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Abstract: A site-scale integrated decision support tool (i-DSTss) is developed for selection and sizing of
stormwater Best Management Practices (BMPs). The tool has several component modules—hydrology,
BMP selection, BMP sizing, and life-cycle cost analysis (LCCA)—integrated into a single platform.
The hydrology module predicts runoff from small catchment on event and continuous basis using the
Green-Ampt and Curve Number methods. The module predicted runoff from a small residential area
and a parking lot with R2 value of 0.77 and 0.74, respectively. The BMP selection module recommends
a BMP type appropriate for a site based on economic, technical, social and environmental criteria using
a multi-criteria optimization approach. The BMP sizing module includes sizing options for green
roofs, infiltration-based BMPs, and storage-based BMPs. A mass balance approach is implemented
for all types of BMPs. The tool predicted outflow rates from a permeable pavement with R2 value
of 0.89. A cost module is included where capital, operation and maintenance, and rehabilitation
costs are estimated based on BMP size obtained from the sizing module. The i-DSTss is built on an
accessible platform (Microsoft Excel VBA) and can be operated with a basic skillset. The i-DSTss
is intended for designers, regulators, and municipalities for quick analysis of scenarios involving
interaction among several factors.
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1. Introduction

Urbanization impacts the quality of urban water resources, and ineffective stormwater treatment
plays a major role. Land use change due to urbanization alters hydrological characteristics of
watersheds by increasing impervious cover [1,2]. Consequently, stormwater infiltration is reduced
and runoff is increased [3,4]. The United Nations Population Fund predicted that by 2030 more
than 60% of the world’s population will live in urban areas [5]. Increased buildings, roadways, and
parking lot densities associated with urbanization result in an expansion of impervious cover in urban
watersheds. Thus, BMPs are implemented to achieve an integrated stormwater management [6]. The
term BMP encompasses both structural (engineered or built infrastructure) and non-structural practices
(operational or procedural practices; e.g., minimizing use of chemical fertilizers and pesticides) [7].
Green infrastructure (GI) is an evolving stormwater management approach using natural processes.
Low impact development practices (LIDs) specifically emphasize better management of urban
stormwater through reductions in post-development runoff by increasing on-site infiltration and
reducing impervious surface cover [8].
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GI solutions can be applied on different scales ranging from individual houses or buildings to a
broader landscape level. At the largest scale, the preservation and restoration of natural landscapes
(e.g., forests) are critical components of green infrastructure. On the local level, GI practices include rain
gardens, permeable pavements, green roofs, infiltration planters, trees and tree boxes, and rainwater
harvesting systems. Thus, at the local scale, the term GI may overlap with LID practices [9]. Across the
nation, there is increasing interest in the use of LID practices as a means of reducing urban runoff and
associated pollutant loads to receiving waters [1,10,11], and LID practices have become a common
alternative to conventional stormwater solutions (e.g., grey infrastructures involving curb, gutter,
sewer and storage systems) in urban watershed management. LID practices represent practices that
are mainly implemented on-site to control stormwater at the source and restore natural hydrologic
processes to pre-development conditions. In contrast, BMP is a broader term that includes both
structural approaches and non-structural practices intended to reduce runoff and/or pollution from
stormwater discharge [12]. The U.S. Environmental Protection Agency (EPA) considers LID practices
as a stormwater control best management practice (BMP) and, along with other federal agencies, is
encouraging the implementation of LID practices.

LID site design is typically based on factors such as area, depth, vegetation, and other site
conditions including weather, precipitation amount, soil type, land use, slope, and percent impervious
area [13,14]. LID practices are typically applied to mitigate hydrologic imbalances; however, inadequate
attention has been given to the potential impacts on aquatic ecosystems and human health associated
with stormwater contaminants. Although contaminant removal is not typically an explicit design
criterion, infiltration-based LID practices usually improve water quality [15,16], yet BMP design for
water quality improvement in engineered infiltration systems is often based on assumed performance
or non-site-specific empirical estimation rather than premised on a fundamental understanding of
pollutant removal mechanisms for the specific BMP at a specific site [17]. Thus, BMP design tools
capable of more detailed analysis of peak flow reduction and water quality improvement are needed.
More research is needed to properly characterize the interactions between hydrologic impacts of LID
practices, processes for contaminant removal, and water quality performance. The BMP sizing tool
within the i-DSTss includes a physically based mass balance approach for the design of infiltration and
storage based BMPs.

