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Abstract: The reactions of (N-(PhosphonoMethyl)Glycine) PMG with H2O2 in homogenous systems
were investigated using 31P NMR (Nuclear Magnetic Resonance). These reactions were carried out in
two reaction modes: without UV radiation and under UV radiation. The reactions of PMG with H2O2

without UV radiation were carried out in two modes: the degradations of PMG (0.1 mmol) by means
of 5–10 molar excess of hydrogen dioxide (PMG-H2O2 = 1:5 and 1:10) and the degradation of PMG
(0.1 mmol) in homogenous Fenton reactions (PMG-H2O2-Fe2+ = 1:10:0.05 and 1:10:0.1). All reactions
were carried out at ambient temperature, at pH 3.5, for 48 h. The reactions of PMG (in Roundup
herbicide composition, 12 mmol) with H2O2 under UV radiation (254 nm) were carried out using
5 × molar excess of H2O2 (60 mmol), in the pH range of 2 ≤ pH ≤ 12, for 6 h. In this mode of
PMG oxidation, the splitting of C-P was observed in the ratios dependent on the applied pH of the
reaction mixture.

Keywords: glyphosate; oxidation stability; oxidative dephosphonylation; Fenton reaction

1. Introduction

Glyphosate (N-(PhosphonoMethyl)Glycine) (PMG) is a broad-spectrum systemic herbicide,
invented by Franz and brought to market in 1974 by Monsanto under the trade name Roundup [1,2].
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1. Introduction 

Glyphosate (N-(PhosphonoMethyl)Glycine) (PMG) is a broad-spectrum systemic herbicide, 
invented by Franz and brought to market in 1974 by Monsanto under the trade name Roundup [1,2].  

 
Glyphosate, absorbed mainly through foliage, inhibits a plant enzyme —5-

enolpyruvylshikimate-3-phosphate (EPSP) synthetase (EC 2.5.1.19)—involved in the bio-synthesis of 
aromatic amino acids (AAA) substrates in a build-up of plant lignins [3–5]. 

A significant fraction of glyphosate sprayed on crops returns to the soil, and in spite of strong 
adsorption to soil solids [6], is able to contaminate surface water (runoff and erosion) [7–9].  

Animal and epidemiological studies published in recent decades point to a potential glyphosate 
toxicity [10–12]. Further, the World Health Organization’s International Agency for Research on 
Cancer concluded that glyphosate is “probably carcinogenic to humans” [13] and Anifandis et al. 
[14,15] demonstrated that glyphosate/PMG induce DNA fragmentation.  

Therefore, various treatment processes have been investigated to reduce the pesticide 
concentration in water and to minimize the potential health risks associated with exposure to these 
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Glyphosate, absorbed mainly through foliage, inhibits a plant enzyme—5-enolpyruvylshikimate-
3-phosphate (EPSP) synthetase (EC 2.5.1.19)—involved in the bio-synthesis of aromatic amino acids
(AAA) substrates in a build-up of plant lignins [3–5].

A significant fraction of glyphosate sprayed on crops returns to the soil, and in spite of strong
adsorption to soil solids [6], is able to contaminate surface water (runoff and erosion) [7–9].

Animal and epidemiological studies published in recent decades point to a potential glyphosate
toxicity [10–12]. Further, the World Health Organization’s International Agency for Research on Cancer
concluded that glyphosate is “probably carcinogenic to humans” [13] and Anifandis et al. [14,15]
demonstrated that glyphosate/PMG induce DNA fragmentation.

Therefore, various treatment processes have been investigated to reduce the pesticide
concentration in water and to minimize the potential health risks associated with exposure to these
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chemicals by the consumption of contaminated water [16–26]. Advanced oxidation processes (AOPs)
are a key technology to solve pesticide contamination problems during both water and wastewater
treatment (Table 1).

Table 1. Representative applications of advanced oxidation process (AOP) technology in the chemical
degradation of N-(PhosphonoMethyl)Glycine (PMG) and aminomethylphosphonic acid (GlyP).

