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Abstract: In this research, a novel enhanced gravitational search algorithm (EGSA) is proposed to
resolve the multi-objective optimization model, considering the power generation of a hydropower
enterprise and the peak operation requirement of a power system. In the proposed method,
the standard gravity search algorithm (GSA) was chosen as the fundamental execution framework;
the opposition learning strategy was adopted to increase the convergence speed of the swarm;
the mutation search strategy was chosen to enhance the individual diversity; the elastic-ball
modification strategy was used to promote the solution feasibility. Additionally, a practical constraint
handling technique was introduced to improve the quality of the obtained agents, while the technique
for order preference by similarity to an ideal solution method (TOPSIS) was used for the multi-objective
decision. The numerical tests of twelve benchmark functions showed that the EGSA method could
produce better results than several existing evolutionary algorithms. Then, the hydropower system
located on the Wu River of China was chosen to test the engineering practicality of the proposed
method. The results showed that the EGSA method could obtain satisfying scheduling schemes
in different cases. Hence, an effective optimization method was provided for the multi-objective
operation of hydropower system.

Keywords: cascade hydropower reservoirs; multi-objective optimization; TOPSIS; gravitational
search algorithm; opposition learning; partial mutation; elastic-ball modification

1. Introduction

With the merits of low pollution emission and high work efficiency, hydropower is seen as
one of the most important renewable energy sources and usually shoulders many different kinds of
management requirements, in practice [1–3]. For hydropower enterprises, it is preferred to make full
use of the water resources to obtain the maximum economic benefit [4]; for power systems, the flexible
hydropower generators are often asked to respond to the peak loads and smooth the energy demand
curves [5]. Under such a background, the operation optimization of cascade hydropower reservoirs
balancing a power generation and peak operation has become one of the most important tasks in both
water resource systems and modern power systems [6]. However, as far as we know, there are few
reports that have addressed this engineering problem, and therefore, the goal of this research was to
refill this huge gap between theoretical research and engineering requirement.
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From a mathematical point of view, the target problem was a typical multi-objective constrained
optimization problem with a set of complex equality or inequality constraints [7], and many
classical methods have been successfully developed by scholars, during the past decades [8–13],
like linear programming [14], quadratic programming [15], dynamic programming [16–18], Lagrange
relaxation, and network optimization [19–21]. However, the hydropower operation problem is usually
modeled with nonlinear characteristic curves, physical constraints, or objective functions [22–24].
The above-mentioned traditional methods might fail to address the complexity due to various defects,
like dimensionality problem [25], high computational burden [26], duality gap [27], or parameter
tuning [28–30]. In recent years, with the booming development of computer technology, many
evolutionary algorithms have been proposed to resolve these kind of problems [31–33], like genetic
algorithm (GA) [34], differential evolution (DE) [35,36], particle swarm algorithm (PSO) [37–40],
cuckoo search (CS) [41], Covariance Matrix Adaptation Evolution Strategy with a Directed Target
to Best Perturbation (CMA-ES-DTBP) [42], and a clustered adaptive teaching–learning-based
optimization (CATLBO) [43]. Compared with traditional methods, the evolutionary algorithms
can produce satisfying solutions in most cases, regardless of the problem features (like continuity or
nonconvexity) [44–46]. However, due to the premature convergence, evolutionary algorithms often fall
into local optima, which have limited their widespread applications in practical engineering [47–50].
Hence, it is necessary to find some effective modified strategies to enhance the performances of the
evolutionary algorithms in the hydropower operation problems.

Gravitational search algorithm (GSA) is a famous evolutionary algorithm based on the laws
of gravity and mass interactions in Newtonian mechanics [51–53]. Although GSA outperforms the
standard PSO and GA methods in many problems, certain defects (like exploration–exploitation
imbalance and local convergence) still exist. For improving the performance of the standard GSA
method, this study proposes an enhanced GSA algorithm (EGSA) where three modified strategies
(opposition learning strategy, mutation search strategy, and elastic-ball modification strategy) are
integrated to alleviate the premature convergence problem. Several famous test functions are used to
verify the feasibility of the developed method in solving the global optimization problems, and the
results demonstrate that the modified strategies could effectively enhance the convergence speed
and the global search ability of the population at the same time. Then, two specific strategies
were embedded into the EGSA method to help address the multi-objective operation problem of
a hydropower system—(i) the practical constraint handling strategy for solution feasibility and (ii) the
Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) for multi-objective decision.
Finally, the EGSA method was applied to address the operation optimization of cascade hydropower
system in the Wu River of China. The simulations showed that the proposed method could produce
better scheduling schemes in different application scenarios.

The rest of this paper is organized as below—the EGSA method is presented in Section 2; several
benchmark functions are used to verify the performance of the EGSA method in Section 3; Section 4
gives the mathematical model for the multi-objective operation of cascade hydropower reservoirs;
Section 5 compares the results of different methods; and the conclusions are drawn in the end.

2. Enhanced Gravitational Search Algorithm (EGSA)

2.1. Gravitational Search Algorithm (GSA)

GSA is a novel swarm-based evolutionary algorithm inspired by the universal gravitation and
mass interactions in classical Newton’s Mechanics [54]. In GSA, the potential solution for the target
optimization problems is considered to be an agent with a certain quality, and all the agents are
attracted by other agents via the so-called gravity force, which can effectively help the swarm share
the acquired beneficial information about the surrounding [55]. Figure 1 draws the sketch map of the
GSA method. It can be seen that during the evolutionary process, the gravity force of the two agents is
directly and inversely proportional to their qualities and distances, respectively; while the agents with
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better performances usually have larger attraction forces and slower velocity than those agents with
smaller quality. By these means, all agents gradually finish the transition from the global exploration
to local exploitation in the decision space, which help the swarm obtain the global optima.

Water 2019, 11, 2040 3 of 28 

Water 2019, 11, x; doi: FOR PEER REVIEW www.mdpi.com/journal/water 

with smaller quality. By these means, all agents gradually finish the transition from the global 
exploration to local exploitation in the decision space, which help the swarm obtain the global optima.  

 
Figure 1. Sketch map of the gravitational search algorithm (GSA) method for a two-variable problem. 

Without a loss of generality, it is assumed that there are N agents in the evolutionary swarm to 
determine the optimal solution for the minimization–optimization problem with D variables, and 
then the position of the ith agent at the kth iteration ( ( )iX k  for short) can be expressed as follows: 

1( ) ( ( ), , ( ), , ( ))d D
i i i iX k x k x k x k=    (1) 

where ( )d
ix k  is the position of the ith agent in the dth dimension at the kth iteration.  

In the evolutionary process, the gravitational force of the nth agent acting on the ith agent in the 
dth dimension at the kth iteration can be expressed as follows: 

( ) ( )( ) ( ) ( ( ) ( ))
( )

d d di n
in i n

in

M k M kF k G k x k x k
R k ϕ

×
= −

+  
(2) 

where ( )iM k and ( )nM k  are the gravitational masses of the ith agent and the nth agent at the kth 
iteration, respectively. 2( )=|| ( ), ( )||in i nR k X k X k  is the Euclidian distance between the ith agent and the 
nth agent at the kth iteration.ϕ  is a small constant used to prevent the denominator being 0. ( )G k is 
the gravitational constant of the swarm at the kth iteration, which is dynamically updated by: 

0( )= exp( )kG k G
k

α× −
 

(3) 

where 0G  is the initial gravitational constant. α  is the attenuation coefficient. k  is the maximum 
number of iterations. 

After obtaining the latest positions of all agents, the mass of the ith agent at the kth iteration 
( ( )im k  for short) can be expressed as follows: 

1

( ) ( )( )
( ) ( )

( ) ( ) ( )

i
i

N

i i i
i

fit k worst km k
best k worst k

M k m k m k
=

− = −

 =


 

(4) 
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Figure 1. Sketch map of the gravitational search algorithm (GSA) method for a two-variable problem.

Without a loss of generality, it is assumed that there are N agents in the evolutionary swarm to
determine the optimal solution for the minimization–optimization problem with D variables, and then
the position of the ith agent at the kth iteration (Xi(k) for short) can be expressed as follows:

Xi(k) = (x1
i (k), · · · , xd

i (k), · · · , xD
i (k)) (1)

where xd
i (k) is the position of the ith agent in the dth dimension at the kth iteration.

