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Abstract: A bifunctional thin film photocatalyst consisting of graphitic carbon nitride on tungsten
trioxide (g-C3N4/WO3) is introduced for the improvement of photocatalytic activity concerning
hexavalent chromium reduction and methylene blue dye removal in water, compared to the bare,
widely used WO3 semiconductor. A bilayered structure was formed, which is important for the
enhancement of the charge carriers’ separation. The characterization of morphological, structural,
optoelectronic, and vibrational properties of the photocatalysts permitted a better understanding of
their photocatalytic activity for both dye degradation and Cr+6 elimination in water and the analysis
of the photocatalytic kinetics permitted the determination of the corresponding pseudo-first-order
reaction constants (k). Trapping experiments performed under UV illumination revealed that the
main active species for the photocatalytic reduction of Cr+6 ions are electrons, whereas in the
case of methylene blue azo-dye (MB) oxidation, the activation of the corresponding photocatalytic
degradation comes via both holes and superoxide radicals.

Keywords: tungsten oxide; graphitic carbon nitride; photocatalysis; methylene blue;
hexavalent chromium

1. Introduction

Photocatalytic materials based on oxide semiconductors are attractive candidates for environmental
applications, such as pollutants degradation and water purification [1]. The semiconductor’s solar
light-driven activity is originated from the electrons (e−) excitation to the conduction band, leaving
positively-charged holes (h+) in the valence band. The photogenerated charge carriers are able to
react with water molecules, hydroxyl anions, and molecular oxygen to generate hydroxyl (�OH) and
superoxide anion (O2

�−) radicals. These reactive oxygen species can attack organic and inorganic
contaminants, which could be degraded or transformed following oxidation and/or reduction reactions.
Titanium dioxide is among the most studied semiconducting materials but its practical use is limited
to the UV range, due to the high energy gap (3.0–3.2 eV). Recent literature works also focus on
tungsten trioxide (WO3), which presents very interesting optoelectronic properties, justifying a
broader application field, including electrochromic systems, energy conversion devices, and gas
sensors [2]. WO3 has an ideal band gap 2.4–2.8 eV [3,4], shows high chemical stability, and is a
non-toxic semiconductor. However, the photocatalytic degradation of organic pollutants is not very
efficient as the conduction band lies in a low unfavorable position, where the recombination of the
photogenerated electrons with holes cannot be avoided [5]. On the other hand, since 2009, when Wang
et al. [6] reported the synthesis of graphitic carbon nitride (g-C3N4) photocatalyst, significant efforts
have been made to introduce this metal-free semiconductor in photocatalytic pollutants degradation
and hydrogen production. The g-C3N4 band gap is about 2.7 eV and its conduction band is at about
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1.12 eV, thus the photogenerated electrons have high reductive ability. Furthermore, the material can be
easily prepared and its fabrication cost mainly comprises that of a simple heat treatment of melamine
precursor in ambient pressure. Nevertheless, the bare g-C3N4 presents high recombination rate of
the photoinduced carriers (electron-hole pairs), which affects the photocatalytic activity. To enhance
the separation of photogenerated charges and improve the efficiency of the photocatalytic process,
heterojunction composites or multilayered structures have been introduced, including doping and
coupling g-C3N4 with metal, nonmetal and other semiconductor materials, such as Ag/g-C3N4 [7],
CdS/g-C3N4 [8], ZnO/g-C3N4 [9], AuPd/g-C3N4 [10], and WO3/g-C3N4 [11]. In the last case, the
composite heterostructure presents a much higher photocatalytic activity than the pristine g-C3N4 and
WO3 components [12–14].

Moreover, recent investigations in the field of photocatalysis attempt to explore novel trends and
present perspectives of innovative nanostructured photocatalysts inside and outside the well-established
frame of advanced oxidation processes (AOPs). Special focus is paid on expanding the field borders by
including advanced reduction processes (ARPs) and relating technological applications (ARTs) [15]. In
this direction, here we report for the first time the development of bifunctional composite g-C3N4/WO3

thin film photocatalysts and their action in both oxidation and reduction reactions. We put particular
emphasis on characteristic pollutants resulting from intensive industrial activity mainly in textiles
dying (production of colored fabrics, yarns, and fibers) and metal finishing/plating applications, by
examining the degradation of methylene blue azo-dye and the elimination of inorganic hexavalent
chromium model pollutant compounds in water.

