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Abstract: Standard impoundment operation rules (SIOR) are pre-defined guidelines for refilling
reservoirs before the end of the wet season. The advancement and availability of the seasonal flow
forecasts provide the opportunity for reservoir operators to use flexible and early impoundment
operation rules (EIOR). These flexible impoundment rules can significantly improve water
conservation, particularly during dry years. In this study, we investigate the potential application
of seasonal streamflow forecasts for employing EIOR in the upper Yangtze River basin. We first
define thresholds to determine the streamflow condition in September, which is an important period
for decision-making in the basin, and then select the most suitable impoundment operation rules
accordingly. The thresholds are used in a simulation–optimization model to evaluate different
scenarios for EIOR and SIOR by multiple objectives. We measure the skill of the GloFAS-Seasonal
forecast, an operational global seasonal river flow forecasting system, to predict streamflow condition
according to the selected thresholds. The results show that: (1) the 20th and 30th percentiles of the
historical September flow are suitable thresholds for evaluating the possibility of employing EIOR;
(2) compared to climatological forecasts, GloFAS-Seasonal forecasts are skillful for predicting the
streamflow condition according to the selected 20th and 30th percentile thresholds; and (3) during dry
years, EIOR could improve the fullness storage rate by 5.63% and the annual average hydropower
generation by 4.02%, without increasing the risk of flooding. GloFAS-Seasonal forecasts and early
reservoir impoundment have the potential to enhance hydropower generation and water utilization.

Keywords: Yangtze River; cascade reservoirs; impoundment operation; GloFAS-Seasonal;
forecast evaluation

1. Introduction

The rapid population and economic growth in recent decades, along with climate change and
variability, impose more stress on water resources and cascade reservoir systems. Reservoirs, as one
of the most important components of the hydrologic system, play a significant role as water supply
by altering natural streamflow across space and time [1,2], while mitigating the effect of extreme
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events [3,4]. Conventionally, during wet season, reservoir operators release water preferentially for
flood control [5,6] while storing water before the end of wet season to meet the demand for hydropower
generation, navigation, and water supply. For full replenishment of storage, reservoir operators
and academic researchers have highlighted the importance of reservoir impoundment operation and
impoundment rules in several studies [7–10].

Reservoir operation rules are often used to provide guidelines for reservoir operators to determine
the amount of controlled discharge. Among these rules, the reservoir impoundment rules are designed
to refill the reservoir and raise the storage water level. The New York City rule [11] is among the
early guidelines for reservoir impoundment and provides the probability of spills rather than the
amount of spill to minimize the water shortage [12]. Since the development of the New York City rule,
different types of reservoir impoundment operation rules have been developed and employed for
various reservoir systems [7,13–17]. In the Yangtze River, which is one of the largest rivers in the world
by discharge volume with huge reservoir storage capacity, the impoundment operation is complex and
challenging. Water managers and stakeholders employ predefined impoundment rules for reservoir
systems. These fixed rules, so-called standard impoundment operation rules (SIOR), are derived based
on the historical flow records [7,9,18]. The SIOR is designed to reduce the flood control risk during
the impoundment period. However, these fixed rules are unable to fully replenish the storage of
the reservoir during dry years, which could lead to water shortage. On the contrary, flexible early
impoundment operation rules (EIOR) allow the reservoir operators to start the impoundment process
earlier and avoid unnecessary spills. However, employing EIOR requires information about the
streamflow forecast to alleviate the risk of flooding.

The recent advancements of the meteorological and hydrological forecast systems provide
an unprecedented opportunity for employing flexible operation rules rather than fixed ones for
reservoir systems [19–21]. Combining seasonal meteorological forecasts with hydrological models at
continental-scale has provided several continental-scale seasonal hydro-meteorological forecasting
systems [22–24], such as the European Flood Awareness System [25], the Australian Government
Bureau of Meteorology Seasonal Streamflow Forecasts [26], and the National Hydrologic Ensemble
Forecast Service, USA [27]. Several studies have demonstrated that a skillful streamflow forecast
can enhance the efficiency of water allocation systems to manage the trade-off between hydropower,
irrigation, municipal, and environmental services [28–31]. The potential for employing seasonal
forecast in the Yangtze River basin has been investigated in several research studies, mostly through
statistical techniques [32–34]. However, the potential application of the available seasonal forecasts for
reservoir impoundment operation is not well understood in the Yangtze River basin. In this study,
we evaluate the global seasonal river flow forecasting system (GloFAS-Seasonal) developed by the
European Centre for Medium-Range Weather Forecasts (ECMWF) [35] for reservoir impoundment in
the upper Yangtze River basin.