No P-Herbicide AOP Systems Phosphorus
Degradation Products Analysis Reference

1 PMG and GlyP Birnessite (Mn4+ and Mn3+) H3PO4 VIS (P-Mo Blue) [20]

2 PMG Fe(III)(C2O4)n
m−/UV (365 nm) H3PO4 VIS (P-Mo Blue) [21]

3 PMG TiO2/UV (312 nm) H3PO4 HPLC-UV [22]

4 PMG O2/TiO2/SiO2/UV (365 nm) H3PO4 TOC, HPLC [23]

5 PMG and GlyP
O3 (pH = 6.5 and 10) H3PO4 TOC, HPLC-FD

[24]Photolysis (292 nm) H3PO4 TOC, HPLC-FD
TiO2/O2 (292 nm) H3PO4 TOC, HPLC-FD

6 PMG H2O2/UV (254 nm) H3PO4 HPLC-FD [25]

7 PMG Birnessite (Mn4+ and Mn3+) H3PO4 + GlyP + C-Px 31P NMR [26]

Birnessite (Na0.3Ca0.1K0.1)(Mn4+, Mn3+)2O4 × 1.5 H2O. Fe(III)(C2O4)n
m− − Fe(C2O4)2

− and Fe(C2O4)3
3−. Pi

colorimetrical determination using the phospho-molybdate blue reaction. TOC—total carbon. C-Px—unidentified
compound.

The various mechanisms of PMG degradation using AOP technology, according to the literature,
were presented by Manassero [25]. These not always coherent results (Figure 1) led us to investigate
these process by using 31P NMR monitoring of the PMG degradation processes. This 31P NMR
technique has been applied for the analysis of PMG metabolites and degradation products in only a
few earlier research works [26–33].
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Figure 1. Degradation products of N-PhosphonoMethyl)Glycine (PMG) of representative methods. 
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aminomethylphosphonic acid (GlyP) was synthesized according to the Soroka method [34,35]; (N-
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2. Materials and Methods

2.1. Materials

The phosphonic amino acids used in the studies (Table 2) were synthesized as follows:
aminomethylphosphonic acid (GlyP) was synthesized according to the Soroka method [34,35];
(N-methylamino)methylphosphonic acid (Me-GlyP) was obtained by the hydrophosphonylation
of 1,3,5-trimethylhexahydro-1,3,5-triazine by means of diisopropylphosphite according to
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Maier [36]; (N,N-dimethylamino)-methyl-phosphonic acid (Me2-GlyP) was obtained by the modified
Kabachnik-Fields condensation [37,38].

Table 2. Names, abbreviations, and structures of aminophosphonic acids discussed in this work a.

Structure Name Trivial Name Abbr.

Synth.
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N
R1

R2
C
H2

P(OH)2

O
1-aminoalkylphosphonic

acid
phosphono amino acid AAP

No R R1

1 H H aminomethylphosphonic
acid phosphono-glycine GlyP [35]

Me H (N-methylamino)methyl-
phosphonic acid

phosphono-(N-methyl)-
glycine Me-GlyP [37]

Me Me (N,N-dimethylamino)-
methylphosphonic acid

phosphono-(N,N-
dimethyl)-glycine Me2-GlyP

a Applied names are in accordance with the IUPAC rules, and abbreviations are in agreement with the general rules
elaborated by [38,39].

Phosphonomethyl glycine, methylphosphonic acid, 1,3,5-trimethylhexahydro-1,3,5-triazine,
catalase and other applied reagents and solvents were purchased from Aldrich. Diisopropylphosphite
was purchased from ACROS OrganicTM.

Herbicide Roundup Ultra 170 SL, containing glyphosate-isopropylammonium salt [227.2] (CAS:
38641-94-0; 170 g/L; 15.67%; 0.75 M), and surfactant (CAS not given; 8%) were purchased from
Monsanto Europe S.A (Scotts Poland, Warsaw, Poland).

