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Abstract: Nondestructive assessment of water content and water stress in plants is an important
component in the rational use of crop irrigation management in precision agriculture. Spectral
measurements of light reflectance in the UV/VIS/NIR region (350–1075 nm) from individual leaves
were acquired under a rapid dehydration protocol for validation of the remote sensing water content
assessment in soybean plants. Four gravimetrical approaches of leaf water content assessment were
used: relative water content (RWC), foliar water content as percent of total fresh mass (FWCt), foliar
water content as percent of dry mass (FWCd), and equivalent water thickness (EWT). Leaf desiccation
resulted in changes in optical properties with increasing relative reflectance at wavelengths between
580 and 700 nm. The highest positive correlations were observed for the relations between the
photochemical reflectance index (PRI) and EWT (rP = 0.860). Data analysis revealed that the
specific water absorption band at 970 nm showed relatively weaker sensitivity to water content
parameters. The prediction of leaf water content parameters from PRI measurements was better
with RMSEs of 12.4% (rP = 0.786), 9.1% (rP = 0.736), and 0.002 (rP = 0.860) for RWC, FWCt, and EWT
(p < 0.001), respectively. The results may contribute to more efficient crop water management
and confirmed that EWT has a statistically closer relationship with reflectance indices than other
monitored water parameters.
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1. Introduction

Water is one of the most important components of living organisms. Among abiotic stresses,
the reduced availability of soil water for plants is a key environmental factor that decreases the
production of many crops [1–3], including soybean [4,5]. Water stress leads to a reduction in and
subsequent loss of cell turgor, resulting in a decline in plant organ expansion and growth [6]. Moreover,
closure of stomata under water stress restricts the transpiration and cooling efficiency of the plant
surface and limits the diffusion of carbon dioxide into the leaf and thus photosynthesis [7,8].

In general, the agronomic indicator of plant water status (and implicitly the level of water stress)
is the water content. In the methodology of plant physiology, approaches to determining the relative
water content or water potential are frequently used [9,10]. These methods are based on gravimetric
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and psychrometric techniques, but both are time-consuming and labor-intensive, with low sample
throughput in agronomic practice [9,11].

Effective management of plant water content in field conditions depends on accurate application
of irrigation. To meet the needs of precision agriculture, modern approaches in the management
of agronomic interventions (including crop watering) require presymptomatic and nondestructive
monitoring of plant health. Measurements of plant reflectance in visible and near infrared (VIS/NIR)
and short-wave infrared (SWIR) spectral regions can be used in diagnosing plant physiological status,
such as photosynthetic pigment and nitrogen contents, plant biomass, and crop structure. Thus, they
may provide reliable information about plant fitness [11–16].

Hyperspectral reflectance measurements have been widely employed to assess the water content
in plants [17–19]. The water absorption properties used in plant reflectance spectroscopy are the result
of the vibration processes of O–H bonds of the water molecule at 975 nm, 1175 nm, 1450 nm, and 1950
nm [20]. Ripple [21] identified a high correlation between leaf water potential and leaf reflectance.
Spectral reflectance measurements at different levels (leaf, plant, and canopy) have led to the development
of numerous indices for estimating plant water content and water stress [11,19,22,23]. Peñuelas and
coworkers [12] studying the reflectance of many plants under water dehydration conditions proposed the
water index (WI) to monitor the relative water content in plants. In the later period, other water indices,
such as the water band index (WBI), moisture stress index (MSI), normalized difference water index
(NDWI), and simple ratio water index (SRWI), were successfully introduced into the field characterization
of water content in vegetation [11,23,24]. However, the reliability of the water content estimates derived
from spectral reflectance records strongly depends on the plant species tested [22].

Although the water indices based on the measurements in near infrared spectra beyond 950 nm
were shown to be quite useful, the cost of equipment enabling reliable records in these spectral
bands (usually denoted as SWIR analyzers) makes it inaccessible for many potential users. On the
other hand, there is much better access to devices measuring reflectance in the visible spectra (VNIR
hyperspectral and multispectral analyzers), as these devices are less expensive and they enable more
versatile applications, providing numerous specific reflectance parameters. Moreover, recent progress in
sensors for hyperspectral radiospectroscopy and imaging technology allows satisfactory evaluation of
many physiological and biochemical traits of crops [25–27].