We follow two steps for our evaluation. First, we investigate different streamflow thresholds
to evaluate the possibility of employing EIOR. These thresholds can be considered as an indicator
for the dry condition which has adverse effects on reservoir impoundment operation. To find these
thresholds, we analyze multiple impoundment operation scenarios for EIOR and SIOR using a
simulation–optimization model. We test different percentiles of historical streamflow as thresholds
to find the impoundment rule curves for these scenarios. These rule curves are derived using the
non-dominated sorting genetic algorithm-II (NSGA-II) [36] through a multi-objective optimization
process. We then analyze the objective function values to select the most suitable thresholds for
employing EIOR or SIOR. Second, we apply these thresholds to evaluate the skill of the GloFAS-Seasonal
streamflow forecast for selecting EIOR or SIOR. When the streamflow forecast is below the selected
threshold, it means a dry condition. Hence, the EIOR provides a longer impoundment period during
this condition and a more suitable impoundment approach for water conservation. We employ different
scores to show the skill of the GloFAS-Seasonal streamflow forecast to detect the streamflow condition
according to selected thresholds.
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The rest of the paper is organized as follows: In Section 2, after introducing the study area, we build
a cascade reservoir impoundment model for reservoir early refill operation. Section 3 reviews the
GloFAS-Seasonal forecasting system and explains different measures to evaluate the skill of the forecast
for streamflow conditions. We demonstrate and discuss the results for the streamflow thresholds and
performance of the GloFAS-Seasonal forecast in Section 4. Finally, we draw the conclusion in Section 5.

2. Cascade Reservoir Impoundment Model

2.1. Study Area

The Yangtze River, the longest river in Asia, flows 6300 km to the East China Sea with a total
drainage area of 1.8 million km2 and has abundant hydropower resources. A series of cascade reservoirs
have been constructed along the upper Yangtze River which provides a wide range of services including
flood control, hydropower generation, water supply, as well as navigation. There are five cascade
reservoirs in the upper Yangtze River, WDD (Wu-Dong-De), BHT (Bai-He-Tan), XLD (Xi-Luo-Du),
XJB (Xiang-Jia-Ba), and TGR (Three Gorges Reservoir). These reservoirs, along with their characteristics,
are listed in Table 1. There are no main tributaries between WDD and XJB reservoirs, while there are
three main tributaries between XJB and TGR, Min River, Jia-Ling River, and Wu River. The inflow to
WDD (QWDD) and TGR (QTGR) are derived from gauges at Hua-Tan and Yi-Chang hydrological stations
by revivification, respectively. Figure 1 shows the sketch map of the cascade reservoirs, hydrological
stations, and tributaries in the upper Yangtze River basin.

Table 1. Characteristics of the five cascade reservoirs in the upper Yangtze River.

Reservoir Basin Area
(Thousand km2)

Annual Top of Buffer
Pool
(m)

Top of
Conservation

Pool
(m)

Total Storage
Capacity

(Billion m3)

Storage for Flood
Control

(Billion m3)

Installed Hydropower
Capacity

(GW)

WDD 406.1 952 975 3.94 2.44 10.20
BHT 430.3 785 825 20.60 7.50 16.00
XLD 454.4 560 600 12.67 4.65 13.86
XJB 458.8 370 380 5.16 0.90 7.75
TGR 1000 145 175 45.07 22.15 22.50
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2.2. Impoundment Operation Rules for Cascade Reservoirs

The impoundment operation rules are employed to refill reservoir storage during the impoundment
period. The impoundment operation rules (Figure 2c) delineate trajectories to raise the water level
from the annual top of buffer pool at the initial impoundment time to the top of conservation pool
by the end of impoundment period. The SIOR derived from historical flow records initiates the
impoundment operation at fixed predefined dates. However, the SIOR may fail to refill reservoir
during the impoundment period in dry years. Hence, in low flow conditions and dry years, an early
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impoundment operation is more desirable to refill the storage capacity. Table 2 lists the potential
time for employing early initial impoundment in the upper Yangtze River obtained from previous
investigations [7,9]. We employ these initial dates along with the inflow conditions for the WDD
and TGR reservoirs (QWDD and QTGR) to evaluate the possibility of an early impoundment for the
cascade reservoirs.
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reservoir impoundment operation rule curves (a) input data of PSO, (b) optimization strategy of PSO,
(c) concept of the seasonal top of buffer pool (STBP) and impoundment operation rules, similar to a
previous study [9].
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Table 2. Impounding periods of Standard impoundment operation rules (SIOR) and early impoundment
operation rules (EIOR) for the five reservoirs.

Reservoir
Initial Impoundment Time Final Impoundment Time

(SIOR, EIOR)(SIOR) (EIOR)

WDD Aug. 10th Aug.1st Sep. 10th
BHT Aug. 10th Aug.1st Sep. 30th
XLD Sep. 10st Aug. 25th Sep. 30th
XJB Sep. 10st Aug. 25th Sep. 30th
TGR Sep. 15th Aug. 25th Oct. 31st

Employing EIOR without considering the seasonal top of buffer pool (STBP) could increase the
risk of flooding. Figure 2c shows the concept of the STBP and Table 3 lists the value of the STBP for
selected reservoir (calculation method obtained from previous studies [7,9]). STBP is employed as
the maximum water level to mitigate the risk of flooding for the impoundment period. We follow an
iterative process to find the STBP for the reservoirs by evaluating the most extreme event. For further
information for this process, please refer to [7,9]. We use the STBP in our model to control and assess
the risk of flooding for the selected reservoirs.

Table 3. Seasonal top of buffer pool (STBP) for the five reservoirs in different periods.

Reservoir
Seasonal Top of Buffer Pool (m)

Aug.15th Aug.25th Sep.1st Sep.10th Sep.30th Oct.31st

WDD 965 965 970 975 975 975
BHT 800 810 810 810 825 825
XLD 560 565 575 575 600 600
XJB 370 372 375 375 380 380
TGR 145 145 152 152 165 175

According to Table 2, the impoundment process for most reservoirs starts before September.
Hence, streamflow forecast data with 2-month lead time can be used in early August to evaluate the
possibility of using EIOR. For this purpose, we define quantile-based thresholds based on historical
September monthly inflow to the Wu-Dong-De and Three Gorges Reservoir (QWDD and QTGR). These
thresholds are used to determine the streamflow condition to help decision-makers decide to use either
EIOR or SIOR. For instance, if the September monthly QWDD is forecasted to be below the threshold
percentile, EIOR is recommended as the suitable impoundment operation rule.

