3 24.8
Mean 24.3 65 26.35 21.95 254 73.5 29.45 23.75
S.Dev 0.7 1.41 1.06 0.63 0.56 12.02 2.61 1.48
Var. 0.5 2 1.125 0.4 0.32 144.5 6.845 2.205
Skew. -0.72 0.1 —0.86 -1.27 -0.57 -0.14 -0.18 -0.31
3rd Hour UTC
Min 10.6 26 7.7 3.3 17.2 29 11.3 8.8
Max 19 73 16.5 14.5 19 86 20.8 18.1
Mean 17.7 59 16.3 14.3 18.1 57.5 16.05 13.45
S.Dev. 1.83 19.79 0.28 0.28 1.27 40.3 6.71 6.57
Hvderabad Var. 3.38 392 0.08 0.08 1.62 162.5 45.12 43.24
yderabad - gew.  —057 035  —034 ~0.75 —0.93 ~03 ~0.69 ~1.14
Station
12th Hour UTC
Min 17.8 25 13.9 11.9 20.4 23 13.1 11
Max 214 40 14.8 12.8 20.6 55 19.6 17.2
Mean 19.6 32.5 14.35 12.35 20.5 39 16.35 14.1
S.Dev. 2.54 10.6 0.63 0.63 0.14 22.62 4.59 4.38
Var. 6.48 112.5 0.405 0.405 0.02 512 21.12 19.22
Skew -0.32 0.63 0.19 -0.19 -0.71 0.41 —0.26 —0.65

4. Model Development and Performance Analysis

The input/output (I/O) structure formulated for the development of MLP-FFA, MLP-GSA,
and the standalone Al models were based on the correlated weather information with the target
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variable—DPT (Table 1). The DPT models of the 3rd hour and 12th hour UTC were calibrated
individually using the I/O structure as mentioned below.

Dew Point Temperature (DPT) — f[WBT + RH + VP| (13)

MLP training refers to a search process for identification of an optimized set of weight and
bias values, which can minimize the mean squared error (MSE) across the estimated and real data
in the output layer. As already mentioned, a standalone MLP network was trained using an LM
back-propagation algorithm. A structured trial and error method was used to find the optimal number
of hidden layer neurons, values of the learning rate, and momentum terms in accordance to the
minimum MSE criteria. The FFA and GSA parameters used while training the hybrid MLP models
are mentioned in Table 3. The learning rate (which controls weight and bias change in each iteration)
and the number of hidden neurons of MLP were optimized using the FFA and GSA algorithms.
The proposed hybrid ML models were developed using Matlab software.

Performance evaluation: The statistical evaluation measures are endowed with confidence that
could be relayed on any model estimates. In the present case, the error and efficiency measures such as
RMSE, MAE, and NSE were employed to assess the model performance.

Root mean square error (RMSE):

n

/i . 1.)2
RMSE = # (14)

Mean absolute error (MAE):
n e
MAE = w (15)
Nash Sutcliffe efficiency (NSE):

im1 (vi — xi)
NSEzl—lnl#

i (% — %) (16

where x;—the actual observation; y;—the predicted value; ¥—mean observation; n—number of
examined dataset.

Table 3. Parameter settings of FFA and GSA.

MLP-FFA MLP-GSA
Maximum iterations = 180 Maximum iterations = 180
Population size: 50 Population size: 50
Bo=0.9 Acceleration Co-efficients (a, 8) = 1
=1 w (weighting function) = [0.4, 0.9]
€; =097 Initial velocities of agents are randomly
a=0.6 generated in the interval [0,1]

5. Results and Discussion

Without any doubt, there exist several soft computing models that have shown excellent
performance in modeling dew point temperature [24,28]. However, researchers have been extremely
zealous to navigate through new methodologies for the sake of attaining more reliable and robust
models for solving any kind of complex nonlinear problems. The current research demonstrated the
hybridization of the classical artificial intelligence model with nature-inspired optimization algorithms
for impersonating the actual physic concept—DPT. The performance of hybrid models (i.e., MLP-FFA
and MLP-GSA) in estimating daily DPT were evaluated against SVM and ELM model results reported
in Deka et al. (2018) [26], since the models developed in this study used the same data and model



Water 2019, 11, 742 10 of 17

(input-output) structure of the earlier research by Deka et al. (2018) [26]. Tables 4 and 5 present
the performance of hybrid MLP networks (MLP-FFA and MLP-GSA) and other models (MLP, SVM,
and ELM), evaluated in terms of various performance statistics along with relevant model parameters
or network configurations. The input variables (wet bulb temperature (WBT), relative humidity
(RH), and vapor pressure (VP)) derived from the cross-correlation analyses in conjunction with the
dependent variable (DPT) were appropriate for model development and therefore resulted in good
efficiency measures.