2. Materials and Methods

All chemicals with analytical grade were used without further purification. Unless otherwise
indicated, reagents were obtained from Sigma-Aldrich and were used as received. Melamine and
tungsten powder were purchased from Acros and Alfa Aesar, respectively. Methylene blue was
purchased from Fluka and hexavalent chromium ions from Riedel de Haen. Potassium bromate
(KBrO3), potassium iodide (KI), benzoquinone (BQ), and isopropyl alcohol (IPA) were purchased
from Acros-Organics. Deionized water was used throughout. Microscope slides were purchased from
Fisher Scientific.

2.1. Synthesis of WO3 Precursor Solution

Tungsten powder (0.5 g) was reacted with aqueous hydrogen peroxide (H2O2, 15 mL, 30%) under
sonication for 4 h until a transparent solution was obtained. The excess of H2O2 was catalytically
decomposed by immersing a Pt foil into the solution for 12 h. Then, 3 mL of absolute ethanol and 0.3 g
of Triton X-100 surfactant were added to the solution [16].

2.2. Preparation of g-C3N4

Bulk g-C3N4 was prepared by calcination of melamine 10 g in a crucible at 550 ◦C for 4 h with a
ramp rate 5 ◦C/min. The resulting yellow agglomerates were ground into powder in an agate mortar
and collected. The powder passed a second annealing process at 500 ◦C for 2 h with a ramp rate 5
◦C/min and after cooling to room temperature its color became light yellow. To prepare a uniform
suspension, 5 mg of the powder were added to a solution containing 25 µL Nafion perfluorinated
solution, 145 µL of absolute ethanol and 84 µL of deionized water followed by sonication for 4 h.

2.3. Preparation of Bilayered g-C3N4/WO3 Thin Films

The photocatalyst films were prepared as follows. Microscope glass slides (2 cm × 2 cm) were
cleaned with a detergent followed by sonication in ethanol, acetone, and isopropyl alcohol. Then,
a quantity of 80 µL WO3 sol-gel was casted on the glass followed by annealing at 500 ◦C. The high
annealing temperature was required to assure that any organic content was removed. The procedure
repeated once more before casting the g-C3N4 suspension and the films were again calcined at 450 ◦C.
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2.4. Characterization Techniques

The films morphology was examined with a PHILIPS Quanta FEI Inspect SEM microscope,
with a tungsten filament operating at 25 KeV. To evaluate the samples crystallinity, XRD and Raman
measurements were conducted. X-ray diffraction was performed using a Siemens D-diffractometer
with Cu − Kα1 (λ = 1.5406 Å) and Cu − Kα2 (λ = 1.5444 Å) radiation. For vibrational spectroscopy,
a Renishaw InVia Reflex microscope, coupled with a Leica DMLC microscope, with 5× and 50×
objectives lenses, and a laser source (emitting at 514.4 or 785 nm), was used. The absorption properties
of the synthesized films were verified under UV/vis spectroscopy, using a UV/vis Hitachi 3010
spectrophotometer, equipped with an integrating sphere and BaSO4 as reference.

2.5. Evaluation of the Photocatalytic Activity

The photocatalytic properties of WO3 based films were examined under the degradation of the
common organic azo-dye test pollutant methylene blue (MB, 3 µM), and the reduction of the inorganic
hexavalent chromium ions (Cr+6/K2Cr2O7, 98%, 0.48 × 10−4 M) to trivalent. All experiments were
performed in a photocatalytic reactor under UV-A illumination (four Sylvania UVA lamps 15 W/BLB,
350–390 nm, 0.5 mW cm−1) for 2 h [17]. First, the films were immersed in 10 mL of the pollutant
solutions and they were kept in dark for 1 h prior to illumination to achieve adsorption–desorption
equilibrium. During the UV-A illumination, the characteristic absorption peak of MB at 664 nm was
monitored with the photo-spectrophotometer every 30 min to determine the MB concentration. In the
case of Cr+6, a colorimetric method was applied to monitor the reduction kinetics [18]. In particular, the
Cr+6 complex with diphenylcarbazide (DPC, Merck 98%) metal ion indicator presented a characteristic
absorption peak at 542 nm, proportional to its concentration. To detect the active species responsible for
the photocatalytic mechanisms under UV illumination, trapping experiments were performed using
different kinds of scavengers including KI (h+ quencher), IPA (�OH quencher), BQ (O2

�− quencher),
and KBrO3 (e− quencher) [19].