It was previously shown that some of the indices based on the reflectance measured in visible
bands are sensitive to a decrease in plant (leaf) water content [28,29], which indicates that the use
of VNIR spectroscopy for estimates of changes in leaf water content can be possible. Despite a high
number of studies in different crop species related to this topic were published in last few years,
the relevant data about useful characteristics related to the leaf water content derived from VNIR
hyperspectral records are still scarce.

Therefore, in our study, we examined the changes in spectral reflectance records obtained by
proximal sensing of soybean leaves exposed to continuous rapid dehydration. Detailed analyses,
realized in fully controlled temperature, light, and humidity conditions, enabled the accurate and
reproducible assessment of the specific light reflectance changes attributed solely to the decrease of
leaf water content, avoiding the unpredictable nonspecific structural changes due to leaf development
and aging as well as the possible scattering of the signal due to light fluctuations occurring in natural
sunlight conditions. More specifically, we present correlations of selected spectral reflectance indices
(including several water indices) with parameters determining leaf water content, confirming the
hypothesis that parameters based on VNIR analysis may serve to reliable estimate the leaf water content
in soybean, which may have practical relevance in increasing efficiency of the crop water management.
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2. Materials and Methods

2.1. Plant Material and Experimental Protocol

Soybean (Glycine max L. Merr., genotype SA-046, China) plants were grown in plastic pots (volume
2 L) filled with substrate TS-3 (Klasmann-Deilmann GmbH, Geeste, Germany) containing 140 mg l−1 N,
160 mg l−1 P2O5, 180 mg l−1 K2O, and 100 mg l−1 Mg and pH value 6.0. Plants were grown outdoors
(in Nitra, Slovakia; 18◦06´00.09´´ E and 48◦18´15.18´´ N, altitude 135 m) during the regular vegetation
season and irrigation was controlled by gravimetric method, i.e., adding the volume of water until the
mass in the pots reached the predetermined value of 80% volumetric water content. In the R2 growth
stage (BBCH stage 65; open flower at one of the two uppermost nodes on the main stem with a fully
developed leaf), 10 fully expanded soybean leaves for each experiment were selected from the upper
third of plants (each leaf from a different plant). Leaves were kept in water overnight to reach the
saturated weight (SW), assumed to be a full leaf turgor state. After SW recording, the reflectance spectra
from the adaxial surface of each leaf were measured. Immediately after reflectance measurement,
the leaf area was measured by the scan method, using the .tiff image of 500 dpi resolution obtained by
HP Scanjet G3110 scanner (Hewlett Packard, Palo Alto, CA, USA). The leaf area (LA) was analyzed
using ImageJ software version 1.46r (National Institutes of Health, Bethesda, MD, USA). Subsequently,
leaves were placed on white paper in a growth chamber, in which the relative air humidity was 40%,
the temperature was 23 ◦C, and the light intensity was 120 µmol m−2 s−1. The weighing of leaves
providing the values of fresh weight (FW) and reflectance spectra measurements were repeated 9 times
every 20 min. At the end of the experimental protocol, leaves were placed into an oven dryer at 70 ◦C
for 48 h, and the dry weight (DW) was acquired. An ALS 220-4N analytical balance (Kern & Sohn
GmbH, Balingen, Germany) was used to monitor leaf weight loss.

2.2. Hyperspectral Reflectance Measurements

Leaf reflectance spectra in the 325–1075 nm spectral region were measured using a FieldSpec2
spectroradiometer (Analytical Spectral Devices Inc., Boulder, CO, USA) stably positioned in the laboratory
at a 90◦ field angle and a distance of 120 mm from the leaf. The spectral resolution of the spectroradiometer
was <3.0 nm at 700 nm with wavelength accuracy of±1.0 nm. Reflectance was induced by light from two
40-watt halogen lamps (Osram 64823 ES FL, Munich, Germany) installed each at a 45◦ angle to azimuth.
The light spectrum reflected from the adaxial surface of the stably positioned leaf was recorded in the
reflectance mode against a black background of cotton cloth. The spectroradiometer was calibrated with
a standard white reference panel (Analytical Spectral Devices Inc., Boulder, CO, USA) to determine the
reflectance reference standard (Ir). Subsequently, dark signal reading (Id) was performed. Leaf spectral
reflectance (Is) measurements were acquired around the central area of the leaf. Reflectance spectra were
processed using ViewSpec Pro Version 6.0 software (Analytical Spectral Devices Inc., Boulder, CO, USA).
The relative reflectance of leaf (Rs) is given by