It is worth noting that, employing higher percentiles thresholds for inflow would increase the
possibility of using EIOR. However, it also increases the risk of flooding. So, careful consideration
should be devoted to the selection of these thresholds. Here, we examine four quantiles of historical
monthly inflow in September, including 20, 30, 40, and 50-percentile (Figure 2a), for the QWDD and
QTGR to select the best thresholds. For instance, considering the 20-percentile threshold of the historical
monthly inflow in September, the observed inflow can fall into the above 20-percentile and below
20-percentile category. Then, we evaluate the potential benefit and risk for each of these thresholds
by employing a cascade reservoirs impoundment simulation–optimization model under EIOR and
SIOR scenarios. Since each of these thresholds divide the historical streamflow observation into two
groups, we employ each group to find the impoundment rule curve separately. Hence, there are
eight scenarios for the thresholds that need to be evaluated for each impoundment approach by the
simulation–optimization model.

The reservoir simulation–optimization model is generally used to construct the rule curves by
simulating the reservoir responses to predefined operating rules. Due to a large number of policies
and constraints, mathematical optimization techniques can be used to identify the optimal operation
rules by evaluating all possible alternatives [37]. The parameterization–simulation–optimization (PSO)
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approach is a popular and effective way of deriving optimal rule curves for cascade reservoirs [38].
Initially, PSO employs a linear rule curve (impoundment operation rule curve shown in Figure 2c),
which connects the annual top of the buffer pool to the top of the conservation pool. It then
employs a heuristic strategy to find the optimal rule curve according to predefined objective functions
under possible inflow scenarios. Figure 2 shows the scheme of the PSO approach [39]. Finally,
the objective function values of the PSO are employed to select the best threshold for reservoir
impoundment decision-making.

Here, we employ PSO at a daily timescale to find the optimum rule curve for each threshold
and scenario (Figure 2b). By optimizing the parameters of the rule curves for SIOR and EIOR,
decision-makers can decide to employ EIOR or SIOR based on the obtained objective function values.
The objective functions and the constraints for the impoundment operation employed in the PSO
model are discussed in Sections 2.3.1 and 2.3.2. In Section 2.4, we describe the NSGA-II algorithm
employed for optimizing impoundment operation rule curve.

2.3. Objective Functions and Constrains

2.3.1. Objective Functions

Decision-makers rely on different criteria to make a comprehensive assessment of operation
rules and address trade-offs among different users and services. In the Yangtze River, the goal of
reservoir impoundment is to enhance water conservation in order to maximize hydropower generation
and fullness storage rate, while minimizing the risk of flooding [7,18]. Hence, we employ objective
functions that can measure the degree that these goals are achieved. These objectives are adopted from
previous studies [7,18] and can be mathematically expressed as:

(1) Maximum hydropower generation (HG),

max HG = max

 1
N

N∑
i = 1

 M∑
k = 1

HGi,k


; (1)

(2) Maximum fullness storage rate (FSR),

max FSR = max

 1
N

N∑
i = 1

 M∑
k = 1

αkFSRi,k


, (2)

FSRi,k =
Vk

high,i − Vk
min

Vk
max − Vk

min

× 100%; (3)

(3) Minimum flood control risk (R),

min R = min[max(R1, R2, · · · , Rk, · · · , RM)], (4a)

Rk = P (Water level > STBP) = Nrisk,k/N; (4b)

where
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M the number of reservoirs;
N the number of years for hydrological time series;
HGi,k hydropower generation of the kth reservoir in the ith simulated year, kW·h

αk
the weight for fullness storage rate of the kth reservoir, calculated by the ratio about the
total storage capacity of M reservoirs;

FSRi,k fullness storage rate of the kth reservoir in the ith simulated year;
Vk

min the storage capacity corresponding to the annual top of buffer pool of the kth reservoir, m3;
Vk

max the storage capacity corresponding to the top of conservation pool of the kth reservoir, m3;

Vk
high,i

the highest storage during impoundment operation of the kth reservoir in the ith simulated
year, m3;

Rk flood control risk of the kth reservoir;
Nrisk,k the number of years when the water level exceeds STBP of the kth reservoir.