3. Results and Discussion

3.1. Characterization

The SEM micrographs of tungsten trioxide revealed that these films present a rough but
homogeneous surface. At higher resolution, it is clear that elongated nanosized WO3 distorted
flakes were formed across the glass substrate, with width of around 70 nm and length varying from to
0.8 to 1.7 µm (Figure 1a). Upon the addition of g-C3N4, well dispersed carbonic clouds of different sizes
were detected on the WO3 surface, without affecting the oxide morphology underneath. These nebulous
structures consist of randomly oriented carbon nitride agglomerates (Figure 1b). The cross-section
image of the composite film (Figure 1c), revealed a thick and uniform WO3 layer at the bottom, with
thickness close to 4.5 µm, while the upper layer of g-C3N4 is limited to 1.1 µm.
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Figure 1. SEM top images of WO3 (a) and g-C3N4/WO3 (b) films on fluorine-doped tin oxide (FTO) 
substrates at 5000× magnification. The respective cross-section image (c) is also shown. 

The XRD patterns in Figure 2 show that the WO3 crystal is mainly crystallized in the cubic phase 
(JPDS Card No. 41.0905, marked as #), while the carbon nitride deposition did not cause any phase 
transformation of the oxide. It is remarkable that the main diffraction peaks of WO3 at 25.9°, 33.7°, 48.9°, 
and 55.9° correspond to (100), (110), (200), and (210) crystal planes, respectively, which is in accordance 
with the formed nanoflake structure and confirms this preferred two-dimensional crystal orientation. 
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In addition, WO3 impurities of different stoichiometry (e.g., WO2.92, JPDS Card No. 30.1387) or 
different crystal symmetry cannot be excluded. Concerning the carbon nitride, the peaks located at 27.5° 
and 13.0° (JCPDS 87–1526, marked with * in Figure 2) are typical diffractions of amorphous graphitic 
nitride and they are ascribed as the in-plane structural packing and the interlayer stacking of the 
network, respectively [20,21]. It is noted that the low intensities of the carbon nitride in the bilayered 
film are possibly due to the good dispersion of g-C3N4 onto the WO3 surface and its low crystallinity 
compared to the tungsten trioxide. 

The investigation of WO3 film with Raman spectroscopy is presented in Figure 3a. The Raman 
bands at around 807 and 708 cm−1 correspond to O-W-O symmetric and anti-symmetric stretching 
vibrations, respectively; the 272 and 327 cm−1 to bending vibrations of W-O-W; and the peak at the lower 
wavenumber of 139 cm−1 is due to lattice modes [22,23]. Nevertheless, it is clear that hydrated WO3 
(WO3-xH2O formations, x = 1, 2 or 1/3) coexist on the surface, as a shoulder is displayed at 740–780 cm−1 
and two extra bands are located at 916 and 948 cm−1, where the latter is assigned as W = O stretching 
mode [24,25]. Moreover, a wide shoulder in the range of 550–690 cm−1 may arise from traces of other 
crystallographic phases, which act as lattice distortions [26,27]. 

Figure 1. SEM top images of WO3 (a) and g-C3N4/WO3 (b) films on fluorine-doped tin oxide (FTO)
substrates at 5000×magnification. The respective cross-section image (c) is also shown.



Water 2019, 11, 2439 4 of 10

The XRD patterns in Figure 2 show that the WO3 crystal is mainly crystallized in the cubic phase
(JPDS Card No. 41.0905, marked as #), while the carbon nitride deposition did not cause any phase
transformation of the oxide. It is remarkable that the main diffraction peaks of WO3 at 25.9◦, 33.7◦, 48.9◦,
and 55.9◦ correspond to (100), (110), (200), and (210) crystal planes, respectively, which is in accordance
with the formed nanoflake structure and confirms this preferred two-dimensional crystal orientation.
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Figure 2. XRD patterns of WO3 film (black), g-C3N4/WO3 (red), and g-C3N4 (blue).

