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Abstract: Estimation of suspended sediments carried by natural rivers is essential for projects related
to water resource planning and management. This study proposes a dynamic evolving neural
fuzzy inference system (DENFIS) as an alternative tool to estimate the suspended sediment load
based on previous values of streamflow and sediment. Several input scenarios of daily streamflow
and suspended sediment load measured at two locations of China—Guangyuan and Beibei—were
tried to assess the ability of this new method and its results were compared with those of the
other two common methods, adaptive neural fuzzy inference system with fuzzy c-means clustering
(ANFIS-FCM) and multivariate adaptive regression splines (MARS) based on three commonly utilized
statistical indices, root mean square error (RMSE), mean absolute error (MAE), and Nash–Sutcliffe
efficiency (NSE). The data period covers 01/04/2007–12/31/2015 for the both stations. A comparison of
the methods indicated that the DENFIS-based models improved the accuracy of the ANFIS-FCM and
MARS-based models with respect to RMSE by 33% (32%) and 31% (36%) for the Guangyuan (Beibei)
station, respectively. The NSE accuracy for ANFIS-FCM and MARS-based models were increased
by 4% (36%) and 15% (19%) using DENFIS for the Guangyuan (Beibei) station, respectively. It was
found that the suspended sediment load can be accurately estimated by DENFIS-based models using
only previous streamflow data.

Keywords: Improved prediction; suspended sediment load; dynamic evolving neural-fuzzy inference
system; DENFIS; ANFIS-FCM; MARS

1. Introduction

The suspended sediments comprising primarily of fine sand, silt and clay (with mean size < 63 µm)
are washed down to the streams and rivers from upland and transported downstream. In time,
under certain conditions, such as reducing flow velocity and momentum, the sediments could,
therefore, be transiently accumulated in the channel or river bottom and under the most common
hydraulic systems; the sediment is entrained and remobilized back into the outer flow. Where the
velocity is slow and the submerged weight of particles becomes influential, the sediment is settled
and deposited. In addition, sediments can also be deposited in reservoirs under quiescent condition
by the action of gravity. Thus, this reduces their storage capacities. The sedimentation problem also
chokes and interferes with the normal hydrological system of river flow. Mobilization of sediments on
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land might cause surface (sheet), gully and rill types of erosion in the upland catchment. In addition,
massive land movement, such as slumps, landslides, and mudflows, are also probable if deforestation
and land clearance are not done sustainably [1]. Therefore, it is of important to develop an accurate
prediction model for sediment transport.

In fact, linear model has been extended to be able to capture the non-linear interrelationship in the
data pattern which is the most common challenges in engineering application and more specifically
sediment transport. Such improvement has been developed by introducing polynomial regression
terms. For example, the Multivariate Adaptive Regression Splines (MARS) has been developed as high
dimensional data modelling to provide proper procedure to detect the non-linear interrelationship
in the input-output data patterns [2,3]. MARS is considered as non-parametric regression method
that could be used to identify the mapping between the desired parameter and a group of predictor
parameters aided by the splines to detect the non-linearity in the data patterns. Piecewise cubic or
linear splines to identify the local fit are used by MARS and it develops an adaptive procedure to
architect the optimal model. It has been proved that the MARS model could be successfully applied
for different cross-disciplinary fields, especially in hydrological applications [4–10].

Due to the ability of the artificial neural network (ANN) methods to mimic the interrelationship for
a particular input-output pattern, these methods have been applied in several hydrological phenomena.
In addition, according to Mustafa et al. [11], these methods have a strong ability to capture the
internal features and characteristics even those experienced highly non-linear behaviour. The ANNs
based-models have been effectively implemented in several hydrological modelling including runoff

prediction, rainfall forecasting and water quality prediction [12–14]. In this context, the utilization of the
ANN methods is widened to be applied for predicting the sediment transport [15–18]. In most of these
researches, the consequences of the river streamflow and the suspended sediment load have been used
and made available as input while the future value of the sediment load is considered as the desired
output. Different pre-processing analyses have been carried out before implementing the model such as
normalization, sensitivity analysis and statistical analysis including the correlation and cross correlation
to select the most effective pattern of the input variables to achieve the best model performance [19].
In addition, comprehensive analysis has been carried out for the selection of the best training algorithms
including gradient decent (GD), conjugate gradient (CG) and Levenberg–Marquardt (LM) [20–22].
However, most of these models experienced a few drawbacks related to slow convergence, over-fitting
and trapping in local optima using classical optimization methods. In addition, in a few cases, there is
a need to pre-processing the data before using in order to identify the most sensitive input variables to
achieve better prediction accuracy for the sediment load value.

Furthermore, more recently, by Jang [23], a new learning procedure with a new architecture,
namely, Adaptive Neural Fuzzy Inference System (ANFIS) has been developed. The main idea
behind the ANFIS method is to overcome the drawback of the ANN method so from each particular
input-output pair, it could generate a suitable membership functions (MFs) and, hence, the learning
algorithm of the ANN could be processed to build up a set of fuzzy IF-THEN rules for such pair.
ANFIS motivates the hydrologists to replace the classical ANN methods to apply for several complex
non-linear hydrological phenomena such as water level, rainfall and streamflow [24–29].