2.3.2. Operation Constraints

In addition to the objective functions, the constraints of the reservoir system need to be specified
for the optimization process. The following equality and inequality operational constraints need to be
satisfied in the cascade reservoirs impoundment operation. Adopted from previous studies [7,18,40],
the mathematical formulations of these constraints are as follows:

(1) Water balance equation,

Vk
i, j+1 = Vk

i, j + (Q k
in(i, j) − Qk

out(i, j))∆t i = 1, . . . , N j = 1, . . . , T; (5)

(2) Reservoir capacity,

Vk
min ≤ Vk

i, j ≤ Vk
max i = 1, . . . , N j = 1, . . . , T; (6)

(3) Power generation,

Pk
min ≤ AkQk

o(i, j)H
k
i, j ≤ Pk

max i = 1, . . . , N j = 1, . . . , T; (7)

(4) Reservoir discharge,

Qk
min ≤ Qk

out(i, j) ≤ Qk
safe i = 1, . . . , N j = 1, . . . , T; (8)∣∣∣∣Qk

out(i, j+1) − Qk
out(i, j)

∣∣∣∣ ≤ ∆Qk i = 1, . . . , N j = 1, . . . , T (9)

(5) Navigation,

Zk
dmin ≤ Zk

d(i, j) ≤ Zk
dmax i = 1, . . . , N j = 1, . . . , T; (10)

Zk
d(i, j) = f

(
Qk

out(i, j)

)
i = 1, . . . , N j = 1, . . . , T; (11)

where
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N the number of years for hydrological time series;
T total number of days during impoundment operation in the ith simulated year;
Vk

i, j the kth reservoir storage at the beginning of the jth day in the ith simulated year, m3;
Qk

in(i, j) the kth reservoir inflow on the jth day in the ith simulated year, m3/s;
Qk

out(i, j) the water discharge of kth reservoir on the jth day in the ith simulated year, m3/s;

Qk
o(i, j)

the water discharge for hydropower generation of the kth reservoir on the jth day in the ith
simulated year, m3/s;

Qk
w(i, j) the spilled water discharge of the kth reservoir on the jth day in the ith simulated year, m3/s;

Ak the hydropower generation efficiency of the kth reservoir;

Hk
i, j

the average hydropower head of the kth reservoir on the jth day in the ith
simulated year, m;

Pk
min the minimum power limits of the kth hydropower plant, kW;

Pk
max the maximum power limits of the kth hydropower plant, kW;

Qk
min the minimum water discharge for downstream of the kth reservoir, m3/s;

Qk
safe

the maximum water discharge for flood control safety in downstream of the kth reservoir,
m3/s;

∆Qk the maximum water discharge fluctuation of the kth reservoir, m3/s;
Zk

dmin the minimum water level at downstream of the kth dam site, m;
Zk

dmax the maximum water level at downstream of the kth dam site, m;
Zk

d(i, j) the water level at downstream of kth dam site on the jth day in the ith simulated year, m;

f(·)
the function provided by reservoir managers expressing the relationship between reservoir
discharge and downstream water level.

2.4. NSGA-II Optimization Algorithm

The nonlinearity of the reservoir systems, along with the existing constraints, require an effective
optimization algorithm to solve these types of problems [41]. Here, we employ the non-dominated sorting
genetic algorithm-II (NSGA-II), which is a robust multi-objective optimization algorithm [36], to derive
the parameters of the rule curves. The NSGA-II algorithm has been applied to a wide range of complex
multi-objective reservoir optimization and water resources management problems [18,38,42–44].

The NSGA-II algorithm has four parameters, including population size, generation number,
crossover rate, and mutation rate, that need to be tuned by the user. Population size and generation
number determine the effectiveness and efficiency of the algorithm and control the convergence speed
to the optimal non-dominated solutions. Crossover and mutation rates control the ability of the
algorithm to perform an effective search over the problem space [38,45]. In this study, the population
size and the generation number were set to 50 and 200, respectively. These values are selected based
on trial and error to obtain reasonable non-dominated solutions with acceptable simulation time. The
crossover and mutation rates were empirically set to 0.9 and 0.1, respectively. The non-dominated
solutions are used to evaluate the three objective functions for each threshold and each of the EIOR
and SIOR scenarios.

3. Evaluation of GloFAS-Seasonal Forecasts

GloFAS-Seasonal forecasts combine the ECMWF’s latest seasonal meteorological forecasting
system, SEAS5, and a river routing model, Lisflood, to provide streamflow forecasts at global scale [35].
This dataset provides weekly-averaged river flow with 4-month lead time. The first component of the
GloFAS-Seasonal forecast is the meteorological input from SEAS5 which employs a data assimilation
system along with a global circulation model. SEAS5 is executed once a month to produce seasonal
weather forecasts with 7-month lead time. The second model component is a revised Hydrology
Tiled ECMWF Scheme of Surface Exchanges over Land (HTESSEL) which computes the land surface
response to atmospheric forcing and simulates the evolution of soil temperature, moisture content,
and snowpack conditions through the forecast horizon to produce a corresponding forecast of surface
and subsurface run-off [46]. The third model component is Lisflood which simulates the groundwater
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(subsurface water storage and transport) processes and routing of the water through the river network.
While SEAS5 provides forecasts for the 7 months ahead, the GloFAS-Seasonal uses only the first
4 months and produces forecasts of river flow for the next 4 months. For more details on the forecast
method, please refer to paper [35].

The GloFAS-Seasonal is a real-time forecast dataset which contains data from January 2018
and updates every month, with a total of 51 ensemble members. In order to evaluate the skill
of the dataset, a set of retrospective seasonal forecasts for past dates, which are called reforecasts
(also known as hindcasts), are available to compare with the historical observation streamflow.
GloFAS-Seasonal reforecasts are available at http://www.globalfloods.eu/ and have 25 ensemble
members from January 1981 to December 2017. In this study, GloFAS-Seasonal reforecasts at Hua-Tan
and Yi-Chang hydrological stations in the Yangtze River are downloaded and analyzed. Also, the
original weekly-averaged reforecasts are converted into monthly products for reservoir impoundment
operation. Hence, monthly-averaged streamflow in September is obtained at the beginning of August
with 2-month lead time (LM2).

