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Abstract: Trimethoprim is one of the representative drugs within the pharmaceutical and personal
care products (PPCPs) group. The photo-Fenton oxidation technology was used to degrade
trimethoprim in wastewater and the extent of degradation was analyzed by using high-performance
liquid chromatography, then experimentally obtained the optimal conditions. Analysis of the
experimental data showed that, under the single-factor experimental conditions, the optimal
conditions for degradation were a pH of 4, an H2O2 concentration of 3.0 mmol/L, an FeSO4

concentration of 0.06 mmol/L, an initial trimethoprim concentration of 0.0689 mmol/L, and an
ultraviolet (UV) intensity (UVA) of 12 mW/cm2. The interaction of pH and the concentration of H2O2

and Fe2+ have been further explored, it was obtained the following response surface results through
the central composite design experiment: pH = 4.56, H2O2 concentration = 0.09 mmol/L, and Fe2+

concentration = 0.09 mmol/L. Under these conditions, it can be obtained a degradation rate of 99.95%
after 6 min. There were similar results for three sets of parallel experiments, indicating that these
simulation conditions were feasible.

Keywords: photo-Fenton oxidation; trimethoprim; pharmaceutical and personal care products
(PPCPs); advanced oxidation processes (AOPs)

1. Introduction

With the rapid development of the economy, the problem of environmental pollution became
a major research focus. Pharmaceutical and personal care products (PPCPs) represent a type of
environmental pollutant that has “subtle, potential, and cumulative impact” [1]. The content of PPCPs
is very low in the natural environment as a whole, but it can be detected in water, soil, and the
atmospheric environment [2]. PPCPs include a range of chemical substances; for example, there are
currently about 4500 different types of medicines that are widely used in the prevention and treatment
of various diseases. The main sources of PPCPs in the environment include the mass use of chemicals,
human and animal excreta, and the residual material in PPCP production processes [3]. Although
the concentration of PPCPs in the environment is very low in most cases, with the accumulation
of organisms, the concentration of PPCPs will become increasingly larger over time, and ultimately
will have a profound impact and irreversible effect on ecosystems [4]. PPCPs continuously flow into
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the natural environment, leading to an upward trend in their residual environmental concentrations.
Studies indicated that PPCPs have a certain potential physiological hazard to animals, plants, and
microorganisms [5,6].

Advanced oxidation processes (AOPs) are a commonly used method for the treatment of
PPCPs in water. The final product of the AOPs reaction is water, carbon dioxide, and inorganic
ions, and there is no residual concentration of matter [7]. Fenton oxidation and photocatalytic
oxidation were successfully applied for the removal of pharmaceutical compounds [8]. Various
photocatalytic models were also applied to treat multifarious effluents which are commonly from
various industries, including forest industry, agriculture, and municipal wastewater, such as the
photocatalytic reactor with ultraviolet (UV) lamp module [9]. The photo-Fenton oxidation process,
which combines ultraviolet radiation with a Fenton reagent, is widely used because of its excellent
oxidation performance. The synergistic effect of UV on the Fenton system increases the rate of the whole
reaction, reduces the dosage of the Fenton reagent, shortens the reaction time, and reduces the amount
of sludge produced, which allows the organic matter to be better degraded and mineralized [10].
The main disadvantage of photo-Fenton technology is the need for removing the dissolved iron from
the treated sewage. At present, after oxidation treatment, the wastewater is treated by alkalization to
form insoluble Fe(OH)3, which is precipitated in the form of iron sludge [11,12].

Trimethoprim is a representative antibiotic within the PPCP group and one of the main pollutants
in pharmaceutical wastewater, mainly used in synergistic antibacterial activities [13,14]. It is used
individually in the treatment of respiratory tract infections, urinary tract infections, intestinal infections,
and other diseases. The presence of trimethoprim in the environment, especially in water bodies,
caused the emergence of bacteria that are resistant to antibiotics as a result of developing a resistance
gene [15]. As a large amount of pharmaceutical wastewater containing trimethoprim is discharged
into the aquatic environment, pollution with this chemical is becoming more and more serious.
Trimethoprim was found in municipal wastewater treatment plants at concentrations of 2 mg/L and in
surface waters at concentrations up to 0.48 mg/L [16,17]. The concentration is higher in pharmaceutical
wastewater. Trimethoprim is one of the fourteen pharmaceuticals which were classified as “high risk”
with hazard quotient (HQ) >10 in hospital wastewater; thus, it is necessary to remove trimethoprim
from water bodies [18].