In the evolutionary process, the gravitational force of the nth agent acting on the ith agent in the
dth dimension at the kth iteration can be expressed as follows:

Fd
in(k) = G(k)

Mi(k) ×Mn(k)
Rin(k) + ϕ

(xd
i (k) − xd

n(k)) (2)

where Mi(k) and Mn(k) are the gravitational masses of the ith agent and the nth agent at the kth
iteration, respectively. Rin(k)=||Xi(k), Xn(k) ||2 is the Euclidian distance between the ith agent and the
nth agent at the kth iteration. ϕ is a small constant used to prevent the denominator being 0. G(k) is
the gravitational constant of the swarm at the kth iteration, which is dynamically updated by:

G(k) = G0 × exp(−α
k

k
) (3)

where G0 is the initial gravitational constant. α is the attenuation coefficient. k is the maximum number
of iterations.

After obtaining the latest positions of all agents, the mass of the ith agent at the kth iteration
(mi(k) for short) can be expressed as follows:

mi(k) =
f iti(k)−worst(k)
best(k)−worst(k)

Mi(k) = mi(k)
/

N∑
i=1

mi(k)
(4)

where f iti(k) is the fitness of the ith agent at the kth iteration. best(k) and worst(k) are the best and
worst fitness values of the swarm at the kth iteration, respectively.
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In order to reduce the negative influence of agents that are not conducive to the evolution of the
swarm, the resultant force of the ith agent in the dth dimension at the kth iteration (Fd

i (k) for short) is
obtained by:

Fd
i (k) =

Kbest∑
j=1, j,i

rand jFd
ij(k) (5)

where randj is the random number uniformly distributed in the range of [0,1]. Kbest is the number of
agents with better fitness values.

Based on the motion law in the classical Newtonian mechanics, the acceleration of the ith agent in
the dth dimension at the kth iteration (accd

i (k) for short) can be expressed as follows:

accd
i (k) =

Fd
i (k)

Mi(k)
(6)

The velocity and position values of the ith agent in the dth dimension at the k+1th iteration
(xd

i (k + 1) and vd
i (k + 1) for short) can be updated as below:{

vd
i (k + 1) = randi × vd

i (k) + accd
i (k)

xd
i (k + 1) = xd

i (k) + vd
i (k + 1)

(7)

where randi is the random number uniformly distributed in the range of [0,1].

2.2. Opposition Learning Strategy to Improve the Convergence Speed of the Swarm

In practice, a large number of situations can be expressed by the opposition concept, like west–east,
south–north, up–down, and left–right. Inspired by this case, opposition learning was proposed for
intelligent computing. For the point x ∈ [a, b], the corresponding opposite point (x1 for short) of x could
be easily obtained by x1 = a + b− x. Based on previous references, when the optimal objective function
value was unknown, the opposite directions of the current solution could increase the probability
of finding better solutions [56–58]. The opposition learning strategy could enlarge the search region
in the three-dimensional space. Thus, the modified opposition learning strategy based on the social
learning mechanism in PSO is proposed to improve the convergence speed of the swarm, which could
be expressed as below: {

red
i (k) = Ubd + Lbd

− ad
i (k)

ad
i (k) = c1 × xd

i (k) − c2 × rand× [gBestd(k) − xd
i (k)]

(8)

where red
i (k) is the ith opposite agent in the dth dimension at the kth iteration. Ubd and Lbd are the

upper and lower limits of the dth dimension. c1 and c2 are two learning factors. rand is the random
number uniformly distributed in the range of [0,1]. gBestd(k) is the dth dimension of the global optimal
agent at the kth iteration.

2.3. Partial Mutation Strategy to Enhance the Individual Diversity

Generally, most agents at a later evolutionary stage are often attracted by the heavier individuals,
leading to the loss of swarm diversity [47]. As a result, the GSA method easily falls into the local
optima, and it is necessary to find some ways to help the agents search in different regions of the
problem space. In some evolutionary algorithms represented by DE and GA, the elitism strategy is
often employed to conserve better solutions, while the mutation strategy is used to promote the swarm
diversity [59]. Inspired by this, a new partial mutation strategy is introduced to achieve the above goal.
Specifically, the agents produced by the opposition learning strategy are first merged with the original
parent swarm to form the offspring swarm υ; second, the first cbest agents in υ directly enter the next
cycle, while the left agents in υ are used to generate the mutated individuals using Equation (9). In this
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way, some elite agents are maintained, while the search directions of other agents are promoted, which
effectively enhance the individual diversity.

Bd
i (k) = pBestd

λ(k) + r1 × (pBestd
i (k) − gBestd(k)) (9)

where Bd
i (k) is the position of the ith mutated agent in the dth dimension at the kth iteration. pBestd

i (k)
is the best-known position of the ith agent in the dth dimension at the kth iteration. λ is the number
randomly selected from the index set {1, 2, · · · , N}. r1 is the random number uniformly distributed in
the range of [−0.5, 0.5].

2.4. Elastic-Ball Modification Strategy to Promote Solution Feasibility

During the random search process of the algorithm, the newly-obtained agent falls out of the
feasible space with a certain probability. In the conventional method, the infeasible agents are often
forced to be equal to the boundary value. As a result, the number of the agents with boundary
values increase gradually with the increasing number of iterations, which might produce a certain
negative influence on the evolution of the swarm. To alleviate this problem, an improved elastic-ball
strategy was proposed to modify the infeasible agents [60]. Specifically, the infeasible agents were first
modified to the feasible position using Equations (10) and (11), and if the newly-obtained agent was
still infeasible, the corresponding position would be randomly initialized in the feasible space.

xd
i (k) =

 Ubd
− r2 × ∆d

i (k) if
(
xd

i (k) > Ubd
)

Lbd + r2 × ∆d
i (k) if

(
xd

i (k) < Lbd
) (10)

∆d
i (k) =

 xd
i (k) −Ubd if

(
xd

i (k) > Ubd
)

Lbd
− xd

i (k) if
(
xd

i (k) < Lbd
) (11)

where r2 is the random number uniformly distributed in the range of [0,1].

2.5. Execution Procedure of the Proposed EGSA Method

In the EGSA method, three modified strategies (the opposition learning strategy, mutation search
strategy, and the elastic-ball modification strategy) were introduced to enhance the global search
ability of the standard GSA method in the complex nonlinear constrained optimization problems.
Specially, the GSA module could well guarantee the search performance of the swarm; the opposition
learning strategy could increase social interaction ability of the agents by exploring the reverse
areas; the mutation search strategy was used to balance the convergence speed and the swarm
diversity; while the elastic-ball modification strategy could effectively guarantee the feasibility of the
newly-generated agents. By combining the advantages of the above strategies, the EGSA method
had a stronger ability to enhance the local exploration and global search, in comparison with the
conventional GSA method, which would help alleviate the premature convergence problem. Then, the
brief execution procedure of the EGSA method was summarized as below:

Step 1: Set the values of the computational parameters and then randomly generate the initial swarm
in the problem space.
Step 2: Calculate the fitness values of all the agents in the current population, and then update the
personal best-known of each agent and the global best-known agent of the swarm.
Step 3: Calculate the correlated variables (like the gravitational coefficient, mass, and acceleration) to
update the velocity and position values of all the agents.
Step 4: Execute the opposition learning strategy to increase the convergence speed of the swarm.
Step 5: Execute the partial mutation search strategy to enhance the individual diversity.
Step 6: Execute the elastic-ball modification strategy to promote the solution feasibility.
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Step 7: Repeat Step 2–6 until the stopping criterion is met, and then the global optimal position is
regarded as the final solution of the optimization problem.