We evaluate the GloFAS-Seasonal reforecasts to measure the capability of the dataset to predict
the condition of the streamflow, i.e., the ability of the reforecast to predict that September monthly
averaged flow falls below the selected thresholds which is defined in Section 2.1. Since seasonal climate
is inherently probabilistic, seasonal forecasts should be evaluated probabilistically [47]. If each of the
25 ensemble members of the GloFAS-Seasonal reforecasts are equally likely, the proportion of ensemble
members below each percentile threshold is calculated as the probability of the forecast. In addition,
the percentile thresholds are calculated separately for historical observed and reforecast data [48]. This
approach takes into account the systematic additive error (bias) of the reforecast data, hence further
bias adjustment for the reforecast data is not required [48,49].

The conversion of raw ensemble members to forecast probabilities enables us to validate
GloFAS-Seasonal reforecasts by using probabilistic forecasts verification measures. Here, we employ
multiple metrics for our evaluation. These metrics include: I) discrimination, ability of the forecast
to discriminate among observations; II) skill, the relative accuracy of the forecast over a reference
forecast; III) reliability, the agreement between forecast probability and mean observed frequency; IV)
resolution, the ability of the forecast to resolve the set of sample events into subsets; and V) sharpness,
the tendency to forecast probabilities near 0 or 1. These metrics are briefly discussed here. Interested
readers can refer to https://www.cawcr.gov.au/projects/verification/ for further details.

3.1. Discrimination

To assess the potential application of GloFAS-Seasonal forecasts for the prediction of the
streamflow condition, the relative operating characteristic (ROC) curve, a measure of discrimination [50],
is calculated for the selected thresholds. If the forecasts indicate that flow will be below threshold,
which means a dry and unfavorable condition for reservoir impoundment operation, then a warning is
issued. The forecasts are converted into a binary (e.g., “yes” or “no”) format depending on whether
a warning has been issued or not issued. Then the ROC curve is plotted based on hit rate (HR) and
false-alarm rate (FAR) of the forecast for streamflow condition. The HR and FAR can be calculated by
Equation (12):

HR =
h

h + m
(12a)

FAR =
f

f + r
(12b)

where h refers to a correct warning (hit), m refers to a missed warning, f refers to a false warning, and r
correct no warning detection.

The area under the ROC curve (referred as AUC) is then calculated, which is used to measure
whether the forecast is informative for decision-making. Most of the time, the ROC curve does not
clearly indicate the accuracy of forecast. As a numerical value, it is more intuitive to use the AUC value

http://www.globalfloods.eu/
https://www.cawcr.gov.au/projects/verification/
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as the evaluation standard. The larger the AUC value, the more skillful the forecast is. The value of
the AUC ranges from 0 to 1. If the AUC is equal to 0.5, it indicates that forecasts are consistent with
the random guess and provides no information. Generally, when the AUC value is greater than 0.6,
the seasonal forecast can be regarded as useful [25,35].

3.2. Skill

Skill implies information about the relative accuracy of the forecast according to a reference
forecast. The reference forecast is generally an unskilled forecast such as random chance, persistence,
or climatology. To assess the skill of GloFAS-Seasonal reforecasts, we compare the reforecasts with
climatology [51], an ensemble of observed flows, and use the ROC skill score (ROCSS), which has been
used in previous studies for the verification of seasonal forecasts [52]. ROCSS is computed as follows:

ROCSS =
AUC f c − AUCcm

1 − AUCcm
(13)

where AUCfc refers to the AUC value of reforecasts and AUCcm refers to the AUC value of climatological
forecasts. ROCSS of one means a perfect forecasting system; ROCSS of zero indicates no improvement
over the climatology.

3.3. Reliability, Resolution, and Sharpness

For assessing the reliability of forecasts, the reliability diagram is used here, where X and
Y axes represent the forecast probability and the observed frequency of the future below the
streamflow threshold, respectively. When the forecast probability and the observed frequency
are equal, the reliability of forecasts is perfect. For example, if an event will occur with a forecast
probability of 70%, then, on average, the event should occur on 70% of the occasions that this forecast
is made. So, reliability is indicated by the proximity of the plotted curve to the diagonal. If the plotted
curve lies below the diagonal, this indicates over-estimation (forecast probabilities are too high); curve
above the diagonal indicates under-estimation (forecast probabilities are too low).

The climatological average can produce high reliability, but it lacks information for practice.
In theory, we are interested in probability forecast systems which give a forecast probability that
deviates from the climatological average and approaches 0% or 100% while maintaining a high level
of reliability [35]. So, the reliability diagram can also be used to assess the resolution of forecasts.
Forecasts that discriminate between events and non-events are said to have a resolution (a forecast of
climatological average, a curve lying on or near the horizontal line would have no resolution). For
assessing the sharpness of forecasts, the reliability diagram is usually accompanied by a histogram.
If the histogram is U-shaped, then the frequency of forecasts approaches 0% and 100% and the forecast
system sharpness is well. Forecasts with no or low sharpness will show a peak in the forecast frequency
near the climatological average.