Trimethoprim is detected with high frequency in wastewater, indicating that conventional wastewater
treatment processes do not effectively remove trimethoprim [19]. The photo-Fenton oxidation method was
considered as a treatment with high efficiency [10]. According to References [20,21], during degradation,
noxious nitrogen oxide (NOx) species are released during the AOP treatment of trimethoprim with
several N heteroatoms in its structure. However, it is lower than the concentration of nitrogen in the
pollutant, and cannot be considered hazardous. Several oxidation by-products during the photo-Fenton
treatment of trimethoprim are in low concentration, and cannot be considered hazardous either [15].
Furthermore, up to now, there is no reported study on the use of response surface methodology
(RSM) to optimize the optimal conditions of photo-Fenton oxidation degradation of trimethoprim.
In this paper, the design of experiments and RSM were used to study and optimize the conditions of
the photo-Fenton oxidation degradation of trimethoprim (including pH; the concentration of Fe2+,
H2O2, and trimethoprim; and UV intensity). Then, the degradation rate of trimethoprim using the
photo-Fenton oxidation technology and the optimal conditions were also acquired.

2. Materials and Methods

2.1. Experimental Drugs

Trimethoprim is an antibacterial agent, with the typical form of a white or white crystalline
powder, which is odorless, with a bitter taste. The molecular formula of trimethoprim is C14H18N4O3;
it has a molecular weight of 290.32, and its chemical structure is shown in Figure 1.
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2.2. Reagents and Instruments 

The main reagents of the experiment are listed below. Trimethoprim (JS14829) was purchased 
from Shanghai Jinsui Biotechnology Co.,Ltd. (Shanghai, China). HPLC-grade CH3OH was 
purchased from Tianjin Siyou Fine Chemicals Co.,Ltd. (Tianjin, China). H2O2 was obtained from 
Jiangsu Tong Sheng Chemical Regent Co.,Ltd. (Yixing, China). FeSO4·7H2O was purchased from 
Shantou Xilong chemical Co.,Ltd. (Shantou, China). H2SO4 was obtained from Quzhou Juhua 
Reagent Co.,Ltd. (Quzhou, China). HCOOH was purchased from Shanghai Chemical Regent 
General Co.,Ltd. (Shanghai, China). H2O2, FeSO4·7H2O, H2SO4, and HCOOH used in the experiment 
were analytical pure grade. 

All the glassware was rinsed and dried in a constant-temperature oven (DGG-9420, Ningbo's 
Science and Technology Co.,Ltd., Ningbo, China). During the process of the experiment, Barnstead 
purification (MILLIQ, Millipore Company, Molsheim, France) was necessary. An electronic balance 
(AL-204, Shanghai Mettler-Toledo Instruments Co.,Ltd., Shanghai, China), ultraviolet analyzer 
(ST510, Taiwan Xianchi Company, Taiwan, China), and ultraviolet lamp (Philips TL 8 W-08 FAM, 
Philips Corporation, Amsterdam, Holland) were also used throughout the process, as well as a pH 
Meter (MODEL6250C, Shanghai Ren's Electronics Co.,Ltd., Shanghai, China), magnetic agitator 
(ET606, Lovibond Company, Düsseldorf, Germany), and high-performance liquid chromatograph 
(Type 2695 pump, PDA2996 type, Waters Corporation, Milford, MA, USA). 

2.3. Experimental Method 

2.3.1. Solution Preparation 

To prepare the trimethoprim stock solution, 200 mg of trimethoprim powder was dissolved in 
ultrapure water. The medicine completely dissolved with the help of an ultrasonic cleaning machine. 
Then, the ultrapure water was used to maintain a constant volume in a 1-L volumetric flask. Then, 
200 mg of solid FeSO4·7H2O was dissolved in the ultrapure water to prepare the FeSO4 intermediate 
fluid. The ultrapure water was used to maintain a constant volume in a 1-L volumetric flask under 
acidic conditions. Next, 1 mL of 30% H2O2 was dissolved in a 100-mL volumetric flask to obtain the 
H2O2 intermediate fluid, and the resultant concentration of H2O2 was 0.1 mol/L. Finally, 0.5 mL of 
HCOOH was dissolved in a 100-mL volumetric flask to generate the HCOOH solution.  