Planning level decisions such as BMP placement are typically performed at the watershed scale [2].
Several watershed scale planning level tools have been developed for stormwater management (e.g.,
System for Urban Stormwater Treatment and Analysis IntegratioN (SUSTAIN)), however, these tools
do not include detailed analysis for BMP sizing at the site-scale. These models are relatively complex,
require extensive data processing, and modeling expertise to setup and operate. Other simplified tools
are available that are based on empirical approaches. The prediction accuracy of these simplified tools
is low relative to the more complex tools, and they are usually applicable to specific location where
they were initially developed. The i-DSTss is a user-friendly tool that includes rigorous approaches
used in the more complex tools (e.g., Storm Water Management Model (SWMM)). The tool includes
an optimization approach for selection and sizing of BMPs at the site-scale. The BMP sizing module
within i-DSTss can be used to design multiple types of BMPs based on user-defined flow reduction.
The BMP selection module leverages resources from existing international stormwater BMP database
and is designed to allow inclusion of new BMPs as they become available.
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2. Overview of Decision Support Tools in Stormwater Management

The objective of this work is to develop an integrated site-scale Decision Support Tool that allows
for selection and optimization of individual stormwater BMPs adaptable across the diverse climates and
regional policies and practices. Stormwater management tools vary with respect to their capabilities
and degree of complexity. Some have multiple component modules with ability to run hydrologic,
water quality, and cost benefit analysis while others can handle only some of these processes. Some are
developed for specific locations while others are applicable nationwide. Examples of such tools include
the California Phase II LID Sizing Tool and the Minimal Impact Design Standards (MIDS) calculator
that were developed for California and Minnesota states respectively. In contrast, other models such
as SWMM and SUSTAIN can be applied in multiple locations nationwide. Some of the stormwater
modeling tools include optimization feature with capability to iteratively determine the best solution
(e.g., type and size of BMP). There are several other models without an optimization feature that
are implemented in a simple forward-modeling (i.e., non-iterative) approach to evaluate alternatives
where users can test ‘what if’ scenarios. This approach is time consuming and the solutions may not be
optimal. Among the tools listed in Table 1, only EPA SUSTAIN and RSWMM-Cost include cost-based
optimization approach for selection and placement of BMPs. Models with and without optimization
features have been applied for design and assessment of performance of stormwater management
systems and to compare alternative designs and operating policies. Optimization methods provide
optimal values of system design and lead to the highest levels of system performance and can be
used to eliminate inferior alternatives. The i-DSTss translates complex processes into an easy to use
application with a graphical user interface for data inputting and displaying outputs. This feature
allows the use of the tool by a broad range of users with different skillsets. However, the i-DSTss is not
meant to replace other commonly used relatively robust stormwater tools such as SWMM with respect
to hydrology and water quality analysis. A summary of existing stormwater management tools and
their capabilities in comparison to i-DSTss developed in this study is shown in Table 1.



Water 2019, 11, 2022 4 of 45

Table 1. Comparison of existing stormwater management tools.