4. Results and Discussion

4.1. The Selected Thresholds

As the first step of our evaluation, we select thresholds to evaluate the streamflow condition for
impoundment operation. The Changjiang (Yangtze River) Water Resources Commission (CWRC)
provides daily inflow and discharge data series for the selected five reservoirs and streamflow for
adjacent gauges at hydrological stations, which covers the whole impoundment operation period
from 1 August to 31 October (92 days) for 1950–2015 (66 years). We use 20, 30, 40, and 50-percentile
of historical inflow as thresholds to determine the inflow condition in September according to the
monthly-averaged inflow (QWDD and QTGR). For example, the 20-percentile historical average inflow
in September divides data into two groups where one group (above 20-percentile in Figure 2a) includes
53 years of data and the other group (below 20-percentile in Figure 2a) has 13 years of data. Therefore,
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we get two scenarios for these thresholds, one above and one below each threshold. By this approach,
we get 16 different flow scenario groups (two QWDD or QTGR × four quantiles × two groups for
each quantile).

These scenarios are evaluated independently along with the EIOR and SIOR by the PSO approach.
Since the population size for the NSGA-II algorithm is set to 50, the algorithm provides 50 Pareto-optimal
solutions (non-dominated solutions). Since there are three objective functions for each scenario and
considering the multi-purpose nature of these reservoirs, a single value cannot be reported as the best
answer from these 50 Pareto-optimal solutions. Therefore, we average the objective function of the 50
Pareto-optimal solutions as a potential benefit and risk in response to this combination of historical flow
group and impoundment rules. For 16 different groups and two operation rules, the averaged three
objective functions of 50 Pareto-optimal solutions are shown in Table 4. Comparing these 16 different
scenarios, we can see that the HG and FSR values are improved by employing larger thresholds. This
improvement is due to the increase in streamflow and reservoirs storage in September from the lowest,
below 20-percentile, to the highest, above 50-percentile, threshold. It is clearly shown that low flow in
September has an adverse impact on impoundment operation.

Table 4. Benefit and risk results of the cascade reservoir system in response to the combination of
historical flow group and impoundment rule.

Flow Group EIOR SIOR

HG
(108 kW·h)

FSR
(%)

R
(%)

HG
(108 kW·h)

FSR
(%)

R
(%)

QWDD

below 20% 813.784 82.68% 0 805.070 79.78% 0
below 30% 845.857 85.43% 0 834.963 82.45% 0
below 40% 868.680 89.40% 0 857.848 87.25% 0
below 50% 895.822 91.72% 0 884.002 89.81% 0
above 20% 1025.617 99.25% 1.802% 1011.410 98.86% 2.229%
above 30% 1040.072 99.98% 2.035% 1022.395 99.96% 2.123%
above 40% 1060.128 100.00% 2.924% 1042.975 100.00% 2.284%
above 50% 1074.293 100.00% 3.730% 1057.887 100.00% 2.842%

QTGR

below 20% 816.973 81.86% 0 808.284 79.18% 0
below 30% 838.596 86.20% 0 829.380 83.76% 0
below 40% 876.391 89.49% 0 864.720 87.80% 0
below 50% 895.437 91.56% 2.055% 881.728 90.13% 0
above 20% 1024.592 99.23% 2.217% 1005.852 98.97% 2.742%
above 30% 1042.250 99.70% 2.313% 1023.483 99.65% 2.098%
above 40% 1048.775 99.88% 2.237% 1030.204 99.87% 2.902%
above 50% 1072.242 99.96% 2.263% 1052.043 99.96% 3.043%

Note: EIOR: early impoundment operation rules; SIOR: standard impoundment operation rules; HG: hydropower
generation; FSR: fullness storage rate; R: flood control risk.

Comparing EIOR with SIOR for cascade reservoirs, the EIOR improves the HG and FSR from the
flow group below 20% to below 40% for both of QWDD and QTGR without affecting the risk of flooding.
We employ these results to select the most suitable threshold among these 16 scenarios for our analysis.
Figure 3 shows the relationship between increased benefit ratio and different flow groups of QWDD and
QTGR. According to Figure 3, HG is less affected by the selected thresholds. On the contrary, FSR values
are decreased by increasing the threshold or inflow. For the group below the 20-percentile and below
the 30-percentile, the FSRs of the proposed EIOR are increased significantly around or above 3% in
comparison to the SIOR, without increasing the risk of flooding. Hence, we select the 20-percentile
and 30-percentile as the thresholds for our study, as their performance is superior to others. In early
August, we use these thresholds to evaluate the performance of the GloFAS-Seasonal in predicting the
streamflow condition for QWDD and QTGR next month.
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4.2. Evaluation of GloFAS-Seasonal Reforecasts

GloFAS-Seasonal reforecasts are evaluated using adjusted historical river flow data at the Hua-Tan
and Yi-Chang hydrologic stations in the Yangtze River. GloFAS-Seasonal reforecasts represent natural
flow and do not consider any reservoir routing. The CWRC provides monthly averaged historical
flow records which have been adjusted to represent the natural flow. These adjusted historical
natural streamflow timeseries span over thirty years (1981–2013). So, GloFAS-Seasonal reforecasts are
evaluated over the same 33-year period. Since the impoundment operation starts before September,
we investigate the GloFAS-Seasonal reforecasts on 1 August (2-month lead, LM2) to evaluate the
potential for employing EIOR. We also investigate the 1-month lead, LM1, on 1 September to evaluate
the performance of GloFAS-Seasonal for different lead times.