2.3.2. Experimental Apparatus 

The 100-mL reaction solution was placed on a magnetic mixer. The magnetic mixer was helpful 
for mixing the reaction solution. The UV lamp with an iron bench was conveniently mobile, and 
emitted UVA light in the wavelength region 320–400 nm with λmax = 360 nm. The experimental device 
was arranged in a darkroom and outside interference was avoided to protect the subjects from UV 
irradiation experiments. Because different beaker positions may affect the degradation of 
trimethoprim, all degradation experiments were fixed in a position to prevent effects caused by the 
different location of the degradation. 
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2.2. Reagents and Instruments

The main reagents of the experiment are listed below. Trimethoprim (JS14829) was purchased from
Shanghai Jinsui Biotechnology Co., Ltd. (Shanghai, China). HPLC-grade CH3OH was purchased from
Tianjin Siyou Fine Chemicals Co., Ltd. (Tianjin, China). H2O2 was obtained from Jiangsu Tong Sheng
Chemical Regent Co., Ltd. (Yixing, China). FeSO4·7H2O was purchased from Shantou Xilong chemical
Co., Ltd. (Shantou, China). H2SO4 was obtained from Quzhou Juhua Reagent Co., Ltd. (Quzhou,
China). HCOOH was purchased from Shanghai Chemical Regent General Co., Ltd. (Shanghai, China).
H2O2, FeSO4·7H2O, H2SO4, and HCOOH used in the experiment were analytical pure grade.

All the glassware was rinsed and dried in a constant-temperature oven (DGG-9420, Ningbo’s
Science and Technology Co., Ltd., Ningbo, China). During the process of the experiment, Barnstead
purification (MILLIQ, Millipore Company, Molsheim, France) was necessary. An electronic balance
(AL-204, Shanghai Mettler-Toledo Instruments Co., Ltd., Shanghai, China), ultraviolet analyzer (ST510,
Taiwan Xianchi Company, Taiwan, China), and ultraviolet lamp (Philips TL 8 W-08 FAM, Philips
Corporation, Amsterdam, Holland) were also used throughout the process, as well as a pH Meter
(MODEL6250C, Shanghai Ren’s Electronics Co., Ltd., Shanghai, China), magnetic agitator (ET606,
Lovibond Company, Düsseldorf, Germany), and high-performance liquid chromatograph (Type 2695
pump, PDA2996 type, Waters Corporation, Milford, MA, USA).

2.3. Experimental Method

2.3.1. Solution Preparation

To prepare the trimethoprim stock solution, 200 mg of trimethoprim powder was dissolved in
ultrapure water. The medicine completely dissolved with the help of an ultrasonic cleaning machine.
Then, the ultrapure water was used to maintain a constant volume in a 1-L volumetric flask. Then,
200 mg of solid FeSO4·7H2O was dissolved in the ultrapure water to prepare the FeSO4 intermediate
fluid. The ultrapure water was used to maintain a constant volume in a 1-L volumetric flask under
acidic conditions. Next, 1 mL of 30% H2O2 was dissolved in a 100-mL volumetric flask to obtain the
H2O2 intermediate fluid, and the resultant concentration of H2O2 was 0.1 mol/L. Finally, 0.5 mL of
HCOOH was dissolved in a 100-mL volumetric flask to generate the HCOOH solution.

2.3.2. Experimental Apparatus

The 100-mL reaction solution was placed on a magnetic mixer. The magnetic mixer was helpful
for mixing the reaction solution. The UV lamp with an iron bench was conveniently mobile, and
emitted UVA light in the wavelength region 320–400 nm with λmax = 360 nm. The experimental
device was arranged in a darkroom and outside interference was avoided to protect the subjects
from UV irradiation experiments. Because different beaker positions may affect the degradation of
trimethoprim, all degradation experiments were fixed in a position to prevent effects caused by the
different location of the degradation.
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2.3.3. Analytical Test Methods

In this experiment, the concentration after degradation was determined with the W2695
high-performance liquid chromatograph (Waters Corporation, Milford, MA, USA), with a photodiode
array detector (PDA2996, Waters Corporation, Milford, MA, USA) and pillars (C18, Waters Corporation,
Milford, MA, USA) [22]. Scanning the full wave band of 210–450nm, the mobile phase was 1%
HCOOH:CH3OH = 7:3. The flow rate was 1.0 mL/min, and the quantity of sampling was 10 uL.
The Empower software was used to integrate the peak area, and the peak area ratio was used
to calculate out the removal rate. The three-dimensional (3D) scan of trimethoprim showed that
chromatography was a suitable method for trimethoprim purification and separation. According to
the result, the maximum absorption wavelength of trimethoprim was 270.2 nm, which was used as the
characteristic absorption peak of trimethoprim in this study. The trimethoprim retention time was
4.60 min.