3. Numerical Experiments to Verify the Performance of the EGSA Method

3.1. Benchmark Functions

To verify the performance of the EGSA algorithm, 12 classic benchmark functions are chosen for
numerical experiments. Table 1 shows the details of the selected functions, where D is the number
of variables; range is the search scope for each variable; and f min is the optimal objective value in
theory. For all test functions, the optimal value of F8, −418.9 × D, varies with the dimension; while the
optimal values for other functions are 0. Meanwhile, the benchmark functions are divided into two
categories—unimodal functions (F1–F8) with one global optimum, and multimodal functions (F9–F12)
with multiple local optimums. The unimodal functions are used to test the convergence speed of the
algorithm, while the multimodal function can test the ability of jumping out of the local optimum,
which can fully verify the performance of the evolutionary methods.

Table 1. Detailed information of the twelve benchmark functions.

Function D Range f min

F1(x) =
n∑

i=1
xi

2 30 [−100,100] 0

F2(x) =
n∑

i=1
|xi|+

n∏
i=1
|xi| 30 [−10,10] 0

F3(x) =
n∑

i=1
(

i∑
j=1

x j)
2 30 [−100,100] 0

F4(x) = max{|xi|, 1 ≤ i ≤ n} 30 [−100,100] 0

F5(x) =
n−1∑
i=1

[100(xi+1 − x2
i )

2
+ (xi − 1)2] 30 [−30,30] 0

F6(x) =
n∑

i=1
(xi + 0.5)2 30 [−100,100] 0

F7(x) =
n∑

i=1
ix4

i + random[0, 1) 30 [−1.28,1.28] 0

F8(x) =
n∑

i=1
−xi sin(

√
|xi|) 30 [−500,500] −418.9 × D

F9(x) =
n∑

i=1
[xi

2
− 10 cos(2πxi) + 10] 30 [−5.12,5.12] 0

F10(x) = −20 exp(−0.2

√
1
n

n∑
i=1

x2
i ) − exp( 1

n

n∑
i=1

cos(2πxi))

+20 + e

30 [−32,32] 0

F11(x) = 1
4000

n∑
i=1

x2
i −

n∏
i=1

cos( xi√
i
) + 1 30 [−600,600] 0

F12(x) = π
n {10 sin2(πy1) +

n−1∑
i=1

(yi − 1)2[1 + 10 sin2(πyi+1)]

+(yn − 1)2
}+

n∑
i=1

u(xi, 10, 100, 4)

yi = 1 + xi+1
4 , u(xi, a, k, m) =


k(xi − a)m xi > a
0 a ≤ xi < a
k(−xi − a)m xi < −a

30 [−50,50] 0

3.2. Parameters Settings

For the sake of fair comparison, the results of 11 famous evolutionary algorithms are introduced
in this section, including differential evolution (DE), particle swarm optimization (PSO), sine cosine
algorithm (SCA), gravitational search algorithm (GSA), ant lion optimizer (ALO) [61], cuckoo search
algorithm (CS) [62], modified cuckoo search algorithm (MCS) [63], lightning search algorithm (LSA) [64],
grey wolf optimizer (GWO) [65], firefly algorithm (FA) [66], and whale optimization algorithm
(WOA) [67]. The results of these five methods (DE, PSO, SCA, GSA, and EGSA) were developed in the
JAVA procedures, while the results of the other methods were taken from the corresponding literature.
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For the five developed methods, the swarm size and maximum iteration were set as 50 and 1000; while
the other parameters were set as:

DE: The scaling factor was set as 0.5 and the crossover probability was set as 0.6.
PSO: The inertia weight w was linearly decremented from 0.9 to 0.3; while two learning factors

(c1 and c2) were set as 2.0, respectively.
SCA: The computational constant a was set as 2.0.
GSA: The attenuation coefficient was set as 20; the initial gravitational constant was set as 100.
EGSA: The attenuation coefficient was set to 20; the initial gravitational constant was set to 100;

while the value of cbest was set to 0.7.

3.3. Comparison with Other Evolutionary Algorithms in Small-Scale Problems

3.3.1. Result Comparison in Multiple Runs

For the sake of alleviating the adverse influence of random initial seeds, all approaches were
independently executed 30 times. Table 2 shows the average (Ave.) and standard deviation (Std.) of
12 algorithms for all the test functions, where the number of variables was set as 30. It could be seen
that for all the functions, EGSA was always superior to the GSA method in terms of both the average
and standard deviation; as compared with other methods, the EGSA method could obtain satisfying
results in most functions. For instance, EGSA outperformed ALO in the average of all test functions
except for F5, the WOA performance was tied with EGSA in F9 and defeated by EGSA in the other
functions. To sum up, the proposed method could obtain better results than the other evolutionary
algorithms in the 12 test functions.

3.3.2. Box and Whisker Test

In this section, the box and whisker test was employed to demonstrate the objective distribution
of the solutions since it can show the abundant information (including minimum, second and third
quartile, median, and maximum) on the studied data. Figure 2 shows the detailed data obtained by
the three methods in 30 independent runs. It could be clearly observed that compared to the other
methods, the proposed method had a smaller distribution and better values in all indices. For instance,
the standard GSA algorithm had different degrees of outliers on F4–F5, which indicated that this
method easily fell into the state of premature convergence in the search process; the SCA algorithm
exhibited outliers in most functions but had a distribution of relatively discrete solutions in F3, which
indicated that SCA was not ideal in terms of robustness. Additionally, the EGSA method had a more
concentrated solution distribution and fewer outliers in all functions, demonstrating its satisfying
robustness and search ability. Thus, the performances of the EGSA method were superior to the
comparative methods in the 12 functions.
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Figure 2. Box and whisker test of three algorithms for 12 functions with 30 variables.

3.3.3. Wilcoxon Nonparametric Test

To achieve statistically meaningful conclusions, the Wilcoxon nonparametric test was employed to
test the significance level of various methods. Table 3 shows the statistical results of various methods.
If the results of the EGSA was better than the control method, it was recorded as a win; if two methods
were tied, it was recorded as a tie; otherwise, it was recorded as a loss. From Table 3, it can be seen
that the proposed method could produce better solutions as compared to the other methods, due to
the larger number of the ‘Win’ symbol. Then, the multiple-problem statistical results obtained by the
Wilcoxon nonparametric test with a significance level of 0.05 are given in Table 4, where the mean
objective value obtained by each method is chosen as the data sample. From Table 4, it can be found
that the proposed method could achieve higher R+ than R– in all comparisons, while all values of p
were smaller than 0.05. This case proved that the EGSA method outperformed the other methods in
a statistical manner.
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Table 2. Statistical indexes of 12 algorithms for all the test functions.

Function Item CS MCS LSA GWO FA WOA ALO DE PSO SCA GSA EGSA

F1 Ave. 9.06 × 101 1.01 × 100 4.81 × 10−8 6.59 × 10−28 1.20 × 10−2 1.41 × 10−30 2.59 × 10−10 7.80 × 10−6 4.58 × 10−7 2.87 × 10−35 4.00 × 10−9 6.96 × 10−134

Std. 2.62 × 101 2.72 × 10−1 3.40 × 10−7 6.34 × 10−5 4.30 × 10−3 4.91 × 10−30 1.65 × 10−10 3.14 × 10−6 3.51 × 10−7 1.26 × 10−34 2.92 × 10−9 3.70 × 10−133

F2 Ave. 9.70 × 100 1.81 × 10−1 3.68 × 10−2 7.18 × 10−17 3.73 × 10−1 1.06 × 10−21 1.84 × 10−6 3.73 × 10−4 1.19 × 10−4 2.21 × 10−27 5.48 × 10−5 5.21 × 10−69

Std. 1.98 × 100 3.31 × 10−2 1.56 × 10−1 2.90 × 10−2 1.01 × 10−1 2.39 × 10−21 6.58 × 10−7 9.05 × 10−5 8.03 × 10−5 6.99 × 10−27 2.24 × 10−5 2.09 × 10−68

F3 Ave. 3.84 × 103 4.62 × 102 4.32 × 101 3.29 × 10−6 1.81 × 103 5.39 × 10−7 6.06 × 10−10 2.94 × 104 2.33 × 100 9.74 × 101 3.61 × 102 4.30 × 10−119

Std. 7.24 × 102 1.23 × 102 2.99 × 101 7.91 × 101 6.60 × 102 2.93 × 10−6 6.34 × 10−10 4.13 × 103 1.14 × 100 2.24 × 102 1.45 × 102 2.29 × 10−118