2.2. Synthesis of Aminophosphonic Standards

2.2.1. Synthesis of Aminomethylphosphopnic Acid (GlyP)

Phosphorus chloride(III) (8.75 mL; 0.10 mol) was added dropwise to a well-stirred mixture of
N-(hydroxymethyl)benzamide (synthesized by the hydroxymethylation of benzamide [34]) (15.1 g;
0.10 mol) and anhydrous acetic acid (20 mL), at ambient temperature. The mixture was then refluxed
for 1 h, evaporated (25 ◦C at 10–20 mm Hg for 15 min, and 75 ◦C at 0.05 mm Hg) to an oily residue
and dissolved in hydrochloric acid solution (5 M aq.; 100 mL). The mixture was heated under reflux
for 8 h, cooled to room temperature, and the separated benzoic acid was filtered off. The filtrate was
evaporated, the residue was dissolved in water (20 mL), then the solution of crude GlyP was purified
on a Dowex 50 W × 8 ion exchange column using water elution. The obtained GlyP (8.1 g; 0.072 mol;
72%) was homogeneous at 31P NMR solutions. Elemental analysis data (determined %/(calculated %))
for CH6NPO3 [111.04] C = 10.70 (10.82); H = 5.47 (5.45); N = 12.50 (12.61).

2.2.2. Synthesis of N-Methylaminomethylphosphopnic Acid (Me-GlyP)

To trimethylhexahydro-s-triazine (1.29 g; 0.01 mol diisopropylphosphite (5.0 g; 0.03 mol), was
added and the mixture was heated with stirring to 100–110 ◦C for 4 h. The reaction mixture was
evaporated (25 ◦C at 10–20 mm Hg for 15 min, and 75 ◦C at 0.05 mm Hg), then diluted with 5 M HCl
(100 mL) and refluxed for 8 h. The hydrolyzate was evaporated to an oily residue, which was dissolved
in water (20 mL) and extracted with ethyl ether (20 mL). The aqueous layer was passed through a
Dowex 50 W × 8 ion exchange column using water elution. Fractions were collected (molybdate
test) and evaporated. The crystalline product was washed with ethanol, filtered, and dried to give
2.0 g (53.3%) of Me-GlyP, homogeneous 31P NMR solutions. Elemental analysis data (determined
%/(calculated %)) for C2H8NPO3 [125.06]: C = 19.12 (19.21); H = 6.55 (6.45); N = 11.10 (11.2).
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2.2.3. Synthesis of N,N-Dimethylaminomethylphosphopnic Acid (Me2-GlyP)

The formaldehyde aqueous solution (37%; d = 1.11 g/mL; 2.9 g; 0.05 mol) was gradually added
to a stirred mixture of equimolar quantities of dimethylamine (2 M solution of Me2NH in methanol;
25 mL; 0.05 mol) and diethyl phosphite (7.8 g; 0.05 mol), keeping the temperature below 85 ◦C.
The reaction mixture was stirred for 30 min, and evaporated (25 ◦C at 10–20 mm Hg for 15 min,
and 75 ◦C at 0.05 mm Hg) to an oily residue. The residue was dissolved in 5 M HCl (100 mL) and
the solution was refluxed for 8 h. The hydrolyzate was evaporated to dryness (60 ◦C; 10–20 mm),
and the residue was passed through a Dowex 50 W × 8 ion exchange column using water elution.
The collected fractions (phosphomolybdate assay) were evaporated to dryness giving white crystals
of Me2GlyP (4.2 g; 60.0%), homogeneous in31P NMR solutions. Elemental analysis data (determined
%/(calculated %)) for C3H10NPO3 [139.09]: C = 25.78 (25.91); H = 7.32 (7.25); N = 9.98 (10.07).

2.2.4. Solutions

• Solution of 0.01 M Fe(II): a sample of FeSO4 × 7H2O [278] (28 mg) was dissolved in water (10 mL).
• Solution of 0.02 M Fe(II): a sample of FeSO4 × 7H2O [278] (56 mg) was dissolved in water (10 mL).
• Catalase solution: a sample of 10 mg of catalase was dissolved in 50 mL of distilled or

deionized water.
• Solution of 2 M H2SO4 (in 20% D2O): samples of 2.5 M H2SO4 (20 mL) were diluted to 25 ml with

D2O (5 mL).