The removal percentage of each sampling point could be calculated according to the following
calculation formula:

Removal percentage η = 1−Ci/C0, (1)

where Ci is the concentration of trimethoprim at different time points (mmol/L), and C0 is the
concentration of trimethoprim at time zero (mmol/L).

Then, the removal percentage was compared over the same period of time to reflect the quality
and degradation effect of trimethoprim. In this case, a higher removal rate resulted in a better
degradation effect.

2.4. Experimental Program

2.4.1. Photo-Fenton Blank Experiment

As this study was aimed at high-concentration pharmaceutical wastewater, a higher concentration
of trimethoprim was used in the experiment. The reaction solution was 100 mL, the trimethoprim
concentration was 0.0689 mmol/L, and photo-H2O2, photo-Fe2+, photo-Fenton, Fenton, and UV were
used in the reaction. The type of UV used in the experiment was UVA, because UVA can remove more
waste than UVC under the same conditions [23]. The degradation times were 0, 2, 4, 6, 10, 20, and
30 min, and the degradation percentage was measured in each case.

2.4.2. Photo-Fenton Single-Factor Optimization Experiment

For this experiment, the trimethoprim concentration was initially 0.0689 mmol/L, while the
concentration of H2O2 was 2.0 mmol/L, and the concentration of Fe2+ was 0.04 mmol/L; the pH was
adjusted to 2.5, 3.0, 3.5, 4.0, and 4.5. Then, the degradation experiments were carried out under
the UV lamp. When the degradation times were 0, 2, 4, 6, 10, 20, and 30 min, 1-mL samples
were taken into the sample bottle, which contained 100 µL of methanol for quenching [24]. Then,
the degradation percentage of trimethoprim was determined with HPLC. Then, under the previous
optimized conditions, we sequentially changed one of the conditions in turn, and kept the other
conditions the same. The specific experimental conditions were as follows: the concentrations of H2O2

were 0, 0.5, 2.0, 3.0, and 5.0 mmol/L; the concentrations of Fe2+ were 0, 0.02, 0.04, 0.06, and 0.08 mmol/L;
the concentrations of trimethoprim were 0.0344, 0.0517, 0.0689, 0.0861, and 0.1033 mmol/L; and the
irradiation distance of the UV lamp was also adjusted to change the UV intensity to carry out the
degradation experiment.

2.4.3. Central Composite Experimental Design

To take into account the interaction of pH and the concentrations of H2O2 and Fe2+, a central
composite experimental design approach was used to explore the optimal degradation conditions.
In this study, the optimal conditions in different pH, H2O2 concentrations, and Fe2+ concentrations
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were analyzed with response surface methodology (RSM). The central composite experimental design
parameters were determined according to the single-factor optimization experiment results.

3. Results and Discussion

3.1. Photo-Fenton Blank Experiment

The experiments were conducted in the presence of UV, Fenton, photo-H2O2, photo-Fe2+ and
photo-Fenton (Figure 2). The experimental results indicate that, when using photo-Fe2+ or UV alone,
the reaction was barely carried out. When using Fenton, the degradation effect was improved,
but it was not completely degraded. When using photo-H2O2, it was completely degraded in
30 min. In comparison, the trimethoprim was degraded substantially using photo-Fenton, and
it was completely degraded in 10 min, indicating that the degradation effect was considerable. This
result shows that the addition of UV irradiation has a synergistic effect on the Fenton system. During
the Fenton reaction, Fe2+ ions are converted to Fe3+ ions; however, when UV was added to the reaction
system, Fe2+ was regenerated via the photo-reduction of Fe3+ [25]. The newly generated ferrous ions
reacted with H2O2 in the next cycle.

Water 2019, 11, 207 5 of 14 

 

were analyzed with response surface methodology (RSM). The central composite experimental 
design parameters were determined according to the single-factor optimization experiment results. 