Kisi’s research study in 2005 is considered as one of the most primitive study on developing
ANFIS model for predicting the sediment transport in river and compared the results with the classical
ANN model for the same case study [30]. The analyses of the results were also extended to include the
comparison with sediment rating curve and multi-linear regression model. The major outcome from
this study concluded that the ANFIS method outperformed the other methods and achieved relatively
accurate prediction of the sediment load. Similarly, Lohani et al. [25] examined the ability of the ANFIS
model against the classical ANN methods for predicting the concentration of the sediment in the rivers.
Basically, in this study, the input pattern was slightly different than the previous study by Kisi [30],
as the input included not only the sediment concentration and streamflow but also include the water
level. It has been concluded that the ANFIS method has more ability to detect the non-linear behaviour
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of the input-output pattern and achieves a remarkable improvement of the prediction accuracy over
the classical ANN model. Furthermore, the ANFIS method showed outstanding performance over the
ANN model for the ability to predict the sediment load even with considerable difference between the
streamflow and water level compared to the ANN methods [31–34]. As a result, it could be concluded
that the ANFIS could be able to detect and effectively map the highly non-linear pattern between the
input and the output for the sediment load and enhanced the prediction accuracy compared with
the classical ANN, however, ANFIS, in a few cases, experienced instability training process while
generating the appropriate fuzzy rules [35–37]. In addition, the ANFIS still needs several trial-and-error
procedures to adjust and achieve the best value of internal parameters. In the same time, it is relatively
difficult to integrate the ANFIS structure with advanced optimization algorithm in order to adapt
the selection of such internal parameters. Therefore, there is a need to develop a proper dynamical
structure that able to self-adapting the fuzzy rules to be able to detect the new feature of the new
input-output pattern without losing the training stability.

In fact, within ANFIS modelling, one of the following methods, namely, subtractive clustering
(SC), grid partitioning (GP), and fuzzy c-means (FCM) for the measured input-output data could be
used to perform in order to identify the fuzzy modelling of ANFIS to generate the fuzzy rule. In general,
for fuzzy modelling, the clustering of the data is an accessible procedure where the clusters attained
from the data pattern of the input-output utilizing particular clustering algorithm are considered as a
base for generating the fuzzy rule. The procedure for fuzzy identifications utilizing clustering is first to
find the clusters in the space of the available data and, hence, it uses the cluster centres to compute
the consequent and the premise parts of the fuzzy rules. As a result of this procedure, the clustering
accuracy defines the superiority of the rule base of the fuzzy inference system (FIS) and, consequently,
the overall accomplishment of the fuzzy model’s results. Finally, Bezdek et al. [38] proposed the FCM
clustering method and has been enhanced by Zhang and Chen [39], which is considered as one of the
most effective methods for data clustering. One of the most advantage of the FCM is the improvement
of computing the measurement of the distance between the point of the data input-output pattern
during the clustering and hence more precise cluster centres. Therefore, FCM could be used to develop
better rule base for ANFIS based on better defined partitioning for the data which could lead to overall
enhancement for ANFIS-FCM’s output and the prediction accuracy [40].

In order to overcome the drawbacks of the classical ANFIS method, in this study, the new
advanced version of ANFIS, namely, the dynamic evolving neuro-fuzzy inference system (DENFIS) is
proposed [41]. The proposed DENFIS is almost comparable to ANFIS method up to certain extends.
The main idea behind the structure of DENFIS method over the ANFIS method is that the DENFIS
method, after the completion of the learning phase, the fuzzy inference system computes the desired
output based on m fuzzy rules which are dynamically formed after the learning phase. The suitableness
of the DENFIS for effectively predicting the sediment transport is that the DENFIS progresses throughout
an incremental change in the data pattern. In addition, DENFIS could accommodate and learn the new
pattern of the input data that might include a new feature or new classes. In fact, the most advantage of
the DENFIS over the classical ANFIS is that unlimited number of the new fuzzy rule could be generated
and updated during the training session of the model procedure using DENFIS method. From the
modelling process of the DENFIS method, it could be expected that the DENFIS method could be
successfully applied to mimic dynamic pattern and accommodate the complexity experienced in the
sediment transport sequences and has a strong potential to outperform the performance achieved
using the classical ANN and ANFIS methods.

In general, the data used for modelling play essential role on the successfulness of the model
performance. The size of the data and the time increment scale of the data are considered as the
main features in the used data to relatively assure that the proposed model could achieve acceptable
performance. First, the size of the data is important for modelling as it provides the model with the
necessary information to predict the desired output. Therefore, the bigger the size of the data the
more the patterns of the interrelationship between the input parameters and the desired output will be
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trained by the model and, hence, it is expected that the model will achieve acceptable performance.
Second, the time increment scale, and more specifically for sediment transport, there are several time
increment scales for the data that could be used hourly, daily, weekly and monthly. Although the
model could be developed using any time increment scale of the data, the model development depends
only on the availability the time increment scale of the used data. However, the availability of the
data with smaller time increment scale (hourly or daily) is more promising and effective to achieve
satisfactory model performance. This is due to the fact that for the data with small time increment
scale, it is expected that the dynamic and the nonlinearity in the desired output will be insignificant
as well. As a result, it will be relatively affluent for the model to detect such nonlinearity and less
interrelationship and achieve adequate performance.