2.3. Instruments

31P NMR spectra were recorded on a Bruker AC 200 spectrometer operating at 81.01 MHz and on
a Bruker Avance III 600 spectrometer operating at 242.9 MHz. 1H NMR spectra were recorded on a
Bruker Avance III 600 spectrometer operating at 600 Hz. Positive chemical shift values of 31P were
reported for compounds absorbed at lower fields than H3PO4.

The pH measurements were performed using a CX-505 multifunction laboratory meter (Elmetron,
Zabrze, Poland) equipped with a combination pH electrode EPP-1 (Elmetron, Zabrze, Poland).
The chemical degradation of aqueous solutions of the Roundup herbicide formulation in PMG-H2O2

and PMG-H2O2-UV systems was carried out. Experiments were performed in the reactor shown
in Figure 2.
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Figure 2. Reactor used for Roundup degradation by means of AOP technology. (a) Figure of a
photoreactor with UV lamp used for the oxidation of PMG by means of UV/H2O2. (b) Schematic
diagram: 1—glass reactor; 2—quartz tube with UV lamp (254 nm; 22 W); 3—peristaltic pump;
4—reactor connector; 5—UV power supply; 6—temperature detector; A, B—samples. Applied
conditions: PMG (12 mmol), H2O2 (60 mol) in an aq. solution (3.7 L) at different initial pH values
applied: 2 ≤ pHs ≤ 12. Irradiation time was up to 360 min. Temperature was 25 ◦C.
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2.4. Degradation of Glyphosate

2.4.1. Degradation of Phosphonomethyl Glycine (PMG)

Samples of PMG (0.1 mmol) were dissolved in appropriate volumes of FeSO4 solution (0.5 mL of
0.01 M/0.02 M solution of FeSO4), followed by the addition of dihydrogen dioxide (the exact amounts
of the solutions are given in Table 3) and kept at room temperature for a desired reaction time. Then,
the reaction mixtures were centrifuged, acidified with 2 M H2SO4 to pH = 3.5 if necessary, and the
volumes of 0.4 mL were taken and mixed with D2O (0.05 mL) and 0.1 M EDTA (0.05 mL), and analyzed
by means of 31P NMR.

Table 3. Preparation of the reaction mixtures for PMG-H2O2 and PMG-H2O2-Fe2+ systems.

Exp. PMG
0.1 mmol

H2O 10 M H2O2 FeSO4

0.5 mmol 1 mmol 0.01 M 0.02 M

1 17 mg 0.55 mL 0.05 mL − − −
2 17 mg 0.5 mL − 0.1 mL − −

3 17 mg − − 0.1 mL 0.5 mL
(0.005 mmol) −

4 17 mg − − 0.1 mL − 0.5 mL
(0.01 mmol)

2.4.2. Degradation of Roundup Herbicide Formulation by Means of AOP Technology

Reaction mixtures were prepared in accordance with Table 4. Thus, samples of PMG contained
in Roundup Ultra 170 SL Herbicide solution (0.75 M; 16 mL; 12 mmol of PMG), were diluted in
water (3680 mL), dihydrogen dioxide samples (60 mmol) were added, and the reaction mixtures were
adjusted to the desired pH value by means of acidification with 2 M H2SO4 or alkalized by means of
5 M KOH. The oxidative degradations of herbicide were performed for the desired time, during which
the reaction progress was monitored by the 31P NMR analysis. Thus, the appropriate samples (4 mL)
were treated with catalase (0.1 mL), kept for 30 min at room temperature, and evaporated to an oily
residue. These were dissolved in 2 M H2SO4 (in 20% D2O) (0.5 mL) and analyzed using 31P NMR.

Table 4. Preparation of the reaction mixtures for AOP degradations of PMG in Roundup herbicide.