Table 4. The performance of the computed metrics for Bajpe station.

MODEL Model Parameters/Structure Testing

RMSE (°C) MAE(°C) NSE
SVM * 28,8,0.01 0.480 0.210 0.520
3rd hour ELM * 3-40-1 0.380 0.040 0.690
UTC MLP (3,16,1) 0.051 0.016 0.995
MLP-FFA (3,16,1) 0.034 0.011 0.998
MLP-GSA (3,16,1) 0.041 0.013 0.997

SVM * 28,7,0.01 0.520 0.28 0.62

ELM * 3-90-1 0.100 0.02 0.9
%joﬂéhour MLP (3,13,1) 0.039 0.016 0.998
MLP-FFA (3,13,1) 0.026 0.010 0.999
MLP-GSA (3,13,1) 0.031 0.013 0.999

Note: Model Parameters of SVM—(C, 7, €);
ELM—(input-hidden-output layer neurons);
MLP—(input, hidden, output layer neurons)
* Deka et al. (2018) [26].
Table 5. The performance of the computed metrics for Hyderabad station.
MODEL Model Parameters/Structure Testing

RMSE (°C)  MAE(°C) NSE
SVM * 37,12,0.01 2.360 1.040 0.630
3rd hour ELM * 3-50-1 0.630 0.320 0.950
UTC MLP (34,1) 0.104 0.051 0.999
MLP-FFA 34,1) 0.069 0.034 0.999
MLP-GSA (341) 0.083 0.041 0.999
SVM * 41,14,0.01 1.980 1.050 0.820
12th hour ELM * 3-70-1 0.590 0.140 0.970
UTC MLP (3,19,1) 0.134 0.052 0.999
MLP-FFA (3,19,1) 0.089 0.034 0.999
MLP-GSA (3,19,1) 0.107 0.041 0.999

Note: Model Parameters of SVM—(C, v, €);
ELM—(input-hidden-output layer neurons);
MLP—(input, hidden, output layer neurons)

* Deka et al. (2018) [26].

With reference to Bajpe weather station, the MLP-FFA hybrid model is consistently the superior
one when compared to others in terms of all performance statistics for the estimation of both the 3rd and
12th hour UTC DPT (see Table 4). In parallel, the efficiencies of MLP-GSA revealed similar skills in the
estimation process. It can be observed that the absolute error measurements indicated the superiority
of the proposed hybrid models over MLP, SVM, and ELM estimates. In quantitative terms, for instance,
the MLP-FFA model reported a remarkable enhancement of RMSE/MAE by (33/31%), (91/73%),
and (92/95%) over the MLP, SVR, and ELM models, respectively; and likewise, the MLP-GSA model
estimates reported a percentage enhancement by (19/18%), (89/67%), and (91/93%) over the MLP,
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SVM, and ELM models, respectively (in the case of the 3rd hour DPT modeling). The hybridization of
nature-inspired algorithms with MLP proved to yield powerful predictive models and can contribute
to modeling any kind of environmental processes.

With reference to Hyderabad weather station, the hybrid MLP-FFA and MLP-GSA networks again
validated superior performance with the same statistical metrics run for the previous one (see Table 5).
In this case, what can be noticed remarkably is the NSE values which are very close to unity, indicating
a superior performance by the models. The comparative analysis of model performance measures
reveals that the DPT estimates of standard MLP and its hybrid structures (MLP-FFA and MLP-GSA)
have low error estimates (RMSE and MSE) in contrast to the SVM and ELM models. The performance
of the MLP-FFA networks was relatively superior to the MLP-GSA models in terms of computational
speed and accuracy. The speed of convergence of FFA is very high in probability of finding the global
optimized solutions because of Gaussian or Lévy flight searches, and sometimes, the FFA is considered
as a generalization to three different approaches, namely, particle swarm optimization (PSO), simulated
annealing (SA), and differential evolution (DE) [48]. It is evident that= the integration of GSA with
MLP also provides good estimates of DPT, and the gravitational constant and acceleration of particles
are the parameters that are crucial in regulating the exploratory capabilities of the GSA algorithm [56].