Tool
Capabilities/Features

Developing Environment Runoff
Volume

Peak
Flow

Pollutant
Loads/Concentration 1 BMP/GI Cost/LCCA 2 Integrated

Optimization 3
Water Quality

Analysis 4

WERF SELECT [18] Excel-VBA
√ √ √ √ √

Green Values [19] JavaScript
√ √ √ √

STEPL [1] Excel-VBA
√ √ √ √

EPA SWMM 5 [20] C language
√ √ √ √ √

WinSLAMM [21] Fortran
√ √ √ √ √ √

EPA SUSTAIN [22] C language
√ √ √ √ √ √ √

L-THIA [23] Excel-VBA
√ √ √ √

MUSIC [24] Fortran
√ √ √ √ √

LIDRA [13] Visual studio, C# language
√ √

Stormwater calculator [25] C language
√ √ √

MIDS calculator [26] Excel-VBA
√ √ √ √

California LID Sizing Tool [27] Visual basic, JavaScript
√ √ √

BMP Checker [28] Python
√ √ √ √ √ √

RSWMM-Cost [29] R language
√ √ √ √ √ √ √

i-DSTss Excel-VBA
√ √ √ √ √ √

1 Pollutant load/Concentration refers to the load or concentration of pollutants discharged into the outlet or into a BMP from the catchment/watershed; 2 LCCA is a cost estimation method
for incorporating all phases of project’s life useful in selecting between mutually exclusive options; 3 Integrated optimization refers to an optimization approach where multiple criteria
including environmental, social, technical and economic factors are used in the optimization process; 4 Water quality analysis refers to BMP treatment performance evaluation.
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3. Methodology

The approach for the development of the comprehensive site-scale integrated decision-support
tool, i-DSTss, involves creating individual modules and integrating the modules into a single modeling
framework applicable nationwide. Specific steps in the development of the tool and relevant
modules include:

(1) Development of a hydrology module: The hydrology module uses a physically-based
approach and involves modification of existing approaches to develop a user-friendly computationally
less-intensive module. This includes (a) translating implicit Green-Ampt and coupled manning’s and
continuity equations into explicit equations, (b) developing approaches for tracking soil moisture and
evapotranspiration for continuous simulation, and (c) translating Hargreaves equation from daily to
sub-hourly for evapotranspiration calculation;

(2) Development of BMP selection module: This includes development of an automated
optimization module to select cost effective BMP for a site considering stormwater quality, target water
quality, removal efficiency of BMPs and other technical and economic criteria;

(3) Development of BMP sizing module: A physically based mass balance approach is implemented
to estimate effective size of a BMP to meet runoff reduction for several types of BMPs including green
roof system, infiltration and storage based BMPs;

(4) Development of LCCA module: A cost module is implemented to calculate the cost of BMPs
based on the size determined using the BMP sizing module.

Procedures included in the development of each of these modules are provided below. Detailed
procedures are provided under Appendix A. Appendix B includes a demonstration of the operation of
the tool. To evaluate performance, the modules are compared to observations in Section 4.

3.1. Hydrology Module

The hydrology module includes a graphical interface for data inputting and displaying outputs.
Data inputs include rainfall, temperature time series, and soil data. The outputs include runoff depth
and time series of infiltration rates and runoff hydrograph. The graphical user interface includes option
for selecting methods for calculating infiltration losses (a Green-Ampt or modified Curve Number
methods). The runoff depth estimated from precipitation and infiltration loss is transformed into a
runoff hydrograph. The conceptual framework for the hydrology module is shown in Figure 1.
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Figure 1. Conceptual framework for the hydrology module.

Rainfall-runoff simulation in i-DSTss includes both event and continuous based approaches.
Event-based hydrologic modeling reveals how a site responds to an individual rainfall event. In
contrast, continuous hydrologic modeling synthesizes hydrologic processes and phenomena over
a longer time period that includes soil moisture tracking and its effect on infiltration and runoff.
Several rainfall-runoff methods have been developed ranging from empirical approaches (e.g., Curve
Number method) to physically based approaches (e.g., Green-Ampt model). Appropriate methods
have to be selected based on the type of problem. In the subsequent sections, we present (1) the
selection of rainfall-runoff methods, (2) event and continuous simulation approaches in i-DSTss, and
(3) detailed procedures for the development and implementation of the various simulation options
and rainfall-runoff methods in i-DSTss.
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3.1.1. Selection of the Rainfall-Runoff Model