No

Roundup
(0.75 M) H2O H2O2

(30%; 10 M)
H2SO4
(2 M)

NaOH
(5 M) pH

mL PMG mmoL mL mL mmoL mL mL

1 16.0 12.0 3 680 − − − − 4.85

2 16.0 12.0 3 680 6.0 60.0 4.6 − 2.0

3 16.0 12.0 3 680 6.0 60.0 0.5 − 4.0

4 16.0 12.0 3 680 6.0 60.0 − 4.0 6.0

5 16.0 12.0 3 680 6.0 60.0 − 4.8 8.0

6 16.0 12.0 3 680 6.0 60.0 − 6.0 10.0

7 16.0 12.0 3 680 6.0 60.0 − 40.0 12.0

3. Results and Discussion

3.1. Protonation Equilibria of Reagents

Representative values of pKa are given in Table 5. On this basis, protonation equilibria of
phosphonomethyl glycine (PMG) are presented in Figure 3.
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Table 5. Representative works on pKa determination of PMG.

No.
pK

Method Reference
pK1 pK2 pK3 pK4

1 2.0 2.6 5.6 10.6 pH metric titration [40]

2 2.32 5.86 10.86 pH metric titration [41]

3 <1 2.0 5.5 10.5 1H and 31P NMR [42]

4 0.3 2.3 5.6 10.6 1H and 31P NMR [43]

5 2.09 5.52 10.28 pH metric titration [44]

6 logβ 9.66
(1.58)

logβ 14.86
(5.20)

log β 16.44
(9.66) pH metric titration [45]
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Figure 3. Dissociation/protonation equilibria of glyphosate (lower branch (arrows in magenta) 
considering the reports of Peixoto et al., 2015 [45] and Liu et al., 2016 [46].) 

Despite the large amount of research data, there is conflicting information in the literature 
concerning the first protonation step of glyphosate, namely whether the first dissociable proton in 
the HL2− formations is attached to the nitrogen atom of the amino group or to the oxide atom of the 
phosphonate function. As a matter of fact, only two recent reports consider that the first protonation 
step occurs on the one of the oxygen atoms in the phosphonate group (Figure 4, magenta arrows) 
[45,46]. 

On the basis of this analysis of the speciation graph (Figure 4), we assumed that in aqueous 
solutions PMG exists in the following forms: at pH = 0—mainly as H4L+ form; at pH = 1.5—mainly as 
H3L form; at pH = 3.5–4—mainly as H2L−; at pH = 8—mainly as HL2−; and at pH ≥ 12—mainly as L3− 
form. 

 

Figure 3. Dissociation/protonation equilibria of glyphosate (lower branch (arrows in magenta)
considering the reports of Peixoto et al., 2015 [45] and Liu et al., 2016 [46]).

Despite the large amount of research data, there is conflicting information in the literature
concerning the first protonation step of glyphosate, namely whether the first dissociable proton
in the HL2− formations is attached to the nitrogen atom of the amino group or to the oxide atom
of the phosphonate function. As a matter of fact, only two recent reports consider that the first
protonation step occurs on the one of the oxygen atoms in the phosphonate group (Figure 4, magenta
arrows) [45,46].

On the basis of this analysis of the speciation graph (Figure 4), we assumed that in aqueous
solutions PMG exists in the following forms: at pH = 0—mainly as H4L+ form; at pH = 1.5—mainly as
H3L form; at pH = 3.5–4—mainly as H2L−; at pH = 8—mainly as HL2−; and at pH ≥ 12—mainly as
L3− form.
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Figure 4. Diagram of PMG species distribution calculated using the pKa values of Appleton et al. [42]
(pKa1 < 1; pKa2 = 2.0; pKa3 = 5.5; pKa4 = 10.5), and the HySS program (Alderighi et al., 1999) [47].