The aim of this study is to investigate the potential of utilizing the DENFIS model to predict the
sediment load in river streamflow. Real sediment load and river streamflow data at two locations of
China, Guangyuan and Beibei have been utilized to examine and explore the suitability of the proposed
DENFIS model. The main purpose of using two different case studies is to verify the effectiveness
of the proposed DENFIS model. In addition, different scenarios for the modelling input-output
architecture have been adapted in order to achieve the optimal prediction accuracy for the sediment
load. Finally, in order to evaluate the performance between the proposed DENFIS model and the other
machine learning methods, comprehensive comparative analysis has been carried out.

2. Materials and Methods

2.1. Study Basin and Data

For the present study, Jialing River, with a drainage area of 160,000 km2, the second largest
tributary of the Yangtze River and one of the most important flood and sediment sources for the Three
Gorges Reservoir, China was selected as a case study. The Qu River and Fu River are the two main
tributaries of Jialing River basin from left and right banks, respectively. The upstream section of the
basin rivers has very deep valleys with mountainous terrain, whereas the lower section has flat river
beds. The Jialing River elevation varies from 126 m to 5024 m with mean annual rainfall of 935 mm
and mean annual temperature of 16 ◦C.

In the present research work, two stations on Jialing River basin, namely, Guangyuan and Beibei,
were selected for estimation of daily suspended sediment (see Figure 1). These two stations were
selected due to their geographical location in the basin to analyse the overall sediment phenomena in
the basin. It can be observed from Figure 2 that Guangyuan Station is located in the upper section of
the Jialing River whereas Beibei Station is located downstream of the Jialing River basin. The daily
streamflow and sediment data applied in the present study covering the duration of 2007–2015 were
obtained from Hydrological Yearbooks of the People’s Republic of China. Figure 1 illustrates the time
variations plot of daily sediment load of two stations during the study period. The measurement
of the suspended sediment load includes sampling to determine the silt content and measuring the
discharge. The main procedure of sample treatment is to determine the sample volume and the weight
of dry sediment; then proceed to calculate the silt content. The silt content of the treated sample was
calculated by the following formula:

Cs =
Ws

V
× 1000 (1)

where Cs is the observed silt content, kg/m3, g/L; Ws is the weight of dry sediment in a sample, g; V is
the volume of the sample, mL.

After determining the silt content, the suspended sediment load was calculated using the formula:

Ss =
[
Csm1q0 +

1
2
(Csm1 + Csm2)q1 + · · ·+

1
2
(Csmn−1 + Csmn)qn−1 + Csmn qn

]
(2)
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where Qs is the suspended sediment discharge, kg/s; Csm1 , Csm2 , . . . , Csmn are the mean silt contents
of various sampling verticals, kg/m3; q0, q1, . . . , qn are the partial discharges within various pairs of
adjacent sampling verticals, m3/s.
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Figure 1. Time variations plot of daily sediment load of two stations during the study period.

Data for the period from 01/04/2007–12/31/2013 (2554 daily values) were used for training period and
remaining data 01/01/2014–12/31/2015 (730 daily values) were used for testing. The brief statistics of the
used discharge and sediment data are tabulated in Table 1. In the table, xmean, xmin, xmax, Csx, Sx, Cv
(Sx/xmean) are the mean, minimum, maximum, skewness, standard deviation and variation coefficient,
respectively. It is seen from Table 1 that sediment data have highly positive skewed distribution for
the both stations. On the other hand, both sediment data have considerably high xmax/xmean ratios.
All these indicate the complexity of the investigated phenomenon (sediment modelling). The range of
training period covers the range of test period and this implies that the models will not face with the
extrapolation difficulties as also reported in literature [42,43].

Table 1. The statistical parameters of the applied data.

Statistical
Parameters

Guangyuan Station Beibei Station

Whole
Data

Training
Data

Testing
Data

Whole
Data

Training
Data

Testing
Data

Streamflow (m3/s)
xmean 175.1 198.3 93.9 2136 2231 1805
xmin 4.5 4.5 10.8 105 105 281
xmax 6290 6290 1890 34,700 34,700 20,800
Csx 6.84 6.26 7.06 4.32 4.15 4.77
Sx 336 372 126 3230 3427 2388
xmax
xmean

36 32 20 16 16 12
Cv (Sx/xmean) 1.92 1.88 1.34 1.51 1.54 1.32
Sediment (kg/s)
xmean 431.9 541 49.9 971 1139 381
xmin 0.349 0.91 0.349 0.105 0.105 1.69
xmax 49,600 49,600 7660 113,000 113,000 36,600
Csx 12.1 10.7 19.2 10.5 9.73 9.96
Sx 2673 3018 321 5681 6287 2533
xmax
xmean

115 91.7 154 116 99 96
Cv (Sx/xmean) 6.19 5.58 6.44 5.85 5.52 6.65
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2.2. Used Methods

In this section, the basic principles and development of the general structure related to three
proposed machine learning (ML) models used in this article are presented for sediment transport
modelling. In this regard, the three methods used in this work can be divided into two main groups:
(1) methods based on the creation of an ML system relying on fuzzy rules and clustering; (2) those
based on the creation of an ML with respect to piecewise linear regression rules.