Rs =
Is− Id
Ir− Id

(1)

2.3. Water Status Parameters

Three parameters, the saturated (SW), fresh (FW), and dry (DW) weights, were used to calculate
the water status. Relative water content (RWC, %) was calculated as

RWC =
FW−DW
SW−DW

× 100 (2)

where SW is the saturated weight of the leaf measured at the beginning of the experimental protocol
after overnight water saturation, FW is the fresh weight of the leaf measured during the experimental
protocol, and DW is the dry weight of the leaf.
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Equivalent water thickness (EWT, g cm−2) was calculated as

EWT =
FW−DW
dw× LA

(3)

where LA is the leaf area (in cm2) and dw is the density of water (1.0 kg m−3).
The foliar water content was expressed as percent of dry mass (FWCd, %) and the foliar water

content expressed as percent of total fresh mass (FWCt, %) was calculated as

FWCd =
FW−DW

DW
× 100 (4)

FWCt =
FW−DW

FW
× 100 (5)

2.4. Statistical Analyses

In the study, two independent sets of measurements (n = 2 × 10 leaves) were used to training and
calibrate the model and subsequently one set of measurement (n = 10 leaves) for model validation.
All statistics were conducted in Statistica software version 10 (StatSoft Inc., Tulsa, OK, USA). For testing
of normal distribution and homogeneity of experimental data were used Kolmogorov–Smirnov and
Lavene’s statistical tests, respectively. Linear regression between water status parameters (RWC, FWC
and EWT) and reflectance vegetation indices as well as between validation and prediction data were
performed and Pearson correlation coefficient (rP), coefficient of determination (R2) and standard error
(SE) were calculated. Finally, the root mean square error (RMSE) between validation and prediction
data was calculated as

RMSE =

√
1
n

n

∑
n=1

(yi − ŷi)
2 (6)

where yi and ŷi are measured value and fit value from the model of individual indices, respectively,
and n is the number of measurements.

3. Results and Discussion

The experimental protocol of rapid dehydration of detached individual leaves has often been
used in the past for studying functional [30,31] and structural responses to water stress [32,33].
The kinetics of water loss during desiccation of detached leaves has been studied in detail in many
works. The velocity of water loss is related to features of cellular responses as well as leaf structural
characteristics, mainly by leaf mass area (LMA) [32] and cuticular wax composition [30]. In our
experiment, mature leaves from the top part of the plant differed in leaf area (mean 6.7 ± 1.1 cm2).
Leaf samples were characterized by 6.3% variation in LMA with a mean level of 44.6 g m−2 (Table 1).
Changes in water loss from soybean leaves under rapid dehydration are shown in Figure 1A. The mean
weight of leaves due to loss water declined from 1.39 ± 0.30 g in the full turgid state (corresponding
to 78.38 ± 3.28% foliar water content (FWCt) and 0.017 ± 0.002 g cm−2 equivalent water thickness
(EWT)) to 0.69 ± 0.18 g resulting to 30.65 ± 8.24% FWCt and 0.006 ± 0.002 g cm−2 EWT, respectively.
The relative water content declined from the full turgid state to 35.61 ± 9.96% (Table 1). Sample
intravariability (min–max range) decreased under dehydration. The observed dependence between
the measured RWC and FWCt was closer (R2 = 0.98; p < 0.001) than that between RWC and EWT
(R2 = 0.79; p < 0.001) (Figure 1B,C). Under drought stress occurred in the field conditions, RWC usually
declined up to level 50–60% [2–4]. Water loss from the tissues during plant dehydration resulted
to increase of leaf/canopy reflectance [21,34–36]. However, there are still discussions whether the
changes measured in the plant reflectance can be able to capture a small decline of water content
during presymptomatic phase of water stress [11,14,23,36].
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Table 1. Characterization of soybean leaves used for calibration in the terminal phase of rapid dehydration.

LA
(cm2)

LMA (g
m−2) RWC (%) FWCt (%) EWT (g cm−2)

Mean 6.639 44.574 35.606 30.653 0.006
S.D. 1.099 2.822 9.960 8.240 0.002
Min 4.895 41.991 17.170 13.705 0.003
Max 8.322 49.991 47.720 46.405 0.007
C.V. 16.554 6.331 27.720 26.880 25.150

LA—leaf area; LMA—leaf mass area; RWC—relative water content; FWCt—foliar water content as percent of
total fresh mass; EWT—equivalent water thickness; S.D.—standard deviation; Min—minimum; Max—maximum;
C.V.—coefficient of variation (%), n = 20.