In addition, WO3 impurities of different stoichiometry (e.g., WO2.92, JPDS Card No. 30.1387) or
different crystal symmetry cannot be excluded. Concerning the carbon nitride, the peaks located at
27.5◦ and 13.0◦ (JCPDS 87–1526, marked with * in Figure 2) are typical diffractions of amorphous
graphitic nitride and they are ascribed as the in-plane structural packing and the interlayer stacking
of the network, respectively [20,21]. It is noted that the low intensities of the carbon nitride in the
bilayered film are possibly due to the good dispersion of g-C3N4 onto the WO3 surface and its low
crystallinity compared to the tungsten trioxide.

The investigation of WO3 film with Raman spectroscopy is presented in Figure 3a. The Raman
bands at around 807 and 708 cm−1 correspond to O-W-O symmetric and anti-symmetric stretching
vibrations, respectively; the 272 and 327 cm−1 to bending vibrations of W-O-W; and the peak at the
lower wavenumber of 139 cm−1 is due to lattice modes [22,23]. Nevertheless, it is clear that hydrated
WO3 (WO3-xH2O formations, x = 1, 2 or 1/3) coexist on the surface, as a shoulder is displayed at
740–780 cm−1 and two extra bands are located at 916 and 948 cm−1, where the latter is assigned as W =

O stretching mode [24,25]. Moreover, a wide shoulder in the range of 550–690 cm−1 may arise from
traces of other crystallographic phases, which act as lattice distortions [26,27].

In the case of the g-C3N4/WO3 composite films, there were spectral variations, related with the
focusing area, as the optical microscope resolution allowed discriminating the deeper layer of the
oxide (black areas on the inset of Figure 3b) and the carbonic layer on the top (yellow areas in the
inset). When the microscope was focused on the oxide, the spectra were almost identical to the bare
WO3 film (Figure 3b). As expected, no bands of the carbon nitride were observed above 1000 cm−1 in
this area [28]. Nevertheless, the characteristic G and D bands of carbonic materials did not appear
during the study of g-C3N4 area, implying the material’s high fluorescence under the 514.4 laser. It is
also noted that the g-C3N4 layer blocked most of the WO3 vibrations bands, permitting only specific
bands to be detected. Interestingly, when replacing the excitation source by the NIR laser, the new
g-C3N4 spectrum was much more detailed (Figure 3c). First, the G and D bands were recorded at 1350
and 1557 cm−1, confirming the carbonic nature of the material [21]. The vibrations at 687, 708, 753,
and 990 cm−1 are clearly distinguished as modes of carbon nitride [29,30]. Moreover, the vibrational
modes at 1113 and 1457 cm−1 were associated with the C–C and C=C stretching vibrations, while
the mode at 1233 cm−1 is assigned as C=C bending mode [20]. The rest of the peaks were related to
crystallites of s-triazine, melem, and melon units, as an expected sequence of carbon nitride synthesis
by the combustion of melamine [21,29–31].
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light, reaching 450 nm, corresponding in energy gap of 2.71 eV in the Tauc plots (Figure 4b). The 

Figure 3. Raman spectra of WO3 (a) and g-C3N4/WO3 (b) films with the 514.4 laser, when focusing in
the carbonic layer; and g-C3N4/WO3 film with the NIR laser (c). The inset in (b) shows the measured
areas for the mixed film: black for the WO3 and yellow for the g-C3N4.

In addition, diffuse reflectance spectra in Figure 4, expressed in Kubelka-Munk units (F(R)),
showed typical absorption properties of WO3 materials. Their absorption surpassed UV part of solar
light, reaching 450 nm, corresponding in energy gap of 2.71 eV in the Tauc plots (Figure 4b). The
incorporation of g-C3N4 on top of WO3 has not significantly changed the energy bad gap, as both
materials have very similar energy gap values.
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3.2. Photocatalysis and Trapping Experiments

To evaluate the photocatalytic properties of WO3 and g-C3N4/WO3 materials, MB and Cr+6

were used as target pollutants. The chosen pollutants allow examining the catalyst in oxidation and
reduction reactions pathways independently, expanding the possibility to use them in a wide range
of applications.

3.2.1. Photocatalytic Oxidation of Methylene Blue

It is well known that methylene blue (MB) is a cationic dye pollutant, so intense adsorption was
expected in the negative charged surface of WO3 materials for the inert pH environment (pH ~ 7) [32].
For this reason, the MB concentration after the adsorption–desorption equilibrium was denoted as the
solution’s initial concentration.