F4 Ave. 7.23 × 100 1.73 × 100 1.49 × 100 5.61 × 10−7 7.67 × 10−2 7.26 × 10−2 1.36 × 10−8 1.43 × 100 5.35 × 10−1 2.66 × 100 9.48 × 10−2 5.58 × 10−70

Std. 6.76 × 10−1 5.12 × 10−1 1.30 × 100 1.32 × 100 1.46 × 10−2 3.97 × 10−1 1.81 × 10−9 3.21 × 10−1 1.33 × 10−1 4.16 × 100 3.92 × 10−1 2.12 × 10−69

F5 Ave. 4.98 × 100 5.81 × 101 6.43 × 101 2.68 × 101 1.28 × 102 2.79 × 101 3.47 × 10−1 4.45 × 102 1.64 × 102 2.74 × 101 3.45 × 101 2.69 × 101

Std. 1.75 × 100 3.31 × 101 4.38 × 101 6.99 × 101 2.79 × 102 7.64 × 10−1 1.10 × 10−1 1.55 × 102 1.55 × 102 3.85 × 10−1 3.65 × 101 9.72 × 10−2

F6 Ave. 4.31 × 104 4.44 × 103 3.34 × 100 8.17 × 10−1 0 3.12 × 100 2.56 × 10−10 7.94 × 10−6 9.29 × 10−7 5.30 × 10−2 4.99 × 10−9 8.23 × 10−15

Std. 7.21 × 103 7.52 × 102 2.09 × 100 1.26 × 10−4 0 5.32 × 10−1 1.09 × 10−10 3.39 × 10−6 1.93 × 10−6 4.98 × 10−2 3.74 × 10−9 4.61 × 10−15

F7 Ave. 2.46 × 10−2 9.10 × 10−3 2.41 × 10−2 2.21 × 10−3 3.52 × 10−2 1.43 × 10−3 4.29 × 10−3 1.35 × 10−1 3.55 × 100 7.48 × 10−3 3.05 × 10−2 4.76 × 10−4

Std. 7.90 × 10−3 2.20 × 10−3 5.72 × 10−3 1.00 × 10−1 2.40 × 10−2 1.15 × 10−3 5.09 × 10−3 2.93 × 10−2 4.79 × 100 6.96 × 10−3 1.59 × 10−2 2.32 × 10−4

F8 Ave. −8.98 × 103
−9.80 × 103

−8.00 × 103
−6.12 × 103

−5.90 × 103
−5.08 × 103

−1.61 × 103
−7.95 × 103

−6.39 × 103
−5.66 × 103

−2.75 × 103
−1.19 × 104

Std. 1.98 × 102 5.31 × 102 6.69 × 102 4.09 × 103 6.56 × 102 6.96 × 102 3.14 × 102 3.33 × 102 1.29 × 103 3.52 × 102 4.00 × 102 3.13 × 102

F9 Ave. 2.94 × 102 1.35 × 102 6.28 × 101 3.11 × 10−1 2.63 × 101 0 7.71 × 10−6 1.32 × 102 7.87 × 101 1.87 × 10−9 1.67 × 101 0
Std. 1.43 × 101 2.16 × 101 1.49 × 101 4.74 × 101 9.15 × 100 0 8.45 × 10−6 8.78 × 100 2.91 × 101 1.02 × 10−8 3.82 × 100 0

F10 Ave. 1.93 × 101 1.21 × 101 2.69 × 100 1.06 × 10−13 5.12 × 10−2 7.40 × 100 3.73 × 10−15 1.37 × 10−3 5.99 × 10−4 1.34 × 101 3.25 × 10−5 3.64 × 10−15

Std. 3.50 × 10−1 7.52 × 10−1 9.11 × 10−1 7.78 × 10−2 1.37 × 10−2 9.90 × 100 1.50 × 10−15 8.85 × 10−4 5.43 × 10−4 9.64 × 100 1.10 × 10−5 1.08 × 10−15

F11 Ave. 2.12 × 102 8.32 × 100 7.24 × 10−3 4.49 × 10−3 5.84 × 10−3 2.89 × 10−4 1.86 × 10−2 3.36 × 10−3 6.98 × 10−3 1.86 × 10−5 4.34 × 100 0
Std. 3.97 × 101 1.54 × 100 6.70 × 10−3 6.66 × 10−3 1.43 × 10−3 1.59 × 10−3 9.55 × 10−3 1.06 × 10−2 8.16 × 10−3 1.02 × 10−4 1.66 × 100 0

F12 Ave. 1.47 × 100 1.38 × 10−1 3.58 × 10−1 5.34 × 10−2 2.40 × 10−4 3.40 × 10−1 9.74 × 10−12 6.87 × 10−1 2.01 × 10−2 8.52 × 10−3 9.59 × 10−2 5.30 × 10−17

Std. 3.61 × 10−1 2.86 × 10−1 7.44 × 10−1 2.07 × 10−2 1.00 × 10−4 2.15 × 10−1 9.33 × 10−12 3.05 × 10−1 2.26 × 10−2 4.69 × 10−3 1.75 × 10−1 1.92 × 10−17

Note: Ave. = average; Std. = standard deviation.
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Table 3. The results of Wilcoxon test for a single problem for statistical significance level at alpha = 0.05.

Function EGSA–CS EGSA–MCS EGSA–LSA EGSA–GWO EGSA–FA EGSA–WOA EGSA–ALO EGSA–DE EGSA–PSO EGSA–SCA EGSA–GSA

F1 EGSA EGSA EGSA EGSA EGSA EGSA EGSA EGSA EGSA EGSA EGSA
F2 EGSA EGSA EGSA EGSA EGSA EGSA EGSA EGSA EGSA EGSA EGSA
F3 EGSA EGSA EGSA EGSA EGSA EGSA EGSA EGSA EGSA EGSA EGSA
F4 EGSA EGSA EGSA EGSA EGSA EGSA EGSA EGSA EGSA EGSA EGSA
F5 CS EGSA EGSA GWO EGSA EGSA ALO EGSA EGSA EGSA EGSA
F6 EGSA EGSA EGSA EGSA FA EGSA EGSA EGSA EGSA EGSA EGSA
F7 EGSA EGSA EGSA EGSA EGSA EGSA EGSA EGSA EGSA EGSA EGSA
F8 EGSA EGSA EGSA EGSA EGSA EGSA EGSA EGSA EGSA EGSA EGSA
F9 EGSA EGSA EGSA EGSA EGSA Tie EGSA EGSA EGSA EGSA EGSA
F10 EGSA EGSA EGSA EGSA EGSA EGSA EGSA EGSA EGSA EGSA EGSA
F11 EGSA EGSA EGSA EGSA EGSA EGSA EGSA EGSA EGSA EGSA EGSA
F12 EGSA EGSA EGSA EGSA EGSA EGSA EGSA EGSA EGSA EGSA EGSA

W/T/L 11/0/1 12/0/0 12/0/0 11/0/1 11/0/1 11/1/0 11/0/1 12/0/0 12/0/0 12/0/0 12/0/0

Table 4. The results of Wilcoxon signed-rank test for statistically significance level at alpha = 0.05.