The protonation equilibrium of dihydrogen dioxide is shown in Figure 5; dihydrogen dioxide
speciation is also presented in Figure 6. In the literature, the pKa values for H2O2 are as follows:
pKa1 = −3.1 [48] and pKa2 = 11.6 [49]. This means that in concentrated H2SO4 (e.g., 2 M), dihydrogen
dioxide can exist in the H3L+ form, at pH = 0–8 it exists in the molecular form H2L, at pH = 14 it is
dissociated in ca. 50% to HL−, and for 2 M KOH (pH > 14) it is almost fully ionized.
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3.2. Reaction of PMG and H2O2

It is generally known that the oxidation potential of H2O2 greatly increases during UV irradiation
(Mierzwa et al., 2018, and references cited therein) [50] as well as in the presence of metal ions
(Figure 7) [50–55].
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Figure 7. Activation of dihydrogen peroxide via the generation of radicals.

Therefore, we assumed that the reaction between PMG and dihydrogen peroxide consumed either
the molecular form of H2O2 in the absence of irradiation, or hydroxide and peroxide radicals during
UV irradiation or in the presence of Fenton reagents. The results of PMG degradation in both modes
are illustrated in Figure 8.
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Figure 8. The profiles of PMG consumption in reaction with H2O2 in PMG-H2O2 and PMG- H2O2-Fe2+

systems at pH = 3.5: PMG:H2O2 = 1:5 (PMG-H2O2 (a)) and 1:10 (PMG-H2O2 (b)); PMG:H2O2:Fe2+ =
1:10:0.05 (PMG-H2O2-Fe2+ (c)); and 1:10:0.1 (PMG-H2O2-Fe2+ (d)) (residual PMG (%) vs. exposure
time (h)).

The reaction of PMG with H2O2, both with H2O2 and H2O2-Fe3+, did not occur at the applied
pH = 3.5, at which PMG exists mainly in the H2L− protonated on nitrogen form (Figures 3 and 4) and
hydrogen peroxide mainly in H2L forms (Figures 5 and 6). Therefore, we assumed that the protonation
of the amino function in PMG efficiently reduces the interaction of PMG and H2O2 (no trace of P-C
bond splitting was observed in a 48-h period) (Figure 8). However, during the irradiation of aqueous
solutions of PMG (in the form of the herbicide Roundup) and H2O2 (1:5), for a pH range of 2 ≤ pH
≤ 12, the splitting of the P-C bond of PMG was observed, to an extent dependent on the pH of the
applied solution (Figures 9 and 10). Is worth noting that the irradiation of aqueous PMG solution
without H2O2 during a 48-h period did not exhibit any sign of PMG decomposition (100% of PMG).
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Figure 9. The profile of PMG consumption in reactions with H2O2 in PMG-H2O2-(UV) systems
(with UV irradiation) carried out at a pH range of 2 ≤ pH ≤ 12 and a temperature of 25 ◦C (residual
PMG (%) vs. exposure time (h)).
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Figure 10. The profile of PMG reaction with H2O2 in PMG-H2O2-(UV) systems (UV; 25 ◦C) carried out
at pH = 12 (relative P-compounds contribution (GlyP: 13.6 ppm, PMG: 10.6 ppm; Pi: −0.071 ppm) (%)
vs. exposition time (h)).

The residual PMG quantities were calculated from the corresponding 31P NMR spectra using
Equation (1):

PMG =
S(PMG)

S(PMG) + S(R−P) + S(Pi)
× 100%, (1)

where S(PMG), S(R−P), and S(Pi) are the 31P signals corresponding to PMG, phosphonic acids,
and inorganic phosphate, respectively.

The 31P NMR spectra of the degradation mixtures of PMG-H2O2-(UV) (UV; 25 ◦C) recorded for
reactions carried out at pH = 2, 8, 10, and 12 are presented in Figure 11. For the identification of the
reaction products of PMG-H2O2-(UV) mixtures, we recorded the 31P NMR spectra of PMG potential
degradation products. The chemical shifts (δ(31P)) of these compounds are listed in Table 6.
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Figure 11. Representative 31P NMR spectra of the degradation mixtures of PMG-H2O2-(UV) carried 
out at pH = 2–12 (UV; 25 °C), recorded after a given reaction time. (a) 31P NMR spectrum of the reaction 
mixture recorded before radiation (dissolved in 2 M H2SO4/D2SO4/); (b) reaction mixture after UV 
radiation at pH = 2 (reaction time 360 min); (c) reaction mixture after UV radiation at pH = 8 (reaction 
time 360 min); (d) reaction mixture after UV radiation at pH = 10 (reaction time 360 min); (e) reaction 
mixture after UV radiation at pH = 12 (reaction time 30 min); (f) reaction mixture after UV radiation 
at pH = 12 (reaction time 360 min). 