Comparing the results of the two fuzzy logic-based methods in the first group provides the
possibility of evaluating the applicability of a dynamic evolving system in improving the prediction of
a complex phenomenon such as sediment transport. Afterwards, an appropriate platform is made
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for challenging fuzzy logic-based and clustering methods with the function of different ML methods,
such as MARS, relying on the comparison of the results of the methods of the first and second groups.

Hence, first, the ANFIS-FCM method which uses (fuzzy c-means clustering) FCM method to
generate the fuzzy inference system (FIS) is introduced and described. Subsequently, the dynamic
evolving neural-fuzzy inference system (DENFIS) model which uses the evolving clustering method
(ECM) for clustering fuzzy rules is described. It is worth noting that this method has been able to
indicate very suitable performance in modelling complex problems [44,45]. Eventually, the MARS
method, which is capable of generating an efficient model with the capability of modelling non-linear
and complex problems using the concepts of linear regression, is described.

Correlation analysis (cross-correlation, autocorrelation and partial autocorrelation) is commonly
used in the literature for determination of maximum lag of input scenario and combination of input
variables. The main deficiency of this method is that it cannot determine the non-linear relationship
between the input and output. Therefore, in the present study, a different strategy was followed.
We tried different input scenarios using each ML method and thus, nonlinear relationships between
input and output were identified by examining the test accuracy of input combinations.

2.2.1. Adaptive Neuro-Fuzzy Inference System with Fuzzy C-Means Clustering (ANFIS-FCM)

Since the advent of ANFIS, many studies have been carried out on modelling and simulation
problems in hydrology and most of these studies indicate much higher capability of this network
than other commonly used methods such as ANN [46–48]. ANFIS is a hybrid system composed
of feed-forward ANN and FIS which basically relies on the crisp inputs and their fuzzification by
membership functions. By applying the inference mechanism and antecedent (premise) part of
IF-THEN rule, and their relationship with the consequent part in the neurons of network, the general
structure of ANFIS in the form of five layers of a network is constructed. The learning algorithm
of ANFIS is a hybrid algorithm, which is usually performed through the least square estimator for
consequent parameters and gradient descent for the section of premise parameters.

Since the function and architecture of ANFIS are noted in many related articles, its function is not
explained here to prevent repetition. For understanding the details of this method, interested readers
are referred to the related papers [49–51]. ANFIS can be made by partitioning the input-output data
to the rules and using the methods such as FCM. In other words, generating ANFIS structure using
other FIS generation methods such as grid partition (ANFIS-GP) and sub-clustering (ANFIS-SC) is also
possible. However, given the confirmation of the suitable function of ANFIS-FCM method in many
hydrological problems, the application of this approach was considered in this paper [50]. In the FCM
method, each piece of data has the possibility of belonging to two or more clusters with regard to a
specified degree. This algorithm is based on minimization of the following objective function (F) which
is the weighted sum of squared errors in clusters:

F =
N∑

i=1

C∑
j=1

um
ij ‖ xi − c j ‖

2, 1 ≤ m < ∞ (3)

where N denotes the number of data samples, c stands for the number of clusters, m is a number
greater than unity, uij represents the degree of membership of xi in the cluster j where xi denotes the ith
measured data, c j is the centre of the jth cluster, and ‖ ‖ is the norm distance between the ith measured
data and the jth cluster centre.

‖ xi − c j ‖ =

(∑∣∣∣xi − c j
∣∣∣2)1/2

q1/2
(4)
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where q explains the dimension of problem. Values for the degree of membership and cluster centre
can be obtained considering the following equations:

ui j =
1∑C

k=1

(
‖xi−c j‖

‖xi−c j‖

)1/(m−1)
(5)

c j =

∑N
i=1 ui j

mxi∑N
i=1 ui jm

(6)

where k stands for an iteration step. Fuzzy partitioning works based on an optimization of the objective
function in Equation (3) through an iterative process and by updating membership uij and cluster
centres c j. The iteration process continues as long as reaching to a predetermined threshold value:

maxi j
(
ui j

k+1
− ui j

k
)
< ε (7)

DENFIS, which was first presented by Kasabov and Song [41], is a FIS model that uses clustering
procedure for online and offline learning. In this method, first, FIS is generated given the clustering
of the data and with respect to evolving clustering method (ECM). ECM can be considered as a
powerful and efficient algorithm in handling highly noisy data. This algorithm is based on maximum
distance-based clustering and is used for partitioning the input space in DENFIS to determine the
fuzzy rules. Generally, depending on the problem conditions, this algorithm is designed for two modes
of online and offline learning systems.