Item EGSA–CS EGSA–MCS EGSA–LSA EGSA–GWO EGSA–FA EGSA–WOA EGSA–ALO EGSA–DE EGSA–PSO EGSA–SCA EGSA–GSA

R+ 72 78 78 70 77 77.5 67 78 78 78 78
R− 6 0 0 8 1 0.5 11 0 0 0 0

p-value 6.84 × 10−3 4.88 × 10−4 4.88 × 10−4 1.22 × 10−2 9.77 × 10−4 9.77 × 10−4 2.69 × 10−2 4.88 × 10−4 4.88 × 10−4 4.88 × 10−4 4.88 × 10−4

Significant
√ √ √ √ √ √ √ √ √ √ √
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3.3.4. Convergence Analysis

Figure 3 shows the convergence trajectories of five algorithms for 12 functions with 30 variables.
It can be seen that the proposed method could constantly improve the solution’s quality from the
beginning to the end, and could find the best solutions in the end. Taking the functions F1–F4 as
examples, three methods (GSA, PSO, and DE) quickly fail into local optima because their best-so-far
solutions change slightly in the evolutionary process; both EGSA and SCA converge to a smaller
objective at the initial stage, but EGSA can quickly find better solutions at iteration 800, while SCA
fails to make it. Additionally, for multimodal functions, EGSAs achieve the global optimal solution in
both F9 and F11, and better results than other methods in F8, F10, and F12. Thus, the above analysis
fully proves that the presented method has a superior convergence speed and global search ability.
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4. EGSA for the Multi-Objective Operation of Cascade Hydropower Reservoirs

4.1. Mathematical Model

4.1.1. Objective Functions

With the advantages of low pollutant emission and high operational efficiency, hydropower now
plays an increasingly important role in the energy system throughout the world [68–70]. As a result,
the cascade hydropower reservoirs are often responsible for a variety of operational requirements.
Considering the practical requirements of generation enterprises and electrical power systems in China,
the generation benefit and peak operations were chosen as the focus of this paper.

(1) Power Generation
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For almost all hydropower enterprises, the economic benefit is an important indicator of
performance check under the market environment [71–73]. Generally, the same amount of available
water resource can produce numerous scheduling schemes with different generation benefits. Hence,
the first objective was chosen to find the best scheme that could maximize the total power generation
of all hydropower reservoirs, which could be expressed as below:

E = max
T∑

t=1

N∑
n=1

Pn,t × ∆t (12)

where E is the power generation of all hydropower reservoirs. T is the number of periods. N is the
number of hydropower reservoirs. Pn,t is the output of the nth hydroplant at the tth period. ∆t is the
total hours of the tth period.

(2) Peak Operation
In modern power systems, the hydropower system is often asked to respond to the peak loads of

power grid to produce a relatively smooth load series for other kinds of energy systems (like thermal,
solar, and wind) [74–76]. In this way, the total operational cost of the electrical power system in the
long run can be sharply reduced [77–79]. Hence, the second objective function was chosen to minimize
the mean square deviation of the residual load curve obtained by subtracting all power outputs of
hydropower reservoirs from the original energy load curve, which could be expressed as:

F = min

√√√√
1
2

T∑
t=1

Loadt −

N∑
n=1

Pn,t


2

(13)

where Loadt is the load demand of the power system at the tth period.

4.1.2. Physical Constraints

(1) Water Balance Equation:

Vn,t+1 = Vn,t + 3600∆t ×

In,t +
Num∑
i=1

(Qi,t + Si,t) −Qn,t − Sn,t

 (14)

where Vn,t, In,t, Qn,t, Sn,t are the storage volume, local inflow, turbine discharge and spillage of the
nth hydroplant at the tth period, respectively. Num is the number of upstream hydroplants directly
connected to the nth hydroplant.

(2) Reservoir Storage Constraint:

Vn,t ≤ Vn,t ≤ Vn,t (15)

where Vn,t and Vn,t denote the maximum and minimum storage volumes of the nth hydroplant at the
tth period, respectively.

(3) Turbine Discharge Constraint:

Q
n,t
≤ Qn,t ≤ Qn,t (16)

where Qn,t and Q
n,t

denote the maximum and minimum turbine discharges of the nth hydroplant at
the tth period, respectively.

(4) Total Discharge Constraint:
q

n,t
≤ qn,t ≤ qn,t (17)
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where qn,t and q
n,t

denote the maximum and minimum total discharges of the nth hydroplant at the tth
period, respectively.

(5) Power Output Constraint:
Pn,t ≤ Pn,t ≤ Pn,t (18)

where Pn,t and Pn,t denote the maximum and minimum power outputs of the nth hydroplant at the tth
period, respectively.

(6) Initial and Final Water Levels Constraint: Zn,0 = Zbeg
n

Zn,T = Zend
n

(19)

where Zbeg
n and Zend

n represent the initial and final water level of the nth hydroplant, respectively.

4.2. Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS)

As mentioned above, the multi-objective operation of cascade hydropower reservoirs is a typical
multiple-criteria decision-making problem. Thus, it was necessary to find some tools to transform the
original multi-objective problem into the single-objective optimization problem that can be addressed
by EGSA. After a comprehensive comparison, TOPSIS was introduced to achieve this goal. In TOPSIS,
the best scheme had the smallest distance from the positive ideal scheme and the largest distance from
the negative ideal scheme, respectively. Then, the procedure of TOPSIS was give as below:

Step 1: Create an initial decision evaluation matrix with m schemes and J attributes. For the target
problem, each scheme is composed of two attributes—the power generation E and the peak operation
F. Then, the decision-making matrix A can be expressed as follows:

A =
(
ai, j

)
m×J

=


a11 a12 · · · a1J
a21 a22 · · · a2J

...
... ai, j

...
am1 am2 · · · amJ

 (20)

where ai, j is the original value of the jth attribute in the ith scheme.
Step 2: Obtain the modified decision evaluation matrix to reduce the potential impact of various

attribute properties (like measurement unit and tendency); given below:

B =
(
bi, j

)
m×J

=


b11 b12 · · · b1J
b21 b22 · · · b2J

...
... bi, j

...
bm1 bm2 · · · bmJ

 (21)

bi j =


amax

j −ai j

amax
j −amin

j
minimization attribute

ai j−amin
j

amax
j −amin

j
maximization attribute

, i = 1, 2, · · · , m; j = 1, 2, · · · , J (22)

where amax
j and amin

j are the maximum and minimum values of the jth attribute.
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Step 3: Obtain the normalized decision-making matrix to reduce the possible numerical problem
caused by the feature differences (like units or magnitude), which could be expressed as below:

R =
(
ri, j

)
m×J

=


r11 r12 · · · r1J
r21 r22 · · · r2J
...

... ri, j
...

rm1 rm2 · · · rmJ

 (23)

ri j =
bi j√
m∑

i=1
b2

i j

, i = 1, 2, · · · , m; j = 1, 2, · · · , J (24)

where ri j is the normalized value of the jth attribute in the ith scheme.
Step 4: Set the weight vector w =

[
w1, · · · , w j, · · · , wJ

]
, where w j is the weight of the jth attribute

and there is
J∑

j=1
w j= 1. Then, calculate the weighted normalized decision-making matrix V by:

V =
(
vi, j

)
m×J

=
(
w j × ri, j

)
m×J

(25)

Step 5: Determine the positive ideal scheme C+ and negative ideal scheme C− by: C+ =
[
c+1 , c+2 , . . . , c+J

]
= max

{
vi, j

∣∣∣i = 1, 2, · · · , m
}

C− =
[
c−1 , c−2 , . . . , c−J

]
= min

{
vi, j

∣∣∣i = 1, 2, · · · , m
} j = 1, 2, . . . , J (26)

Step 6: Calculate the Euclidean distances between the decision scheme and the positive (negative)
ideal scheme, which could be expressed as below:

D+
i =

√
J∑

j=1
(vi j − c+j )

2

D−i =

√
J∑

j=1
(vi j − c−j )

2
, i = 1, 2, . . .m (27)

where D+
i or D−i is the distance between the ith scheme and the position (or negative) ideal scheme.

Step 7: Calculate the closeness of each decision plan to the negative ideal scheme by

fi =
D−i

D−i + D+
i

, i = 1, 2, . . .m (28)

Step 8: Use the obtained closeness values to sort all the schemes, and the scheme possessing the
maximum closeness will be treated as the optimal decision scheme.

fbest = max
{
f1, f2, . . . , fm

}
(29)

4.3. Details of EGSA for Multi-Objective Operation of Cascade Hydropower Reservoirs

4.3.1. Individual Structure and Swarm Initialization

To enhance the execution efficiency of reservoir operation, the total discharge of the hydropower
reservoir is selected as the decision variable for encoding, and then the ith agent at the kth iteration
Xi(k) can be expressed as below:
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Xi(k) =


q1,1 q1,2 · · · q1,T
q2,1 q2,2 · · · q2,T

...
... qn,t

...
qN,1 qN,2 · · · qN,T

 (30)

During the initialization phase, the elements of the solution Xi(k) are randomly generated in the
preset of the total discharge scopes of all hydroplants, which could be expressed as follows:

qn,t = q
n,t

+ random×
(
qn,t − q

n,t

)
(31)

where random is the random number uniformly distributed in the range of [0,1].