Figure 1. The mean value of soybean leaf weight loss (solid line, gray area represented difference
between min–max values of leaf weight, n = 20) (A), linear regressions between relative water content
(RWC) and fuel water content (FWCt) (B), and equivalent water thickness (EWT) (C) of soybean
leaf under rapid dehydration (n = 162). The slope of function, the determination coefficient (R2),
the standard error (SE) and probability (p) are inserted inside graphs.

Figure 2A shows the mean spectra of leaves for various ranges of RWC. Leaves with high RWC,
as well as FWC and EWT, have relatively low reflectance at 680–700 nm and 750–1000 nm.

Figure 2. Reflectance spectra signatures (A), the first derivative of reflectance (B), correlation coefficient
(rP) of relationship between relative water content (RWC; %) and reflectance spectra (C), and first
derivative of reflectance (D). Different colored lines represented intervals of RWC (see the legend).
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The course of the reflectance spectrum in the UV/VIS/NIR spectral region is predominantly
affected by pigment absorption (mainly by chlorophyll molecules) [34] and the weak absorption of
water at the 970 nm band [9,12], as well as the structural characteristics of the leaf.

Dehydration of leaves caused changes in optical properties with increasing relative reflectance
at wavelengths between 580 and 700 nm. However, many published studies report inconsistent
changes in leaf reflectance during dehydration, including a general increase [21,35,36], a decrease [37],
and nonsignificant changes in reflectance [38,39]. Many of these studies have been performed on the
canopy level at different plant growth stages, canopy structures, and plant leaf anatomy and thickness,
as well as external atmospheric variability. For these reasons, we used an approach with precisely
defined experimental conditions and leaf properties. In our study, a water loss below 50% of RWC led
to an almost complete reduction in the water absorption band at approximately 970 nm. These results
were more pronounced after the first derivative of relative reflectance (Figure 2B). Figure 2C shows the
course of Pearson’s correlation coefficients (rP) in the relationship between wavelength-dependent
relative reflectance values and RWC. Maximal values of rP were not higher than 0.40 in the spectral
range of 400 to 1000 nm (marginal areas of spectral range below 400 nm and above 1000 nm were
characterized by high scattering of raw relative reflectance). The maximal positive values of rP were
observed at 682 nm (rP = 0.38), 738 nm (rP = 0.26), and 825 nm (rP = 0.27). On the other hand, in the
wavelength ranges of 520–550 nm, 610–630 nm, 700 nm, and 750–760 nm, a minimal (approximately
0.0) correlation was observed between the relative reflectance of the leaf and RWC. The maximal
negative values of rP between both parameters were observed at 580–585 nm (rP = −0.14), 970–975
nm (rP = −0.22), and 994 nm (rP = −0.31) (Figure 2C). Figure 2D shows the course of rP in the
relationship between the wavelength-dependent first derivative of the relative reflectance values and
RWC. The course of this relationship confirmed an interesting spectral reflectance area affected by
the water content in leaves in the range of 550 to 580 nm and 630 to 750 nm (Figure 2D). Vegetative
indices calculated from relative reflectance in the green spectral region showed a significant negative
correlation with water content (expressed as RWC and EWT). Turgor loss under cell dehydration is
associated with a change in cell volume (shrinking) [40,41], mainly when the cell wall is characterized
by a high modulus of elasticity [42]. Peñuelas and coworkers [12,43] showed that cell wall elasticity
in response to water stress may be monitored based on changes in leaf reflectance. Moreover, the
shrinking of mesophyll cells leads to a passive increase in chlorophyll content, and it has been
associated with an enhancement of reflectance in the spectral region of 490 to 510 nm [17].