An excellent way of graphical presentation was considered for the prediction skill illustration
through Taylor diagrams (see Figures 4 and 5), for both the 3rd and 12th hour UTC DPT models.
The Taylor diagram provides a concise statistical summary of modeled data in terms of its standard
deviation, root mean square difference and the correlation with actual data [57]. It shows how well the
predictive models match the actual records of DPT of the testing phase with regard to both investigated
climate zones. The relative merits of models developed can be assessed from high correlation and
low RMS errors represented by points nearest to the reference point (i.e., the actual data). The result
statistics of the MLP-FFA and MLP-GSA models were closer to the observation point, reaffirming
the better accuracy of the hybridized models over its comparison counterparts. On comparing the
point—density plots, presented in Figures 6 and 7, no significant differences were evident among
the pair of observed vs. (MLP-FFA and MLP-GSA) model estimates with respect to the extreme
(minimum and maximum) values and any outliers. It is also evident that the spreads of observed vs.
(SVM and ELM) modeled DPTs fluctuate and were dissimilar to each other, assuring variations in the
overall pattern of the estimated time-series data.
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Figure 7. Point density plots of observed vs. estimated DPTs with respect to Hyderabad station.

Taking into account the disadvantages of the back-propagation (BP) algorithm as discussed in
the earlier part of the manuscript, the novel methods of network adaptation were tested via the FFA
and GSA algorithms, by implementing the phase of nonrandom initialization of weight vector ‘w’.
It is nothing unexpected that the MLP network integrated with FFA or GSA for weights adjustment
gave altogether better results than the standard MLP. Moreover, in addition to lower RMSE and MAE,
another advantage of hybridizing MLP with FFA or GSA is the consistency of estimates. The NSEs
of the MLP-FFA and MLP-GSA networks are remarkably higher than those of the SVM and ELM
models. The acceptable level of accuracy attained using the proposed methodology evidenced the
potential of the hybrid intelligent models for DPT estimation where it is highly essential for practical
implementation, and especially in the case of designing an online estimation system for monitoring
the DPT fluctuation and using that accurate information for water engineering management and its
related applications.

It is worth reporting here, since the main focus of the current research was on the development and
application of hybrid MLP models for dew point temperature estimation, the uncertainty estimation
and analysis using statistical methods would be one of the possible future focuses of research. As a
matter of fact, the uncertainties are incorporated in different forms, such as data uncertainty, modeling
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uncertainty, and input variability uncertainty. Hence, investigating those types of uncertainties is
highly essential for modeling predictability evaluation.

6. Conclusions

Dew point temperature estimation is of great interest to agro—climatologists for several studies that
need continuous DPT data. The missing DPT data records could be in-filled using several estimation
techniques. In recent times, time-series based machine learning algorithms have been advantageous
over conventional physics-based approaches in terms of solving complex regression problems with
less computational cost. This study was intended to explore new hybrid intelligent predictive models
to estimate DPTs of humid and semi-arid regions of India. The hybrid MLP-FFA and MLP-GSA
networks were trained to estimate the daily DPTs using correlated weather variables, including WBT,
RH, and VP, as inputs. MLP-FFA obtained the best results with significantly faster convergence
ability. The three evaluation indices gave definitely no reason to discard the superiority of MLP and its
hybrid structures over the SVM and ELM models. The efficiency of the MLP network is dependent on
the optimal tuning for the input parameters in addition to architecture type and training algorithm
employed. The nature-inspired optimization algorithms certainly augment the predictability of the
classical MLP model. The performance of both the MLP-FFA and MLP-GSA networks exhibited an
acceptable level of accuracy and enhancement for both inspected climactic zones. However, MLP-FFA
emerged as the most optimal technique compared to others in terms of the minimum error criteria.
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