In the online model of DENFIS, the linear function is generated in the consequent parts and is
updated through the least square estimator learning process. Additionally, there is the possibility of
updating fuzzy rules as new training data in the system. Additionally, in the DENFIS offline, the aspect
related to the dynamic evolving can be replaced with a complex learning algorithm in order to achieve
high precision [41,52].

At the beginning of the online DENFIS learning process, the number of M clusters is generated by
executing the ECM on the input vector of the initial data (n).

Then, for each cluster, the closest points are determined. The distance determination is generally
defined with respect to general Euclidean distance. Therefore, assuming the consideration of the centre
of a cluster (c) and position of example point (x), the distance between them (Dij) can be calculated
using Equation (4). The general trend of determining the point for each cluster is in accordance with
the concept of the maximum distance between each point and the cluster centre, and its comparison
with a threshold value (d) [53].

If the calculated distance is less than the threshold, then no cluster will be created or updated and
the existing cluster will be known as classified, otherwise the algorithm will proceed to the next step
for finding decision parameters to create/update new cluster(s). Afterwards, the summation value
(Sij) for each cluster distance (Dij) and the cluster’s radius (Rj) is calculated. Having the summation
values, the cluster with the minimum amount of Sij (Sa) is identified as the Ca cluster. Considering the
Ca cluster, if Sa > 2.d (d = the given threshold), a new cluster will be formed and the algorithm will
return to its initial step. Otherwise, the Ca cluster will be updated with its new radius equal to Sa/2.
The flowchart of the ECM algorithm is shown in Figure 3.
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In the next step, the fuzzy rules are separately explained for each cluster. It should be noted that
in both online and offline DENFIS modes, the Takagi-Sugeno fuzzy inference system (TS-FIS) is used
for the model establishment. In other words, after deriving the clusters, TS-FIS is generated for each
of the clusters. Then, the generated fuzzy rules are optimized using the back-propagation method.
Therefore, for each simulation or prediction stage, the most important rules are dynamically selected.
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Accordingly, assuming m fuzzy rules with two membership functions, the rules can be written
as follows:

IF (x1 is R11 AND x2 is R12) THEN ( f1 = (α1x + β1y + γ1)) . . . . . . . . . . . . .
IF (x1 is Rm1 AND x2 is Rm2) THEN ( fm = (αmx + βmy + γm))

(8)

where R denotes the fuzzy sets with membership functions, in the antecedent parts of the TS-FIS. In the
consequent parts of the TS-FIS, the crisp function (f ) is employed to determine the consequent variable.
Here, f is a polynomial function in the input variables x and y with linear coefficients of α, β and γ as
the constant. It should be noted that in both online and offline DENFIS modes, by default, all fuzzy
membership functions are considered triangular.

2.2.2. Multivariate Adaptive Regression Splines (MARS)

As proposed by Friedman in 1991 [54], MARS is known as a non-parametric modelling method,
which is capable of revealing non-linear patterns hidden in complex and high-dimensional data.
The principles of the MARS function lie in establishing a relationship between input and output data
through a series of coefficients and basic functions with respect to the regression technique [55,56].
In contrast to many ML methods, in the MARS method, only that group of input data which are
correlated with the output data is selected to generate a model. Hence, MARS is capable of generating
a simple, flexible, and robust model, which is also optimal in terms of computational cost. In this
model, the available data are separated to a different number of regions with respect to knots, so that
each of the regions has its own regression form. In other words, the basis of the research method in
MARS is to generate the piecewise linear basis functions. The general shape of basis function (BF) can
be expressed as follows:

[max(0, x− k)] OR [max(0, k− x)] (9)

where x refers to the predictor variable and k explains threshold value in knots. The general formulation
of MARS with the combination of BFs can be expressed as follows:

y = f (x) + error
f (x) = β0 + βmBFm(x)

(10)

where y is a dependent variable that is estimated by function f(x) and are the tuning coefficients of
the function. The MARS modelling is based on both forward and backward phases. The BFs are
generated in the forward stepwise phase. After generating basis functions, the generalized cross
validation criterion (GCV) is applied in order to determine the most appropriate node points and BFs.
To put it simply, in the backward phase of the model, the number of basis functions is reduced and
this continues until the lowest value of GCV is achieved. In this study, MATLAB software is used for
application of these models [57–59]. In this study, genfis3 command which is included under Fuzzy
Logic Toolbox in MATLAB was used for ANFIS-FCM simulation. For the DENFIS model simulation,
a MATLAB code provided by the Kasabov and Song [41] was used. For MARS model, a MATLAB
toolbox, ARESLab, was used. Detailed information about the MARS algorithm is given in [54].

2.2.3. The Evaluation Metrics Used for Model Comparison

The models’ performances were assessed using the following statistics:

MAE =
1
N

N∑
i=1

|Sio−Sic| (11)

RMSE =

√√√
1
N

N∑
i=1

((Sio) − (Sic))
2 (12)
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NSE = 1−

∑N
t=1(Sio − Sic)

2∑N
t=1

(
Sic − Sic

)2 −∞ ≤ NSE ≤ 1 (13)

where MAE is the mean absolute error, RMSE is the root mean square error, NSE is the Nash–Sutcliffe
efficiency, N refers to data quantity, Sio is the observed sediment, Sic is the calculated sediment and Sic
is the average calculated sediment.