3. Results and Discussion 

3.1. Photo-Fenton Blank Experiment  

The experiments were conducted in the presence of UV, Fenton, photo-H2O2, photo-Fe2+ and 
photo-Fenton (Figure 2). The experimental results indicate that, when using photo-Fe2+ or UV alone, 
the reaction was barely carried out. When using Fenton, the degradation effect was improved, but it 
was not completely degraded. When using photo-H2O2, it was completely degraded in 30 min. In 
comparison, the trimethoprim was degraded substantially using photo-Fenton, and it was 
completely degraded in 10 min, indicating that the degradation effect was considerable. This result 
shows that the addition of UV irradiation has a synergistic effect on the Fenton system. During the 
Fenton reaction, Fe2+ ions are converted to Fe3+ ions; however, when UV was added to the reaction 
system, Fe2+ was regenerated via the photo-reduction of Fe3+ [25]. The newly generated ferrous ions 
reacted with H2O2 in the next cycle. 

 

Figure 2. The degradation of trimethoprim under different conditions. 

Under the conditions of the photo-Fenton system, UV radiation can directly decompose H2O2 
into hydroxyl radicals as follows: HଶOଶ ൅ hv → 2 ൉ OH. (2) 

Fe2+ can be partially converted to Fe3+; the transformation of Fe3+ in acidic medium can be 
hydrolyzed to produce hydroxyl Fe(OH)2+. Moreover, the high concentration of Fe3+ also contributes 
to consuming a higher amount of H2O2, which releases the weaker oxidant HO2· [26]. Under UV light 
(<300 nm), Fe(OH)2+ can be converted to Fe2+, and produce ·OH at the same time.  FeሺOHሻଶା → Feଶା ൅൉ OH. (3) 

The above formula indicates that the decomposition rate of H2O2 is much greater than a simple 
addition of the decomposition rates due to Fe2+ or UV. Because of the above factors, the treatment 
efficiency of the photo-Fenton system is affected by much more than Fenton alone.  

3.2. Photo-Fenton Single-Factor Optimization Experiment 

3.2.1. The Influence of pH on Removal Efficiency 

The Fenton reagent method needs to be carried out under acidic conditions, largely because the 
acidic environment is favorable for the existence of Fe2+. The precipitation of iron catalysts as iron 
hydroxide stops the extent of the Fenton reaction when it is carried out under alkaline conditions. 
Most of the literature shows that the Fenton reaction is optimal when the pH is about 3; at this pH, 

0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00
80.00
90.00

100.00

0 5 10 15 20 25 30 35

Degradattion 
percentage(%)

Time(min)

photo-Fenton
Fenton
UV
photo-H₂O₂
photo-Fe²⁺

Figure 2. The degradation of trimethoprim under different conditions.

Under the conditions of the photo-Fenton system, UV radiation can directly decompose H2O2

into hydroxyl radicals as follows:
H2O2 + hv→ 2·OH. (2)

Fe2+ can be partially converted to Fe3+; the transformation of Fe3+ in acidic medium can be
hydrolyzed to produce hydroxyl Fe(OH)2+. Moreover, the high concentration of Fe3+ also contributes
to consuming a higher amount of H2O2, which releases the weaker oxidant HO2· [26]. Under UV light
(<300 nm), Fe(OH)2+ can be converted to Fe2+, and produce ·OH at the same time.

Fe(OH)2+ → Fe2+ + ·OH. (3)

The above formula indicates that the decomposition rate of H2O2 is much greater than a simple
addition of the decomposition rates due to Fe2+ or UV. Because of the above factors, the treatment
efficiency of the photo-Fenton system is affected by much more than Fenton alone.

3.2. Photo-Fenton Single-Factor Optimization Experiment

3.2.1. The Influence of pH on Removal Efficiency

The Fenton reagent method needs to be carried out under acidic conditions, largely because the
acidic environment is favorable for the existence of Fe2+. The precipitation of iron catalysts as iron
hydroxide stops the extent of the Fenton reaction when it is carried out under alkaline conditions.
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Most of the literature shows that the Fenton reaction is optimal when the pH is about 3; at this pH,
the solution can produce a large number of Fe(OH)+ ions, which has an activity higher than Fe2+ [27].
Therefore, the pH range examined in this paper was from 2.5 to 4.5.