4.3.2. Heuristic Constraint Handling Method

During the evolutionary process, it is possible that some agents violate the equality or inequality
constraints imposed on the hydropower system. In order to effectively modify the infeasible agents,
this section presents a heuristic constraint handling method that tries to equally allocate the violated
final storage volume to the turbine discharges of all adjusting periods. The detailed procedures for the
solution Xi(k) are given as below:

Step 1: Set n = 1 and determine the necessary parameters for the constraint processing.
Step 2: Set the counter L = 1, and then use the water balance equation to calculate the storage of

the nth hydroplant at the tth period by

Vn,t = max

Vn,t, min

Vn,t−1 + 3600∆t−1 ×

In,t−1 +
Num∑
i=1

(Qi,t−1 + Si,t−1) −Qn,t−1 − Sn,t−1

, Vn,t


 (32)

Step 3: Set L = L + 1, and then calculate the violation value ηn of the final storage by Equation (33).
Then, if

∣∣∣ηn
∣∣∣ is smaller than the accuracy ε or L is larger than the maximum iteration, go to Step 5;

otherwise, turn to Step 4.
ηn = fn(Zn,T) − fn

(
Zend

n

)
(33)

where fn(·) is the nonlinear stage-storage curve of the nth hydropower reservoir.
Step 4: Use Equation (34) to obtain the modified total discharges of the target reservoir, and then

calculate the corresponding reservoir storage volume by Equation (32) before turning to Step 3.

qn,t= max
{
q

n,t
, min

{
qn,t +

ηn

T × 3600∆t
, qn,t

}}
(34)

Step 5: Set n = n+1. If n ≤ N, turn to Step 2 for the new hydroplant; otherwise, stop the iteration.

4.3.3. Calculation of the Modified Objective Values

Generally, the agents modified by the above heuristic constraint handling procedures would
satisfy most of the physical constraints. Nevertheless, the agents might still violate some constraints
due to reasons like unreasonable operation trajectory and limited adjusted times. To eliminate the
negative effect of the infeasible agents, the value of the constraint violation involved in the solution
Xi(k) (Viol[Xi(k)] for short) was obtained by Equation (35), and then merged into two original objective
values (E and F) by Equation (36) to obtain the modified objective values (E’ and F’).

Viol[Xi(k)] =
Lg∑

l1=1

cl1 ·max
{
gl1(Xi(k)), 0

}
+

Le∑
l2=1

cl2 ·
[
el2(Xi(k))

]2
(35)
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
E′[Xi(k)] =

T∑
t=1

N∑
n=1

Pn,t × ∆t−Viol[Xi(k)]

F′[Xi(k)] =

√
1
2

T∑
t=1

[
Loadt −

N∑
n=1

Pn,t

]2

+ Viol[Xi(k)]
(36)

where gl1(·) ≤ 0 is the l1th inequality constraint; el2(·) ≤ 0 is the l2th equality constraint; cl1 and cl2 are
the penalty coefficients for the relevant inequality or equality constraint. Lg and Le denote the number
of inequality and equality constraints, respectively.

4.3.4. Execution Procedures of the EGSA Method for the Target Problem

The flowchart of the developed EGSA method for solving multi-objective operation of cascade
hydropower reservoirs is given in Figure 4.

Water 2019, 11, 2040 16 of 28 

Water 2019, 11, x; doi: FOR PEER REVIEW www.mdpi.com/journal/water 

   

   

'

,

1 1

2

'

,

1 1

( ) ( )

1
( ) + ( )

2

T N

i n t i

t n

T N

i t n t i

t n

E X k P t Viol X k

F X k Load P Viol X k

 

 


  




 
  

 



 
 

(36) 

where  
1

0lg    is the l1th inequality constraint;  
2

0le   is the l2th equality constraint; 
1l

c  and 
2l

c  

are the penalty coefficients for the relevant inequality or equality constraint. 
gL  and eL  denote the 

number of inequality and equality constraints, respectively. 

4.3.4. Execution Procedures of the EGSA Method for the Target Problem 

The flowchart of the developed EGSA method for solving multi-objective operation of cascade 

hydropower reservoirs is given in Figure 4. 

Start

Choose the total discharge as decision variable and then 

randomly generate the initial swarm in the search space

Use the method in Sections 4.3.2~4.3.3 to calculate the 

constraint violation and objective values of each agent

Update the best-known positions of each agent by 

comparing its own and personal best closeness values 

Update the global best-known of the swarm by choosing 

the agent with the maximum closeness value from  A

Calculate the relevant intermediate variables and then 

update the velocity and position values of each agent

Use the opposition learning strategy in Section 2.2 to 

increase the convergence speed of the swarm

Use the mutation search strategy in section 2.3 to 

enhance the individual diversity

Use the elastic-ball modification strategy in Section 2.4 

to promote the solution feasibility
Maximum iteration is met

End

The global best-known agent is seen as the final solution

Use the TOPSIS method in Section 4.2 to evaluate the 

performances of 2N+1 agents in the temp swarm A

The current and best-known positions of each agent and the 

global best-known of the swarm form a temp swarm A

Define the values of all the computational parameters, like 

the maximum iteration and the swarm size N 

No

Yes

 

Figure 4. The flowchart of enhanced gravitational search algorithm (EGSA) for multi-objective 

operation of cascade hydropower reservoirs. 

5. Case Studies 

5.1. Engineering Background 

In this section, five reservoirs of the Wu hydropower system in Southwest China were chosen 

to test the performance of the proposed method, including Hongjiadu (HJD), Dongfeng (DF), 

Suofengying (SFY), Wujiangdu (WJD), and Goupitan (GPT). Since being put into operation, the Wu 

hydropower system has played a vitally important role in the environment protection and economic 

development of the Guizhou province. Figure 5 shows the topological structure of the selected 

hydropower reservoirs, while the typical load demand curves of the four seasons are shown in Figure 

6. From Figures 5 and 6, it could be observed that in the Wu hydropower system, there were tight 

hydraulic and electrical connections from upstream to downstream reservoirs, while four load curves 

with different features further increased the optimization difficulty.  

Figure 4. The flowchart of enhanced gravitational search algorithm (EGSA) for multi-objective operation
of cascade hydropower reservoirs.

5. Case Studies

5.1. Engineering Background

In this section, five reservoirs of the Wu hydropower system in Southwest China were chosen to
test the performance of the proposed method, including Hongjiadu (HJD), Dongfeng (DF), Suofengying
(SFY), Wujiangdu (WJD), and Goupitan (GPT). Since being put into operation, the Wu hydropower
system has played a vitally important role in the environment protection and economic development of
the Guizhou province. Figure 5 shows the topological structure of the selected hydropower reservoirs,
while the typical load demand curves of the four seasons are shown in Figure 6. From Figures 5 and 6,
it could be observed that in the Wu hydropower system, there were tight hydraulic and electrical
connections from upstream to downstream reservoirs, while four load curves with different features
further increased the optimization difficulty.
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5.2. Case Study 1: Power Generation of Cascade Hydropower Reservoirs

5.2.1. Robustness Testing of Different Evolutionary Algorithms

In this section, to verify the robustness of the developed method, four famous methods (DE, PSO,
SCA, and GSA) were introduced for comparative analysis. Table 5 shows the detailed statistical results
of the 5 methods in 20 independent runs for 4 cases, where the swarm size and maximum iteration
were set as 50 and 500, respectively. It can be clearly seen that the solutions obtained by the EGSA
method were more stable than the other methods. For instance, in Case 1, the EGSA method could
make about 96.4%, 96.5%, 97.8%, and 97.7% reductions in the standard deviations of the DE, PSO, SCA,
and GSA. Hence, the feasibility of the EGSA method was fully demonstrated in this case.

Table 5. Statistical results of the 5 methods in 20 independent runs for 4 cases of power generation
(104 kW·h).