3. Results and Discussion

In the presented study, the ability of the dynamic evolving neural fuzzy inference system was
investigated in modelling the suspended sediment load and its exactness was evaluated by comparing
with adaptive neural fuzzy inference system with fuzzy c means clustering and multivariate adaptive
regression splines. For each method, several input scenarios, including previous discharge and
sediment loads (see Table 2), were applied. First, previous discharge values were used as inputs.
Previous discharge values were added to the model input one by one until a satisfactory accuracy in
the test stage was obtained. After obtaining optimal discharge inputs, previous sediment values were
merged with the optimal discharge input one by one until a satisfactory accuracy in the test stage
was obtained.

Table 2. The training and test statistics of the DENFIS, ANFIS-FCM and MARS models using different
combinations of sediment and streamflow for daily suspended sediment prediction, Guangyuan Station.

Models Scenario Model Inputs Model
Parameters

Training Period Test Period

RMSE MAE NSE RMSE MAE NSE

S1 Qt, 0.05 1968 356 0.575 217 37.9 0.541
S2 Qt, Qt−1 0.14 1797 366 0.646 164 35.7 0.739
S3 Qt, Qt−1, Qt−2 0.11 2257 409 0.515 146 34.1 0.793

DENFIS S4 Qt, Qt−1, Qt−2, Qt−3 0.13 2167 418 0.832 134 32.2 0.861
S5 Qt, Qt−1, Qt−2, Qt−3, St−1 0.12 1986 353 0.567 168 22.4 0.726
S6 Qt, Qt−1, Qt−2, Qt−3, St−1, St−2 0.11 2137 403 0.499 187 23.6 0.661
S7 Qt, Qt−1, Qt−2, Qt−3, St−1, St−2, St−3 0.11 2340 435 0.399 228 29.4 0.495

S1 Qt, 5,100 1828 373 0.633 294 69.4 0.164
S2 Qt, Qt−1 6,10 1787 367 0.650 270 55.9 0.293

ANFIS-FCM S3 Qt, Qt−1, Qt−2 4,100 1803 372 0.643 295 59.9 0.157
S4 Qt, Qt−1, St−1 8,90 1322 243 0.808 318 46.5 0.020
S5 Qt, Qt−1, St−1, St−2 8,70 1266 228 0.824 199 33.4 0.826
S6 Qt, Qt−1, St−1, St−2, St−3 8,80 1807 363 0.642 258 52.1 0.353

S1 Qt, - 1760 372 0.660 327 65.0 −0.036
S2 Qt, Qt−1 - 1758 376 0.661 368 80.3 −0.316

MARS S3 Qt, St−1 - 1578 337 0.727 239 64.5 0.446
S4 Qt, St−1, St−2 - 1614 343 0.714 195 62.4 0.631
S5 Qt, St−1, St−2, St−3 - 1595 343 0.721 254 60.9 0.372

Table 2 sums up the training and test accuracies of the DENFIS, ANFIS-FCM and MARS methods
with respect to various input scenarios for Guangyuan Station. As an example, the structure of the
DENFIS-based model based on scenario 5 is schematically shown in Figure 4. Qt-1 and St-1 refer the
streamflow and sediment of one previous day and vice versa. Optimal model parameters are also
provided in the fourth column of the table for the DENFIS and ANFIS-FCM-based models. In the MARS
method, there is no control parameter. For the DENFIS-based models, various distance threshold
values were tried (between 0 and 1). For the ANFIS-FCM-based models, various numbers of clusters
and iterations were used. In Table 2, for example, 5100 indicate five clusters indicating five Gaussian
membership functions for each input and iteration number.
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Figure 4. Schematic structure of the modelling system for the DENFIS-based model for scenario 5 (S5).