As shown in Figure 5a, the g-C3N4/WO3 films presented improved photocatalytic activity
compared to the bare WO3 films. In particular, after 2 h under UV-A illumination, almost 70% of MB
was degraded when the bilayered g-C3N4/WO3 film was used, while, with the use of WO3, it was
limited to 65%. Likewise, the pseudo-first-order reaction constants (k) for MB oxidation were evaluated
using the corresponding ln(C0/Ct) against time plots (not shown), giving the values of 0.00299 and
0.00387 min−1 for WO3 and g-C3N4/WO3, respectively. Moreover, the g-C3N4/WO3 films caused the
N-demethylation of MB, since the main absorption peak of MB at 664 nm (Figure 5b) blue-shifted,
indicating the formation of byproducts, such as Azure A, Azure B, Azure C, and Thionine [33].
In contrast, such a mechanism was not observed for WO3 bare film.
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3.2.2. Photocatalytic Reduction of Cr+6

The photocatalytic reduction ability of the prepared catalysts was also evaluated using UV light,
by immersing each film (WO3 and g-C3N4/WO3) in 15 mL of Cr+6 (5 mg from K2Cr2O7 in 1 L DI H2O)
and adding six drops of M H2SO4 (0.2 mol/L). The solution was stirred in the dark (1 h) to obtain
the equilibrium. Then, UV illumination was performed by using a white box photoreactor (50 cm
× 50 cm × 30 cm) with four UV-A, 4-Sylvania TLD 15 W/08 lamps (350–390 nm, 0.5 mW/cm2). The
advancement of reaction was checked using UV-Visible spectroscopy (λmax = 542 nm).

The photocatalytic reduction of Cr+6 for the prepared films was evaluated under UV illumination,
as presented in Figure 6. The percentage for Cr+6 reduction was 6.17% and 92.87% at 120 min for
WO3 and g-C3N4/WO3, respectively. Furthermore, WO3 film shows lower photocatalytic efficiency,
comparing with bilayered film. The higher photocatalytic efficiency of the films might be attributed to
facilitation of the electron–hole separation process [19,34]. In addition, the pseudo-first-order reaction
constants (k) for Cr+6 reduction (to Cr+3) were determined as 0.0007 and 0.017 min−1 for WO3 and
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g-C3N4/WO3, respectively, further revealing the beneficial role of the graphitic carbon nitride top layer
for enhancing the photocatalytic reduction activity of the bilayered films.
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To study the mechanism of the Cr+6 reduction and MB oxidation using the binary composite, and
to detect the species that are responsible for redox reaction for both pollutants, trapping experiments
were performed, under UV illumination, as presented in Figure 7a,b, respectively.
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Figure 7. Scavengers effect on Cr+6 photocatalytic reduction (a); and MB photodegradation using the
g-C3N4/WO3 photocatalyst under UV irradiation (b).

When adding IPA (�OH scavenger), BQ (O2
�− scavenger), and KI (h+ scavenger) no change

was noticed for the reduction process. In contrast, KBrO3 (e− scavenger) addition led to blocking of
photocatalytic reduction. Thus, electrons are the main active species in the photocatalytic reduction
process. For MB oxidation, the addition of KBrO3 and IPA did not affect the oxidation process, but
addition of KI (h+ scavenger) inhibited the oxidation process, and there was a decrease in photocatalytic
oxidation process when adding BQ (O2

�− scavengers), thus both holes and superoxide radicals are the
main active species for the oxidation process [34–36].

4. Conclusions

Novel bifunctional photocatalytic films were prepared by consecutively depositing WO3 and
g-C3N4 materials. The composite films present elongated nanosized WO3 distorted flakes onto
which well dispersed g-C3N4 carbonic agglomerates were formed. These films present improved
photocatalytic discoloration of MB and enhanced photocatalytic Cr+6 reduction activity, compared
to pristine WO3 photocatalyst, implying the successful interplay of the two catalysts, in agreement



Water 2019, 11, 2439 8 of 10

with the characteristic structural, optoelectronic, and vibrational properties. The experiments using
appropriate scavengers revealed that the main active species are electrons for reduction reactions and
both holes and superoxide radicals for oxidation reactions.
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