Case Method Best Worst Average Standard Deviation Range

Case 1

DE 5388.10 5386.25 5387.19 0.56 1.85
PSO 5393.67 5391.27 5392.49 0.57 2.40
SCA 5388.26 5384.34 5385.65 0.89 3.92
GSA 5388.37 5385.34 5386.76 0.88 3.03

EGSA 5396.87 5396.81 5396.86 0.02 0.06

Case 2

DE 6439.12 6434.22 6436.14 1.43 4.90
PSO 6445.48 6442.35 6444.12 0.79 3.13
SCA 6439.06 6435.25 6437.07 1.03 3.81
GSA 6440.17 6437.00 6438.55 0.79 3.17

EGSA 6450.34 6450.33 6450.33 0.01 0.01

Case3

DE 4977.94 4976.38 4977.17 0.40 1.56
PSO 4981.62 4979.71 4980.58 0.55 1.91
SCA 4975.51 4973.58 4974.54 0.58 1.93
GSA 4976.74 4973.83 4975.25 0.71 2.91

EGSA 4984.56 4984.54 4984.55 0.01 0.02

Case4

DE 4433.08 4431.68 4432.32 0.44 1.40
PSO 4435.89 4434.23 4435.11 0.49 1.66
SCA 4431.51 4428.62 4429.58 0.70 2.89
GSA 4431.61 4429.07 4430.37 0.64 2.54

EGSA 4438.33 4438.32 4438.33 0.01 0.01
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Figure 7 draws the box and whisker test of the best-so-far solutions obtained by 5 algorithms in
4 cases. It can be observed that the performances of four control methods in the power generation of
hydropower system are relatively stable but still inferior to the EGSA method possessing the smallest
variation ranges in the final solutions. Therefore, the proposed method proves to be an effective tool to
deal with the power generation of a hydropower system.
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5.2.2. Comparison of the Optimal Results Obtained by Different Evolutionary Algorithms

Table 6 shows the detailed results in the best solutions obtained by different methods. It can
be seen that in all cases, EGSA can always find the best results among all algorithms. For instance,
compared with DE, PSO, SCA, and GSA, the EGSA method could make about 8.77 × 104 kW·h,
3.2 × 104 kW·h, 8.61 × 104 kW·h, and 8.5 × 104 kW·h improvements in power generation in Case 1,
respectively. Additionally, among all hydroplants, the GPT hydroplant with a huge installed capacity
produced the largest proportion of power generation in all solutions, which was in line with the actual
operation situation of the hydropower system [80–83]. Thus, the above analysis demonstrated the
effectiveness and rationality of the scheduling process obtained by the proposed method.

Table 6. Detailed results in the best solutions by different methods (104 kW·h).

Runoff Method HJD DF SFY WJD GPT Sum

Case 1

DE 726.73 646.19 527.41 1106.65 2381.12 5388.10
PSO 728.66 647.76 526.51 1107.99 2382.75 5393.67
SCA 727.92 644.60 527.68 1106.77 2381.29 5388.26
GSA 728.35 647.35 526.77 1107.15 2378.75 5388.37

EGSA 728.84 646.94 530.33 1108.10 2382.66 5396.87

Case 2

DE 869.46 770.94 632.25 1322.47 2844.00 6439.12
PSO 871.70 774.09 627.59 1325.38 2846.72 6445.48
SCA 871.15 771.70 628.34 1322.76 2845.11 6439.06
GSA 871.48 774.01 627.42 1324.03 2843.23 6440.17

EGSA 871.58 773.17 633.84 1324.91 2846.84 6450.34
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Table 6. Cont.

Runoff Method HJD DF SFY WJD GPT Sum

Case 3

DE 234.57 400.46 461.27 1052.33 2829.31 4977.94
PSO 235.21 402.56 459.19 1054.13 2830.53 4981.62
SCA 233.99 401.01 459.94 1052.01 2828.56 4975.51
GSA 235.02 402.45 457.71 1053.20 2828.36 4976.74

EGSA 235.50 401.67 462.62 1054.23 2830.54 4984.56

Case 4

DE 208.46 355.81 411.02 936.99 2520.8 4433.08
PSO 208.58 358.21 409.24 938.46 2521.4 4435.89
SCA 208.26 356.74 409.21 937.08 2520.22 4431.51
GSA 208.82 357.66 408.43 937.47 2519.23 4431.61

EGSA 209.13 357.35 411.88 938.51 2521.46 4438.33

5.2.3. Convergence Analysis of Different Evolutionary Algorithms

Figure 8 shows the convergence trajectories of 5 algorithms in different cases. It could be observed
that in four cases, SCA failed into a local optima at the early stage, and then started to improve the
quality of solutions as the iteration number reached 300, but still failed to find out the satisfying
solutions at the end; due to the loss of individual diversity [84], three other methods (PSO, GSA, and
DE) outperformed the SCA method but were still inferior to the proposed method from the beginning
to end. Additionally, the proposed method could quickly converge to the scheduling schemes that were
close to the optimal solution at the early stage, and then change slightly with an increasing number of
iterations. Thus, it could be concluded that three modified strategies could effectively enhance the
performance of the standard GSA method.
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5.3. Case Study 2: Peak Operation of Cascade Hydropower Reservoirs

5.3.1. Robustness Testing of Different Evolutionary Algorithms

In this section, the proposed method was applied to deal with the peak operation of a hydropower
system. Table 7 shows the statistical results of the 5 methods in 20 independent runs for 4 cases. It was
observed that all of the methods could achieve the goal of reducing the peak loads of a power system
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due to the reductions in the statistical indices; while the proposed method had the performances
among all methods. For instance, the average improvements in the range of the objective values of
EGSA was about 99.7%, compared to the three other methods in the 4 cases. Hence, the feasibility of
the EGSA method in addressing the peak operation of the hydropower system was proved in this case.

Table 7. Statistical results of the 5 methods in 20 independent runs for 4 cases of peak operation.

Season Item Best Worst Average Standard Deviation Range

Spring

DE 32,130.69 32,183.80 32,153.90 16.22 53.11
PSO 32,052.91 32,127.22 32,084.17 20.24 74.31
SCA 32,160.67 32,230.89 32,194.00 22.32 70.22
GSA 32,173.70 32,224.22 32,199.76 14.41 50.52

EGSA 31,986.47 31,986.62 31,986.53 0.04 0.15

Summer

DE 33,006.63 33,093.05 33,051.56 23.51 86.42
PSO 32,962.41 33,057.03 32,993.63 22.72 94.62
SCA 33,032.40 33,129.77 33,100.08 24.05 97.37
GSA 33,069.24 33,134.56 33,097.29 19.83 65.32

EGSA 32,888.05 32,888.16 32,888.10 0.03 0.11

Autumn

DE 36,681.47 36,752.01 36,719.49 17.51 70.54
PSO 36,595.43 36,714.71 36,667.14 30.32 119.28
SCA 36,745.91 36,840.43 36,781.14 24.73 94.52
GSA 36,738.72 36,835.34 36,802.57 27.25 96.62

EGSA 36,536.95 36,537.06 36,537.00 0.03 0.11

Winter

DE 35,825.89 35,890.14 35,857.52 14.79 64.25
PSO 35,762.63 35,850.26 35,811.97 23.97 87.63
SCA 35,822.72 35,950.51 35,896.25 32.32 127.79
GSA 35,879.31 35,965.39 35,931.63 22.63 86.08

EGSA 35,671.70 35,671.80 35,671.74 0.03 0.10

Figure 9 shows the box and whisker test of 5 algorithms in different cases. It can be seen that the
distribution ranges of the solutions obtained by the proposed method were much smaller than the
other methods, demonstrating the effectiveness of the constraint handling method and the modified
strategies. Thus, it can be concluded that the EGSA method could produce stable scheduling schemes
for the complex hydropower system peak operation problem.
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5.3.2. Comparison of the Optimal Results Obtained by Different Evolutionary Algorithms

To clearly show the feasibility of the EGSA method, the detailed results in the best solutions as
obtained by different methods are given in Table 8. It was found that the EGSA method could achieve
satisfactory results. For instance, the proposed method could bring about a 30.9% reduction in the
peak values in Summer, which was obviously better than 21.0% of DE and 24.9% of PSO, 23.9% of SCA
and 19.4% of GSA. Thus, this simulation clearly proved the superiority of the proposed method in
responding to the peak operation requirement of the power system.