4.2.1. AUC Values

In order to compare AUC values for different stations, lead times, and thresholds, we employ the
Nightingale’s Rose chart. This chart is suitable to visually evaluate the evident differences between
various categorical data. The results are shown in Figure 4, and it is clearly shown that all AUC values
are greater than 0.6, which means that the forecasts can be regarded as informative and have the ability
to predict the streamflow condition (whether streamflow is below the threshold or not). Besides, the
AUC values exhibit a decline from the LM1 (around 0.9) to the LM2 (below 0.8) as expected.

For different stations and thresholds, AUC values of forecasts vary more significantly with lead
times. So, the discrimination of GloFAS-Seasonal reforecasts is relatively stable over space in the
upper Yangtze River. Moreover, an interesting finding is that the performance of thresholds varies
for hydrological stations. For Hua-Tan, the 20-percentile has the best performance, whereas the
30-percentile for the Yi-Chang station. This emphasizes that a spatial evaluation of thresholds is
necessary for the Yangtze River to find the best thresholds for employing the GloFAS-Seasonal forecast
at the basin.
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Figure 4. The area under the ROC curve (AUC) values for GloFAS-Seasonal reforecast at Hua-Tan (left)
and Yi-Chang (right) hydrologic stations.

4.2.2. ROCSS Values

Tercile plots are designed to show the performance of a forecast system at different periods [53].
Here, we employ these plots to compare reforecast probabilities (color coded from light to dark color
for lower to higher probability) for different threshold events with the observed condition (white
dots). We defined three different categories of threshold events for our comparison. Since low flow
condition leads to employing the EIOR, we only employ 0–20%, 20–40%, and 40–60% quantiles of the
streamflow data to evaluate the performance of GloFAS-Seasonal reforecasts for predicting the correct
flow condition. However, the evaluation can be done for other flow ranges based on the selected
thresholds. ROCSS values for each quantile is shown on the right axis for comparison. Significant
values of ROCSS with a 95% confidence are marked with an asterisk for statistical evaluation.

Results show that for GloFAS-Seasonal reforecasts below 20%, the ROCSS exhibit a decline in skill
from the LM1 (0.8 and 0.76) to the LM2 (0.46 and 0.42) for both Hua-Tan and Yi-Chang hydrological
stations. However, skills (ROCSS greater than 0) still prevail in the LM2 and are marked with asterisks,
which means that forecasts of LM2 are better than climatology. Furthermore, forecast sharpness is
also evident in this tercile plot. The darker the color of the square, the better the sharpness of that
probabilistic forecasts is. Forecasts for both LM1 and LM2 exhibit sharpness, although the sharpness is
higher for LM1, which is indicated by the colors of the squares in Figure 5.

According to Figure 5, the streamflow condition for the Hua-Tan hydrological station is below
the 20-percentile in seven years, among which the forecast predicted the highest probability for
five and three of these years by LM1 and LM2, respectively. For the Yi-Chang hydrological station,
the number of years with streamflow below the 20-percentile is seven, out of which GloFAS-Seasonal
reforecasts with LM1 and LM2 predicted the highest probability for five and three of these years,
respectively. Consistent with the results of AUC, although LM1 shows better performance with shorter
lead time, aiming at reservoir impoundment operation, GloFAS-Seasonal reforecasts with 2-month
lead time (LM2) are still informative. Further, compared with the LM1, LM2 still has a lot of potential
improvement in the future, which depends on developing the seasonal climate prediction. A similar
analysis can be performed for the 30-percentile threshold with other ranges.
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Figure 5. Tercile plots and ROC skill score (ROCSS) for GloFAS-Seasonal reforecasts (a) 2-month lead
at the Hua-Tan, (b) 1-month lead at the Hua-Tan, (c) 1-month lead at the Yi-Chang, and (d) 2-month
lead at the Yi-Chang hydrologic station.

4.2.3. Reliability Diagram

Similar to ROC calculations, the reliability is assessed for both the 20-percentile and 30-percentile
threshold. Due to the limit number of samples, the range of forecast probabilities is divided into
five bins (for every 20% from 0% to 100%) rather than ten bins in order to avoid sparseness of the
probability categories. Since GloFAS-Seasonal reforecasts have similar performance at hydrological
stations, reliability diagrams are only presented for Yi-Chang hydrologic station here. Figure 6 shows
the effect of (a) the lead time (LM1 and LM2) and (b) the threshold (20-percentile and 30-percentile) on
reliability by combining the contingency table for thresholds and lead times, respectively.
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Figure 6. Reliability diagrams of GloFAS-Seasonal reforecasts for comparing (a) two lead times and
(b) thresholds.
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Figure 6a shows that forecasts have more reliability than climatology, regardless of the lead time.
It is worth noting that the observed frequency is unrealistically equal to 1 for 60–80% and the LM1
due to sampling limitations rather than necessarily true deviations from reliability [54]. Overall, the
reliability appears to be slightly better for forecasts of LM2 than LM1. The forecast data for both
LM2 and LM1 exhibit sharpness, which means that forecast probabilities are more informative than
climatology. Similar behavior is observed for the 60–80% bin in Figure 6b, because of the limited
number of samples. Figure 6b shows that the reliability of the 30-percentile threshold is better than the
20-percentile. In contrast to reliability, sharpness is better for forecasts of the 20-percentile rather than
the 30-percentile threshold. Differences in reliability and sharpness can be explained by the limited
number of samples. So, the performance of the two selected thresholds is close and hard to distinguish.