The results of the correlation range of rP between RWC, FWCt, FWCd, and EWT and the vegetative
indices are shown in Figure 3. Dark green represents higher positive values of rP, dark red represents
higher negative values, and yellow represents the lower values of rP. The most commonly used
vegetation indices are summarized in Table S1. The highest positive correlations were observed
for relationships between PRI and RWC, FWCt and EWT (rP = 0.786, 0.815, and 0.860, respectively;
p < 0.0001). In the case of correlation between RWC and vegetation reflectance indices, the observed
range of rP values 0.50→0.59 (p < 0.01) were for PRI1 > fWBI > WI > NPQI; the range of rP values
0.40→0.49 (p < 0.01) were for PSRI > NGRR; the range of rP values 0.30→0.39 (p < 0.05) were for EVI >
SIPI > RGI1 > BGI1 > BGI; the range of rP values 0.20→0.29 (p < 0.05) were for ARI2 > ARI1 > BRI >
SR3 > BRI2 > Lic1 > RGI; the range of rP values 0.10→0.19 (p > 0.05) were for BRI1 > SR4 > Vog1 > Lic2
> Vog2 > GMI1; the range of rP values 0.00→0.09 (p > 0.05) were for GMI2 > mNDVI > ZM > SRPI
> NDVI2 > NPCI; the range of rP values −0.01→−0.09 were for DVI > Crt2 > SR2 > Vog > TVI; the
range of rP values −0.10→−0.19 (p > 0.05) were for SIPI1 > CRI2 > RDVI > TVI1 > CRI1 > MCARI1 >
MTVI1 > NDVI > MSR > SR > OSAVI > MTVI3; the range of rP values −0.20→−0.29 (p < 0.05) were
for NDVI3 > NDVI1 > RVI > NDVI4 > Crt3 > RBI; the range of rP values −0.30→−0.39 (p < 0.01)
were for Crt1 > TCARI > MCARI > MCARI2 > MTVI2 > GRR; the range of rP values −0.40→−0.49
(p < 0.01) were for GI > NGRI1; and the range of rP values −0.50→−0.59 (p < 0.001) were for PRI3 >
WBI. The highest negative correlation was observed for relation between CUR and RWC (rP = −0.721;
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p < 0.0001). The correlations between spectral reflectance vegetation indices and EWT were higher
than those between RWC, FWCt, and FWCd (Figure 3).

For the calculation of vegetative indices, we used the standard, and in recent years, frequently
used, formulation. Vegetative indices related to structural traits were poorly correlated with water
content parameters. Similar observations have been made in experiments with different plant
species, including soybean [11,14,44,45]. However, several studies have shown that vegetation
indices measuring the structural traits of plants have a strong correlation with plant water content.
These observations originate, however, mainly from field experiments [11,15,46].

Figure 3. Correlogram of Pearson’s correlation coefficient (rP) between calculated vegetation indices
from reflectance spectra and relative water content (RWC), fuel water content as percent of total fresh
mass (FWCt), fuel water content as percent of dry mass (FWCd), and equivalent water thickness (EWT).

The functional relationships of the previously selected widely used WI, fWBI, NDVI, PRI, and CUR
vegetation indices to water content parameters are presented in Figure 4. The WI and fWBI water
indices showed positive correlations with RWC, FWCt, and EWT in the range of rP 0.452 (Figure 4D)
to 0.617 (Figure 4C) (p < 0.001). Similar correlation levels of these indices to water content have
been observed in many previous studies [11,14]. Using water potential as a criterion of the water
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status of field grown plants, Pôças et al. [15] observed correlations with standard vegetation indices at
a level near 0.67. It turns out that reflectance in water bands is likely lower at the canopy level than
in individual leaves, mainly for higher overall canopy water content as a result of a larger biomass
layer thickness [11]. The highest positive correlation was observed between PRI and EWT at the level
of rP = 0.860 (p < 0.0001) (Figure 4L). The highest negative correlation was observed between CUR
and RWC at the level of rP = 0.721 (p < 0.0001) (Figure 4M). On the other hand, no correlation was
observed between the NDVI and water content parameters (rP = −0.138, −0.134 and −0.071 for RWC,
FWCt, and EWT, respectively; p > 0.2) (Figure 4G–I). It has been well documented from previous
laboratory and canopy experiments that the PRI is highly affected by light-induced, diurnal changes in
xanthophyll transformation [11,28,29,47].

Figure 4. Relationship between water index (WI) (A,B,C), floating position water band (fWBI)
(D,E,F), normalized difference vegetation index (NDVI) (G,H,I), photochemical reflectance index
(PRI) (J,K,L), curvature (CUR) (M,N,O) and relative water content (RWC) (A,D,G,J,M), fuel water
content (FWCt) (B,E,H,K,N), and equivalent water thickness (EWT) (C,F,I,L,O). Solid lines represent
the linear relationship between parameters. Data were used for calibration process. Linear equations,
Pearson’s correlation coefficients (rP), standard error (SE), and probability (p) are inserted inside graphs.