Table 8. Detailed results in the best solutions as obtained by the different methods (MW).

Season Method Item Peak Valley Peak-valley Average Standard Deviation

Spring

Original 13,477.93 10,101.60 3376.33 11,910.93 1281.95
DE Optimization 10,952.90 7716.77 3236.13 9242.92 789.32

Reduction 2525.03 2384.83 140.20 2668.01 492.63
PSO Optimization 10,050.98 8169.90 1881.08 9231.64 640.11

Reduction 3426.95 1931.7 1495.25 2679.29 641.84
SCA Optimization 10,752.18 7809.30 2942.88 9239.61 926.13

Reduction 2725.75 2292.3 433.45 2671.32 355.82
GSA Optimization 10,737.30 7592.29 3145.01 9229.75 1058.60

Reduction 2740.63 2509.31 231.32 2681.18 223.35
EGSA Optimization 9428.01 8987.22 440.79 9232.28 165.13

Reduction 4049.92 1114.38 2935.54 2678.65 1116.82

Summer

Original 14,119.78 10,342.98 3776.80 12,170.94 1302.21
DE Optimization 11,151.13 8535.00 2616.13 9505.54 670.54

Reduction 2968.65 1807.98 1160.67 2665.40 631.67
PSO Optimization 10,610.47 8392.24 2218.23 9492.57 673.27

Reduction 3509.31 1950.74 1558.57 2678.37 628.94
SCA Optimization 10,749.92 7591.09 3158.83 9500.12 839.87

Reduction 3369.86 2751.89 617.97 2670.82 462.34
GSA Optimization 11,379.10 7774.71 3604.39 9493.04 1028.32

Reduction 2740.68 2568.27 172.41 2677.90 273.89
EGSA Optimization 9759.71 9234.99 524.72 9492.46 172.66

Reduction 4360.07 1107.99 3252.08 2678.48 1129.55

Autumn

Original 14,773.84 10,786.00 3987.84 13,220.16 1528.83
DE Optimization 12,615.24 8928.53 3686.71 10,553.86 880.28

Reduction 2158.6 1857.5 301.1 2666.3 648.6
PSO Optimization 11,234.24 9366.35 1867.89 10,547.10 613.62

Reduction 3539.6 1419.65 2119.95 2673.06 915.21
SCA Optimization 11,891.57 8142.23 3749.34 10,552.90 1099.32

Reduction 2882.27 2643.77 238.50 2667.26 429.51
GSA Optimization 12,649.33 8347.14 4302.19 10,541.04 1193.12

Reduction 2124.51 2438.86 −314.35 2679.12 335.71
EGSA Optimization 10,760.16 10,182.25 577.91 10,545.07 221.99

Reduction 4013.68 603.75 3409.93 2675.09 1306.84

Winter

Original 14,913.26 11,028.24 3885.02 12,971.28 1489.76
DE Optimization 11,709.53 8772.72 2936.81 10,303.38 955.49

Reduction 3203.73 2255.52 948.21 2667.90 534.27
PSO Optimization 11,884.52 8637.32 3247.20 10,293.13 970.91

Reduction 3028.74 2390.92 637.82 2678.15 518.85
SCA Optimization 12,391.09 8667.77 3723.32 10,301.54 1052.86

Reduction 2522.17 2360.47 161.70 2669.74 436.90
GSA Optimization 11,946.42 8414.17 3532.25 10,293.50 1174.01

Reduction 2966.84 2614.07 352.77 2677.78 315.75
EGSA Optimization 10,568.93 10,012.57 556.36 10,295.50 208.98

Reduction 4344.33 1015.67 3328.66 2675.78 1280.78

Note: Reduction = original–optimization of the target method.

5.3.3. Rationality Analysis of the Best Results Obtained by the Different Evolutionary Algorithms

Figure 10 shows the detailed output process obtained by the different methods in four cases.
It was found that there were often two peak periods (morning and evening) in the original load curves,
and obvious differences in the load features (like peak times or numbers) of the four load curves, which
would increase the optimization difficulty of the peak operation. The two methods (GSA and EGSA)
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exhibited excellent responses to the load changes by collecting the hydropower generation at the peak
periods and storing the energy at valley periods. The EGSA method was superior to the GSA method
due to its smoother residual load curves; besides, the outputs of all the hydroplants varied in the
feasible range between the minimum output limit and the installed capacity. Thus, the EGSA method
could produce feasible solutions for the peak operation of a hydropower system.
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Figure 10. Detailed output process obtained by the different methods in the four cases.

5.4. Case Study 3: Mutli-Objective Operation of Cascade Hydropower Reservoirs

5.4.1. Comparative Analysis of the Optimal Results Obtained by the Different Methods with
100 Weights

The focus of this section is on the demonstration of the feasibility of the proposed method in
addressing the multi-objective optimization problems of a hydropower system. Figure 11 draws
the distributions of the objective functions obtained by different methods, where each method was
executed in 100 different weight combinations. Specifically, the weight w1 for power generation was
increased from 0 to 1.0 at the same interval of 0.01, while the weight w2 for peak operation was set as
1.0 – w1. From Figure 11, it was observed that the total generation was gradually decreasing with the
increasing objective value of peak operation, which implied that there was an obvious conflict between
power generation and peak operation. Additionally, the solutions of PSO and GSA were dominated by
that of the EGSA method, which meant that the EGSA method had a higher probability to obtain the
Pareto optimal solutions than the PSO and GSA method. Thus, the proposed method can generate the
near-optimal Pareto solutions to approximate the relationship between power generation and peak
shaving in practice.
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Figure 11. Distributions of the objective functions obtained by different methods with 100 weights.

5.4.2. Rationality Analysis of the Best Results Obtained by the Different Evolutionary Algorithms

Figure 12 shows the detailed results of three typical schemes obtained by the EGSA method
in Spring, where Scheme 1 showed the maximum power generation, Scheme 3 had the best peak
operation performance, while Scheme 2 could achieve a balance between power generation and peak
operation. It could be seen that for all the hydropower reservoirs, the water levels varied in the
preset range between a dead water level and a normal water level while the power outputs were
smaller than the installed capacity, demonstrating the effectiveness of the heuristic constraint handling
method in guaranteeing the feasibility of the solution. Meanwhile, there were obvious differences in
the peak operation and power generations of the three typical schemes, which indicated that it was
necessary to choose a suitable scheme based on the actual requirement. Thus, this case again proved
the practicability of the EGSA method in solving the multi-objective operation problems.
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6. Conclusions

In this research, an enhanced gravitational search algorithm coupled with the Technique for
Order Preference by Similarity to an Ideal Solution (TOPSIS) was developed to deal with the complex
multi-objective operation problem of cascade hydropower reservoirs balancing the power generation
and peak operation benefits. The proposed method and several famous evolutionary methods were
used to solve the 12 famous benchmark functions and the optimal operation of the Wu hydropower
system in China. The critical findings obtained from the experimental results are given as below:

(1) Due to the loss of the population diversity, the conventional GSA method suffered from severe
premature convergence shortcomings. The proposed method based on the three modified
strategies (opposite learning strategy, partial mutation strategy and elastic-ball modification
strategy) could effectively improve the convergence speed, swarm diversity, and solution feasibility
of the standard GSA method, respectively.

(2) For the original complex multi-objective optimization problem, balancing power generation
and peak operation requirements, the famous TOPSIS method was used to transform it into the
relatively simple single-objective problem, which could help make an obvious reduction in the
modeling difficulty of the multi-objective decision.

(3) There was a competitive relationship between the generation benefit of the hydropower enterprise
and the peak operation of the power system. In other words, an increasing value of one objective
would obviously reduce another objective value. Thus, it was necessary for operators to carefully
determine the scheduling schemes so as to effectively balance the practical requirements of power
generation enterprises and power grid companies.
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