As observed from the table where overall performances are indicated, each method has different
accuracies for different input scenarios and their best models have different inputs. The best
DENFIS-based model was developed utilizing input scenario 4 (S4) involving Qt, Qt-1, Qt-2, Qt-3
inputs while the best ANFIS-FCM-based and MARS-based models have the S5 (Qt, Qt-1, St-1, St-2) and
S4 (Qt, St-1, St-2) inputs. The reason of this might be the fact that each method has different learning
mechanisms and/or assumptions and system behaviour with respect to different input scenarios is
also different to each other. Among the employed methods, DENFIS has the highest overall accuracy
in the test stage. It is notable that ANFIS-FCM and MARS have similar accuracies in modelling the
suspended sediment at Guangyuan Station. The other important issue which should be mentioned
here are the input scenarios used for the best models. The best DENFIS-based model uses only
previous streamflow data as input and this practically very important because measuring sediment is
very difficult while the other two methods-based models use both streamflow and sediment inputs.
The DENFIS-based model with S5 has improved the RMSE accuracy of ANFIS-FCM and MARS by
33% and 31%, respectively. Time variation graphs of the observed and estimated suspended sediment
by the best DENFIS, ANFIS-FCM and MARS in the test period of Guangyuan Station are illustrated
in Figure 5. This figure also includes two detailed graphs derived from the main graph. In the first
graph, the DENFIS underestimates the observed peak while the ANFIS-FCM and MARS overestimate.
However, the estimates of the DENFIS-based model are closer to the observed one compared to the
other models. In the second graph, it is observed that all the models overestimate the observed peak
and ANFIS-FCM and MARS are closer compared to DENFIS. Figure 6 gives the scatter graphs of the
best model of each method. It is clear that the DENFIS-based model has the least scattered estimates
with the highest R2 value.
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Figure 5. Time variation graphs of the observed and estimated suspended sediment by DENFIS,
ANFIS-FCM and MARS in the test period at Guangyuan Station.
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and MARS in the test period at Guangyuan Station.
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The overall suspended sediment estimation accuracies of the three applied methods are compared
in Table 3 for Beibei Station. In contrast to previous station, the best DENFIS-based model was obtained
from the 6th scenario (Qt, Qt-1, Qt-2, Qt-3, St-1, St-2) while the S3 scenarios (Qt, Qt-1, Qt-2, Qt-3 and
Qt, St-1) provided the best accuracies for the best ANFIS-FCM and MARS-based models. It should
be noted that there is a slight difference between S1 and S3 scenarios for the ANFIS-FCM model.
In addition, the MAE value of the S1 scenario is lower than that of the S3 scenario. For this reason,
previous sediment values were merged with S1. At this station DENFIS also outperformed the other
two methods with respect to RMSE, MAE and NSE criteria. MARS showed the worst accuracy in
estimating suspended sediment of Beibei Station. The DENFIS-based model with S6 input improved
the RMSE (MAE) accuracy of the best ANFIS-FCM and MARS-based models by 32% (48%) and 36%
(37%), respectively. Figure 7 compares the observed and estimated suspended sediment by the best
DENFIS, ANFIS-FCM and MARS in the test period of Beibei Station in the form of hydrograph. It is
apparent from the detail graphs that the DENFIS is able to follow the observed sediment values
closer than those of the other two methods. The scatter graphs given in Figure 8 also confirm that
the DENFIS-based model is superior over the ANFIS-FCM and MARS-based models and it has less
scattered estimates with higher R2 than those of the others.

Table 3. The training and test statistics of the DENFIS, ANFIS-FCM and MARS models using different
combinations of sediment and streamflow for daily suspended sediment prediction, Beibei Station.

Models Scenario Model Inputs Model
Parameters Training Period Test Period

RMSE MAE NSE RMSE MAE NSE

S1 Qt, 0.01 4014 663 0.593 1546 229 0.628
S2 Qt, Qt−1 0.17 3779 656 0.639 1417 233 0.687
S3 Qt, Qt−1, Qt−2 0.02 4158 711 0.563 1177 204 0.784

DENFIS S4 Qt, Qt−1, Qt−2, Qt−3 0.06 4302 732 0.532 1024 169 0.837
S5 Qt, Qt−1, Qt−2, Qt−3, St−1 0.15 4325 753 0.527 1153 184 0.793
S6 Qt, Qt−1, Qt−2, Qt−3, St−1, St−2 0.05 3936 663 0.609 797 134 0.901
S7 Qt, Qt−1, Qt−2, Qt−3, St−1, St−2, St−3 0.06 4237 752 0.547 884 149 0.878

S1 Qt, 8,20 3802 656 0.635 1214 228 0.770
S2 Qt, Qt−1 8,10 3707 663 0.653 1235 224 0.762

ANFIS-FCM S3 Qt, Qt−1, Qt−2 4,80 3742 657 0.646 1171 257 0.786
S4 Qt, Qt−1, Qt−2, Qt−3 5,30 4084 801 0.579 1864 328 0.459
S5 Qt, St−1 8,20 3685 620 0.657 1312 215 0.732
S6 Qt, St−1, St−2 6,60 3332 606 0.720 1616 229 0.784
S7 Qt, St−1, St−2, St−3 5,50 4410 871 0.509 2772 407 −0.197

S1 Qt, - 3646 631 0.664 1423 284 0.685
S2 Qt, Qt−1 - 3596 629 0.673 1509 271 0.645

MARS S3 Qt, St−1 - 3089 518 0.759 1252 213 0.756
S4 Qt, St−1, St−2 - 2945 523 0.781 1362 229 0.711
S5 Qt, St−1, St−2, St−3 - 2905 520 0.787 1397 234 0.696