Due to most dots laying below the diagonal, Figure 6 suggests that in general, GloFAS-Seasonal
reforecasts have a tendency to over-estimate the likelihood of a below percentile streamflow condition,
which is a common situation for seasonal forecasting [55]. This conclusion is consistent with the
reliability diagram of GloFAS-Seasonal reforcasts aggregated across all observation stations globally [35],
and reflects the characteristics of the GloFAS-Seasonal forecasting system. However, with respect to the
impoundment of the reservoirs, it is more favorable to over-estimate the below threshold conditions
rather than under-estimating. The reservoir operators could employ GloFAS-Seasonal forecasts for
decision-making for the early impoundment operation, while control the risk of flooding through
short-term hydrological forecasting in real-time operation.

4.3. Specific Analysis and Benefits of the EIOR

The above results demonstrate that GloFAS-Seasonal forecasts have the potential to give water
managers the flexibility to employ early impoundment in the upper Yangtze River. Here, we try to
analyze the EIOR and find its benefits. As an example, Figure 7 shows the Pareto-optimal solutions of
EIOR (plot a) and SIOR (plot b) for the QTGR below the 20-percentile threshold. These Pareto-optimal
solutions are averaged for derving parts of Table 4. We are employing three objective functions.
Therefore, three subplots are needed for Pareto-optimal solutions to show three objectives in pairs.
However, the flood control risk (R) of almost all Pareto-optimal solutions are equal to zero. Hence,
we only show two objective functions (FSR and HG) in Figure 7. Each one of the 50 Pareto-optimal
solutions obtained from the NSGA-II algorithm represents impoundment rule curve for each of the
five cascade reservoirs. Figure 7 also shows EIOR and SIOR rule curves of WDD and TGR reservoirs
focusing on the extreme solution of the FSR objective function. The figure shows that the average water
level of EIOR is higher than SIOR for the selected 20-percentile threshold, while the risk of flooding
is zero.

To illustrate the potential maximum benefits of EIOR, Figure 7 also shows a linear operation
rule (LOR), which connects the initial water level to the top of STBP at the end of impoundment
period. As a benchmark, LOR could present the maximum benefit of the EIOR from two parts where
one is the earlier initial impoundment time and the other is the optimized rule curve. For curves of
EIOR and LOR in Figure 7, Table 5 shows the benefit and risk of EIOR compared to the LOR. The
proposed EIOR improves the FSR by 5.63% and increases HG by 4.02%. In conclusion, during dry
years, our proposed methodology could significantly increase the hydropower generation and water
utilization by employing GloFAS-Seasonal forecasts and early reservoir impoundment.
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Table 5. Comparison of the benefit and risk of EIOR and linear operation rule (LOR) rule curves for the
QTGR below the 20-percentile threshold.

Flow Group Rule Curve in
Figure 7

Benefit and Risk

HG
(108 kW·h)

FSR
(%)

R
(%)

QTGR below 20%
LOR 785.042 77.512% 0
EIOR 816.601 81.876% 0

Increased ratio 4.02% 5.63% 0

Note: QTGR: inflow to the Three Gorges Reservoir; LOR: linear operation rule; EIOR: early impoundment operation
rules; HG: hydropower generation; FSR: fullness storage rate; R: flood control risk.

5. Conclusions

In this study, we evaluated the potential application of GloFAS-Seasonal forecasts for early reservoir
impoundment in the upper Yangtze River. A cascade reservoirs impoundment simulation–optimization
model was employed to select suitable low flow thresholds for decision-making for EIOR or SIOR. These
thresholds were selected by analyzing the historical inflow data of WDD and TGR reservoirs, which were
derived from Hua-Tan and Yi-Chang hydrologic stations. The performance of GloFAS-Seasonal
reforecasts to predict the streamflow condition at these two hydrological stations was evaluated
using AUC, ROCSS, and reliability diagram for two different lead times (LM1 and LM2) and selected
thresholds. The main findings of our study can be summarized as follows:

(1) The low flow condition in September has a very significant impact on reservoir impoundment
operation in the upper Yangtze River. The 20-percentile and 30-percentile selected thresholds of
inflow at WDD and TGR are suitable for evaluating the possibility of early impoundment. These
two selected thresholds can be used as a measure for flow condition and decision-making for early
impoundment operation.

(2) All AUC values of reforecasts are greater than 0.6 which shows that GloFAS-Seasonal forecasts
can be used to predict the streamflow condition according to the selected thresholds. However, AUC
decreases from the LM1 (around 0.9) to the LM2 (below 0.8) as expected. The ROCSS reveals that both
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LM1 and LM2 are significantly better than climatology. The reliability diagrams also show that both
LM1 and LM2 forecasts have more reliability and sharpness than climatology. Furthermore, results
also indicate a tendency of the two lead time forecasts to over-estimate, which is more favorable for
water managers.

(3) GloFAS-Seasonal forecasts with 2-month lead time (LM2) are valuable for reservoir
impoundment operation. During dry years, the proposed EIOR improves the fullness storage
rate by 5.63% and the annual average hydropower generation by 4.02% without increasing the risk
of flooding.

This paper demonstrates that GloFAS-Seasonal forecasts has the potential to improve the standard
impoundment operation rules in the upper Yangtze River and give water managers the flexibility to
employ early impoundment.
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