The experimental results (Figure 3) under different pH conditions show that the best degradation
of the trimethoprim occurred at pH values from 3.0 to 4.0. When pH > 4.0, the removal was limited by
the lower catalyst activity, resulting from the presence of relatively inactive iron oxohydroxides and the
formation of ferric hydroxide precipitate [28]. The Fe2+ rapidly forms ferric hydroxide precipitation
or other forms of iron that cause Fe2+ decline, and the reaction between Fe2+ and hydrogen peroxide
forms hydroxyl radicals that slow down and otherwise influence the Fenton reaction [29]. However,
with the pH as low as 2.5, the degradation effect decreased. This is because a low pH reduces the
stability of H2O2 and may release a proton to form hydronium (H3O+), enhancing its stability; however,
this can reduce the reactive activity of Fe2+ when it participates in the degradation process [30]. Finally,
in order to reduce the cost of acid, a pH of 4.0 was chosen as the best condition.
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3.2.2. The Influence of H2O2 Dosage on Removal Rate

The hydroxyl radical produced by the reaction of hydrogen peroxide in the Fenton reaction is one
of the important factors that influence the reaction. The key principle of the Fenton reagent method is
that the hydroxyl radical oxidizes organic compounds to readily biodegradable intermediate products.
Therefore, the concentration of hydroxide free radicals directly affects the whole reaction system.
In this study, concentrations of H2O2 ranging from 0 to 5 mmol/L were examined for the removal rate
of trimethoprim (Figure 4).
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The experimental results show that, with the increase of the dosage of H2O2, the degradation effect
gradually improved. When the concentration of H2O2 was 3 mmol/L, trimethoprim was completely
removed within 10 min. However, the treatment effect did not increase with the increase of H2O2;
it shows that when the H2O2 concentration was 5 mmol/L, the degradation rate began to decline
slightly. This may be because an excess of H2O2 and ·OH will react to generate H2O·, and H2O· is
easy to produce with the HO· reaction, which not only consumes the HO·, but also prevents H2O2

decomposition. Finally, the optimal concentration of H2O2 was chosen as 3 mmol/L.

3.2.3. The Influence of FeSO4 Dosage on Removal Rate

Ferrous iron ions are generally believed to play a catalytic role in the Fenton reaction because they
can cause H2O2 to generate hydroxyl radicals. The concentration of Fe2+ was varied between 0 and
0.08 mmol/L.

The results (Figure 5) show that, with the increase of the dosage of Fe2+, the degradation effect of
trimethoprim improved. This trend is mainly associated with the scavenging effect of Fe2+ at higher
Fe2+:H2O2 ratios [31]. When the Fe2+ concentration was 0 mmol/L, the degradation process did
occur, but its rate was much slower than the reaction with added Fe2+. When the concentration of
Fe2+ was 0.06 mmol/L, the trimethoprim was almost completely degraded within 10 min and the
degradation rate reached 98.01%. Because too much Fe2+ discharged into the water body will cause
water pollution and increase the burden on the environment and the cost of degradation, the optimal
Fe2+ concentration was chosen as 0.06 mmol/L.
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3.2.4. The Influence of the Initial Concentration of Trimethoprim on the Removal Rate

The concentration of trimethoprim in water is not fixed in practice nor is it fixed under field
conditions, and different initial concentrations will also affect the degradation. Therefore, it is of
practical importance to study the optimal initial concentration of trimethoprim. In this experiment, the
concentration of the trimethoprim was varied between 0.0344 mmol/L and 0.1033 mmol/L, before
being degraded under the optimized photo-Fenton conditions.

The experimental results (Figure 6) show that, with the increase of the dosage of trimethoprim,
the degradation of trimethoprim decreased. On the one hand, under the optimal conditions in terms of
the amount of catalyst, too much trimethoprim consumed a large amount of hydroxyl radicals in the
initial reaction, thus reducing the catalytic effect. On the other hand, an increased initial trimethoprim
concentration reduced the intensity of the irradiation on the surface of the catalyst, and caused a
reduction of the photocatalytic effect. However, this effect should be very small due to the fast kinetics.
When the concentration of trimethoprim was 0.0689 mmol/L, the trimethoprim was almost completely
degraded within 10 min, and the degradation rate reached 98.08%. Thus, 0.0689 mmol/L was selected
as the optimal initial trimethoprim concentration for degradation.
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Figure 6. The influence of different initial trimethoprim concentrations (0.0344–0.1033 mmol/L) on
trimethoprim degradation.