The peak estimation accuracies of the three employed methods are compared in Tables 4 and 5 for
the Guangyuan and Beibei stations, respectively. It is apparent from Table 4 that the DENFIS-based
model generally has better accuracy in catching peak sediment values compared to ANFIS-FCM and
MARS-based models (see the absolute total of relative error). Detailed graphs (Figure 4) correspond
to the 2nd and 5th peaks given in this table. According to Table 4, for example, DENFIS computed
the observed sediment peak, 1690 kg/s as 733.37 kg/s with an underestimation of 56.6% while the
ANFIS-FCM and MARS resulted in 1191.20 kg/s and 946.26 kg/s with underestimations of 29.5% and
44%, respectively. The DENFIS-based model with an absolute total error of 224 has superior accuracy in
estimating peak sediments of Beibei Station compared to the ANFIS-FCM (260) and MARS-based (317)
DENFIS-based model. Detailed graphs (Figure 7) correspond to the 3rd and 7th peaks given in Table 5.
In both stations, MARS has the worst accuracy. It should be noted here that the DENFIS-based models
can simulate peak sediment loads more successfully on average. For some storm events, ANFIS-FCM
and MARS-based models perform superior to the DENFIS-based model in estimating peak sediment
loads (see the 1st and 5th peaks of Guangyuan Station and the 4th and 7th peaks of Beibei Station). It is
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clear from Tables 2–5 that the accuracies of the models are worse for Guangyuan Station compared to
Beibei. This might be due to the fact that testing data of first station have more skewed distribution
and xmax

xmean
ratio compared to 2nd one.
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Figure 7. Time variation graphs of the observed and estimated suspended sediment by DENFIS, ANFIS-FCM and MARS in the test period at Beibei Station. 
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Figure 7. Time variation graphs of the observed and estimated suspended sediment by DENFIS,
ANFIS-FCM and MARS in the test period at Beibei Station.
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Figure 8. Time scatterplots of the observed and estimated suspended sediment by DENFIS, ANFIS-FCM
and MARS in the test period at Beibei Station.
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Table 4. The comparison of DENFIS, ANFIS-FCM and MARS peak-estimates for the test period,
Guangyuan Station.

Date
Peaks >
900 kg/s

Relative Error

DENFIS
kg/s

ANFIS-FCM
kg/s

MARS
kg/s

DENFIS
%

ANFIS-FCM
% MARS %

7 July 2014 1690 733.37 1191.2 946.26 −56.6 −29.5 −44.0
21 July 2014 1850 1376.5 2970.8 3977.1 −25.6 60.6 115.0

11 September 2014 1120 590.73 1764.6 1600.9 −47.3 57.6 42.9
12 September 2014 917 511.98 1573.3 1839.7 −44.2 71.6 100.6

28 June 2015 7660 10,309 8704.3 8585.3 34.6 13.6 12.1
29 June 2015 1920 2302.3 3756.8 4758.9 19.9 95.7 147.9

Total (Absolute) = 228 329 462

Table 5. The comparison of DENFIS, ANFIS-FCM and MARS peak-estimates for the test period,
Beibei Station.

Date
Peaks >
11,000
kg/s

Relative Error

DENFIS
kg/s

ANFIS-FCM
kg/s

MARS
kg/s

DENFIS
%

ANFIS-FCM
%

MARS %

12 September 2014 21,900 13,021 19,377 10,258 −40.5 −11.5 −53.2
13 September 2014 21,300 18,516 21,817 14,659 −13.1 2.4 −31.2
14 September 2014 36,600 26,760 25,166 31,414 −26.9 −31.2 −14.2
15 September 2014 26,300 33,871 29,084 31,615 28.8 10.6 20.2
16 September 2014 11,100 11,219 20,040 18,622 1.1 80.5 67.8

26 June 2015 16,800 11,704 18,896 9720.9 −30.3 12.5 −42.1
30 June 2015 29,600 32,742 28,895 28,031 10.6 −2.4 −5.3
1 July 2015 11,400 19,727 23,768 20,847 73.1 108.5 82.9

Total (Absolute) = 224 260 317

4. Conclusions

The ability of the dynamic evolving neural fuzzy inference system was investigated in modelling the
suspended sediment load employing several input scenarios including previous values of streamflow
and sediment. The results were compared with the adaptive neural fuzzy inference system with fuzzy
c means clustering and multivariate adaptive regression splines and the following conclusions were
reached after the application:

Three methods were applied the data of two stations—Guangyuan and Beibei—and DENFIS-based
models provided the best performance in both stations while the worst estimates belonged to
MARS-based models.

It was concluded that the DENFIS-based models can accurately model the suspended sediment
load based only on previous streamflow data.

By applying DENFIS-based models, the prediction accuracy of RMSE, MAE and NSE of the
ANFIS-FCM-based models were improved by 33%, 4% and 4%, respectively, for Guangyuan Station
while the corresponding values were 32%, 48% and 15% for Beibei Station, respectively. Similarly, in the
case of MARS-based models, the application of DENFIS-based models improved the prediction
accuracy of RMSE, MAE and NSE by 31%, 48% and 36%, respectively, for Guangyuan Station while
the corresponding values were 36%, 37% and 19% for the Beibei Station.

Overall, the DENFIS-based models were found to be more successful in simulating the peak sediment
values on average compared to the other two models. In some storm events, however, the ANFIS-FCM
and MARS-based models provided better accuracy compared the DENFIS-based models.

The DENFIS method can be thought as a better alternative to ANFIS-FCM and MARS in estimating
suspended sediment in the study region. This method may be further explored by using more data
from different regions of the world to reach more robust conclusions.
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