Figure 11. Representative 31P NMR spectra of the degradation mixtures of PMG-H2O2-(UV) carried
out at pH = 2–12 (UV; 25 ◦C), recorded after a given reaction time. (a) 31P NMR spectrum of the reaction
mixture recorded before radiation (dissolved in 2 M H2SO4/D2SO4/); (b) reaction mixture after UV
radiation at pH = 2 (reaction time 360 min); (c) reaction mixture after UV radiation at pH = 8 (reaction
time 360 min); (d) reaction mixture after UV radiation at pH = 10 (reaction time 360 min); (e) reaction
mixture after UV radiation at pH = 12 (reaction time 30 min); (f) reaction mixture after UV radiation at
pH = 12 (reaction time 360 min).
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Table 6. 31P Chemical shifts (δ(ppm)) of PMG and its potential degradation products in acidic and
basic solutions.

2 M HCl

Comp. PMG GlyP Me-GlyP Me2-GlyP Me-PO3H2 H3PO4 H3PO3

δ (31P)
(ppm)

10.6 13.9 11.4 9.4 30.7 −0.47 5.15

2 M KOH

Comp. PMG GlyP Me-GlyP Me2-GlyP Me-PO3H2 H3PO4 H3PO3

δ (31P)
(ppm)

16.3 19.3 16.0 15.0 20.5 5.4 3.2

31P δ(ppm): in 2 M HCl solutions (protonated forms of P-acids); in 2 M KOH solutions (deionized forms of P-acids).

The results of 31P NMR investigations on PMG degradation with H2O2 are shown graphically
in Figure 12.
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4. Conclusions

The data presented suggest the PMG inertness toward H2O2 in the modes without UV irradiation,
both with (PMG-H2O2-Fe2+) as well as without Fe2+ catalyst (PMG-H2O2). The data considering
the reaction modes of PMG with H2O2 under UV irradiation (PMG- H2O2-(UV)) exhibit the slow
degradation of PMG at 2 ≤ pH ≤ 10, which becomes faster at pH = 12. The analysis of the 31P NMR
spectra of PMG-H2O2 reaction mixtures obtained for reactions carried out at 2 ≤ pH ≤ 10 indicate the
presence of initial PMG and H3PO4, and the mixture of PMG, GlyP, and H3PO4/HxPO4

3−x for reactions
carried out at pH = 12. The results suggest the slow formation of an intermediate PMG × H2O2 phase
in the first stage of degradation which decomposes very fast (no intermediates were observed in the
31P NMR spectra) by the scission of the P-C bond of PMG and the subsequent release of phosphoric
acid/phosphate ion.
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Recapitulating, in the experiments carried out without UV radiation we observed:

• full stability of PMG in reaction with H2O2 (48 h);
• full stability of PMG in reaction with H2O2/Fe2+ (48 h).

In the experiments carried out with UV radiation (PMG-H2O2-(UV)), the P-C rapture type of
PMG degradation was observed, the extent of which was dependent on the applied pH of the reaction
mixtures. As a result, for the reactions run at 2 ≤ pH ≤ 10, the partial formation of phosphoric
acid/phosphate ions (PMG→ PMG + H3PO4/HxPO4

3−x) was observed, whereas for reactions run at
pH = 12, mixtures of PMG, GlyP, and PO4

3− were found.
We did not observe:

• any formation of nitrone-type derivatives (see [56–60]);
• the formation of Me-GlyP (SarP) or Me-P(O)(OH)2.
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