3.2.5. The Influence of Different UV Light Intensities on Trimethoprim Degradation

It is clear from the blank experiment that UV irradiation had a synergistic effect on the Fenton
system alone. Different UV light intensities have an effect on the promotion of the degradation
experiment. Therefore, we needed to determine the optimal intensity of UV light degradation of
trimethoprim. To achieve this, the UV intensity was changed by altering the distance between the iron
stand and the sample, before measuring the light intensity at different locations. The experimental
results (Figure 7) show that, with the increase of UV intensity, the degradation effect of trimethoprim
was greater because UV promoted trimethoprim decomposition. The stronger the light intensity
was, the greater the promotion effect became. The optimal condition of light intensity was
UVA = 12 mW/cm2.
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3.3. Central Composite Experimental Design Optimization

Taking into account the interaction of pH and the H2O2 and Fe2+ concentrations, the central
composite experimental design approach was used to explore the optimal degradation conditions.
Response surface analysis can greatly improve the test efficiency and obtain the expected results.
According to the single-factor optimization experiment, the optimal conditions were as follows: pH = 4;
H2O2 concentration = 3 mmol/L; Fe2+ concentration = 0.06 mmol/L; and UVA = 12 mW/cm2. Through
a preliminary experiment, the three factors and five levels of central composite design were used to
optimize the possible existence of the optimal degradation conditions. This design is shown in Table 1.
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Table 1. Details of the central composite design optimization by Design Expert 8.0.5b software.

Factor Unit −1 1 0 1 Alpha (−) Alpha (+)

pH 2.5 4 5.5 1.47731 6.52269
H2O2 concentration mmol/L 1.5 3 4.5 0.477311 5.52269
Fe2+ concentration mmol/L 0.03 0.06 0.09 0.009542 0.110454

Notes: 1 −1, 0, 1, Alpha (−), and Alpha (+) are the levels of the factor.

Design Expert 8.0.5b software (Stat-Ease, Inc., Minneapolis, MN, USA) was used to design the
experimental sequence and produce the 20 groups of complete factors of the experiment. Then,
the experiment was carried out according to the order of the experimental design group (Table 2),
and the degradation rate after 6 min was determined. The test results of each group are shown in
Table 2. The highest degradation rate was 97.62% when the experimental conditions were pH = 4.00,
H2O2 concentration = 5.5 mmol/L, and Fe2+ concentration = 0.06 mmol/L. Under these conditions, the
consumption of H2O2 and Fe was too large, resulting in high cost; thus, it was necessary to optimize
the condition.

Table 2. Central composite design experimental groups.

Design
Sequence

Operation
Sequence pH H2O2 Concentration

(mmol/L)
Fe2+ Concentration

(mmol/L)
Degradation

Rate (%)

18 1 4.00 3.0 0.06 87.98
17 2 4.00 3.0 0.06 89.97
10 3 6.52 3.0 0.06 75.23
14 4 4.00 3.0 0.11 92.96
12 5 4.00 5.5 0.06 97.62
16 6 4.00 3.0 0.06 89.21
19 7 4.00 3.0 0.06 88.75
6 8 5.50 1.5 0.09 92.03
3 9 2.50 4.5 0.03 70.74

11 10 4.00 0.5 0.06 84.27
2 11 5.50 1.5 0.03 37.21
5 12 2.50 1.5 0.09 83.37
7 13 2.50 4.5 0.09 89.79

13 14 4.00 3.0 0.01 65.81
8 15 5.50 4.5 0.09 95.98

20 16 4.00 3.0 0.06 87.38
9 17 1.48 3.0 0.06 71.40
4 18 5.50 4.5 0.03 54.74
1 19 2.50 1.5 0.03 57.06

15 20 4.00 3.0 0.06 91.33

The ANOVA results of the trimethoprim degradation model are shown in Table 3.

Table 3. ANOVA results for the trimethoprim degradation model; df—degrees of freedom.