Using training data for creating the model, the predictions of RWC, FWCt, and EWT from
validation set reflectance data were conducted. Statistical analyses of linear regressions between
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gravimetrically measured and predicted values of different water content parameters obtained by
calculation of selected reflectance vegetation indices measured during rapid dehydration of individual
soybean leaves are shown in Figure 5. To confirm the strength of the prediction of water content by
spectral indices, we calculated Pearson’s correlation coefficients (rP), root mean square error (RMSE),
standard error (SE) and p-values. Higher rP and lower RMSE indicate a better accuracy of the spectral
indices for water content determination. The RMSE for predictive performance of RWC from WBI
was found at level 16.3% (rP = 0.581; p < 0.001) (Figure 5A). Figure 5B,C show better RMSEs for FWCt

and EWT. The observed RMSEs for leaf water content parameters calculated from PRI measurements
were 12.4% (rP = 0.786), 9.1% (rP = 0.736), and 0.002 (rP = 0.860) for RWC, FWCt, and EWT (p < 0.001),
respectively (Figure 5J–L).

Figure 5. Predicted relative water content (RWC) (A,D,G,J,M), fuel water content (FWCt) (B,E,H,K,N),
and equivalent water thickness (EWT) (C,F,I,L,O) from calculated reflectance vegetation indices water
index (WI) (A,B,C), floating position water band (fWBI) (D,E,F), normalized difference vegetation
index (NDVI) (G,H,I), photochemical reflectance index (PRI) (J,K,L), and curvature (CUR) (M,N,O)
versus measured data for validation process. Root mean square error (RMSE), Pearson’s correlation
coefficients (rP), standard error (SE), and probability (p) are inserted inside graphs. Dashed lines
represent 1:1 line.
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The use of NDVI to predict water content was not appropriate because rP (and RMSE) had been
detected at levels of 0.138 (12.4%), 0.095 (15.6%), and 0.071 (0.004 g cm−2) for RWC, FWCt, and EWT,
respectively (Figure 5G–I). We have shown earlier that the rapid loss of water from the leaf did not
affect the reflectance in the wavelength range of the red edge (Figures 2 and 4G–I). The data presented
in Figure 5 confirmed the observation of closer relationships of the measured reflectance vegetation
parameters with EWT than with FWCt and RWC. This result, acquired from the rapid dehydration of
soybean leaves, again confirmed that the RWC was not a good parameter for evaluating leaf water
content based on the reflection assessment (Figures 4 and 5). These results confirmed that sensitive
hyperspectral sensors and the use of appropriate vegetation indices in nondestructive and remote
sensing may become a simple tool for identifying plant health in the management of modern plant
production. Although currently there are other nondestructive evaluation methods of water content in
plants, especially plant/crop thermography and thermal imaging, suitably chosen spectral reflectance
vegetation indices allow comprehensively identify and assess the impact of environmental stress on
plants. It must be also taken into an account that in field conditions, water stress may be accompanied
by changes in other leaf characteristics, which in turn would also affect the reflectance characteristics of
a leaf in addition to water content of leaf tissues. Therefore, in the next step, more complex experiments
and comparative studies should be conducted to fully understand the impact of biological changes in
the tissues of plants, taking into an account detailed data on the water potential decrease during the
initial stages of stress sensing by the optical signals.

4. Conclusions

This study shows that precise measurement of leaf reflectance allows the estimation of water
content in plants under rapid dehydration. We observed a strong correlation between two parameters
of water content (EWT and FWC) and the PRI, WI, and WBI reflectance indices. Statistical analyses
between validated and predicted dataset values confirmed that PRI is a good index for estimating
leaf water content. Under rapid dehydration of soybean leaves, the reflectance parameters were less
sensitive if the water status was evaluated as RWC. This study confirmed that the bulk volume of water
inside the leaf (mainly characterized as EWT) is a much better indicator of water absorption features.
The study indicated that nondestructive analysis from hyperspectral reflectance measurements could
be successfully used for monitoring water content parameters in soybean leaves.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4441/11/3/443/s1,
Table S1: List of vegetation indices using in the study.
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