Source Sum of Squares df Mean Square F-Value p-Value Prob > F

Model 4306.57 9 478.51 8.20 0.0014 significant
Residual 583.46 1 58.35

Pure Error 10.06 5 2.01
Corrected Total 4890.04 19

Standard Deviation 7.64 R2 0.8807
Mean 80.14 Adjusted R2 0.7733

Adequate Precision 9.358

Through ANOVA, the model F-value of 8.20 implies that the model was significant, and the
coefficient of variation (R2 = 0.88) indicates a comparatively high correlation between the observed
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and predicted values. Adequate precision compares the range of the predicted values at the design
points to the average prediction error. Ratios >4 indicate adequate model discrimination [32]. It was
found that p = 0.0014, suggested the experimental model was statistically significant at the 0.05 level.
The regression equation of the predicted trimethoprim degradation percentage is shown below.

Degradation percentage = 89.37 − 1.07A + 13.70C + 6.34AC − 7.30A2 − 5.15C2. (4)

The levels of A, B, and C were computed with the following equations: a = (A − 4) / 1.5;
b = (B − 3) / 1.5; c = (C − 0.06) / 0.03, a, b, c represent the actual independent variable. Then,
the equation was transformed to the actual values.

Degradation percentage = 3.00155 + 16.54958 × pH + 753.69973 × Fe + 140.81851 ×
pH × Fe − 3.24243 × pH2 − 5722.90348 × Fe2.

(5)

The analytical results of the interaction between pH, H2O2 concentration, and Fe2+ concentration
are shown in Figures 8–10.
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Figure 8. The influence of pH and H2O2 concentration on trimethoprim degradation.

Figure 8 shows that, under the same H2O2 concentrations, the degradation rate increased with
the increase in pH and then decreased. At the same value of pH, the degradation rate of trimethoprim
increased with the increase in H2O2 concentration. This shows that the degradation under the Fenton
reaction requires a suitably acidic pH. If the pH is too high, the oxidation potential of hydroxyl
radicals will decrease with the increase of pH, whereas, if the pH is too low, the stability of H2O2 will
decrease and this could release a proton and form a stable hydrated proton, which is not conducive to
the reaction.

Figure 9 shows that, at the same pH, the degradation rate increased with the increase in Fe2+

concentration, while, under the same Fe2+ concentration, the degradation rate increased with the
increase in pH and then decreased. Fe2+ plays the role of catalyst in the Fenton reaction; the greater the
concentration of Fe2+ is, the more hydroxyl radicals can be generated, which improves the degradation
efficiency. When the pH increases, Fe2+ will form ferric hydroxide precipitation quickly, which leads
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to a decrease in Fe2+ concentration. The reaction of Fe2+ and hydrogen peroxide to form hydroxyl
radicals will slow down and influence the Fenton reaction.
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Figure 10. The influence of Fe2+ and H2O2 concentration on trimethoprim degradation.

It is clear from Figure 10 that, under the same Fe2+ concentration, the degradation rate increased
with the increase in H2O2 concentration, while, under the same H2O2 concentration, the degradation
rate increased with the increase in Fe2+ concentration. Hydrogen peroxide produces hydroxyl radicals
in the Fenton reaction and participates in the degradation reaction; thus, the more hydroxyl free
radicals there are, the quicker the reaction will be.
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The optimal degradation conditions optimized by Design Expert 8.0.5b were as follows: pH = 4.56,
H2O2 concentration = 0.09 mmol/L, and Fe2+ concentration = 0.09 mmol/L. Under these conditions,
the optimal degradation rate was 99.95%. Three sets of tests were carried out under the optimal
degradation conditions after determining the optimal degradation conditions of the software.
The results were close to the design value, which shows that the optimal conditions can be realized.

4. Conclusions

The experimental analysis showed that the photo-Fenton reagent can effectively degrade
trimethoprim in wastewater. The blank experiment proved that the addition of UV irradiation
has a synergistic effect on the Fenton system. This study shows that response surface methodology
is a factual and error-free approach for the optimization of media composition to obtain the best
performance for the degradation of trimethoprim. Taking into account the possible interactions of
pH, Fe2+ concentration, and H2O2 concentration, Design Expert 8.0.5b was used to optimize the
optimal degradation conditions as follows: pH = 4.56, H2O2 concentration = 0.09 mmol/L, and Fe2+

concentration = 0.09 mmol/L. Under these conditions, the optimal degradation rate was 99.95%. Then,
three sets of tests were carried out under the optimal degradation conditions. The results were close to
the design value, which indicates that the optimal conditions can be realized.
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