The selection of the rainfall-runoff model is often a compromise between model complexity
(simple vs. complex) and availability of input data needed to setup and run the model [30]. The
merits of simple versus more complex and physically based hydrologic models have been debated
in literature [31]. Green-Ampt and Curve Number methods have been implemented in i-DSTss for
runoff estimation. Green-Ampt is a simplified model of the infiltration process that contains realistic
physics based on Darcy’s and the continuity equations and, at the same time, enables one to obtain an
analytical solution [32]. The model assumes the soil above the wetting front is completely saturated
and there is a sharp break in moisture content at the wetting front as water infiltrates into the soil.
The Green-Ampt model has been the object of considerable development in the field of soil physics
and hydrology due to its simplicity, physical basis, and satisfactory versatility for a wide variety of
infiltration problems. Thus, it has been implemented in many of widely applied stormwater models.
Another approach for estimation of rainfall excess is the Curve Number method developed by Soil
Conservation Service (SCS), now known as the Natural Resource Conservation Service (NRCS) [33].
The Curve Number method is widely used because it is based on readily available input data such as
land cover and soils data [20]. Both methods can be used for evaluation of peak runoff estimates for pre-
and post-development conditions for the purpose of BMP sizing. The i-DSTss includes event-based and
continuous simulation approaches presented in Section 3.1.2. Both Green-Ampt and Curve Number
methods are used for event and continuous simulation of runoff within i-DSTss.

3.1.2. Event-Based and Continuous Simulation

An event-based model represents a response to an individual isolated rainfall event over a
relatively short period of time ranging from about an hour to several days (e.g., volume of surface
runoff, peak runoff, and time to peak). A continuous hydrologic model represents hydrologic responses
to a number of rain events and their cumulative effects over a longer duration that includes both
wet and dry periods. When long term analysis involving life cycle cost is needed, the continuous
simulation option within i-DSTss can be used. Continuous simulation is data intensive and requires
tracking soil moisture and evapotranspiration. In contrast, event-based simulation is less data intensive
and does not require tracking soil moisture content or evapotranspiration. Event based simulation is
frequently used in the design of hydraulic structures, however, when there is a need for long term
impact assessment, continuous simulation becomes important.

(a) Event-based runoff estimation module: The site-scale tool has an event-based model for
estimation of runoff for design storm events. At times, this may be the only level of tool that is required
by planners to provide flood estimates, or it may be applied when data is not sufficient to justify a
continuous simulation model.

(b) Continuous simulation runoff module: The continuous simulation model is operated over
a longer period of time, which includes time series of rainfall events and inter-storm conditions.
The model accounts for changes in soil moisture and its impact on infiltration. The soil moisture
accounting includes an option where soil moisture content is set back to dry condition if water input or
rainfall ceases for specified period of time depending on the soil type. The approach used to track soil
moisture content for continuous simulation in i-DSTss is based on the method implemented in SWMM
model [20].

Both event-based and continuous simulation methods in i-DSTss are built on an Excel-VBA
platform to facilitate integration to other modules within the i-DSTss that are developed on the same
platform (BMP selection, sizing, and cost modules). Detailed procedures are presented in Section 3.1.3
and Appendix A.
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3.1.3. Estimation of Runoff Depth and Hydrograph

The runoff estimation approach is based on conservation of mass (the continuity equation).
The change in runoff depth (dD/dt) or volume (dv/dt) is calculated using a mass balance approach
considering precipitation intensity (i), evapotranspiration rate (e), infiltration rate (f ), and runoff rate
(Q) as described in Equations (1) and (2) below. Thus, the rate of change of volume and depth of flow
is given by:

dv
dt

= A
dD
dt

= A× (i− e− f ) −Q (1)

Dividing by the area of the site and replacing the discharge rate, Q with modified Manning’s
expression we get coupled continuity-Manning’s equation given by:

dD
dt

= i− e− f −
w× s

1
2

A× n

(
D− dp

) 5
3 (2)

where v is volume of runoff from the site (m3), A is area of site (m2), i is intensity of rainfall (m/s),
e is evapotranspiration rate (m/s), f is infiltration rate (m/s) calculated using Green-Ampt or Curve
Number method, Q is discharge rate (cubic meters per second (cms)), w is width of site (m), s is slope
of site (m/m), n is manning’s roughness coefficient, t is time step (s), D is depth of runoff (m), and dp is
depth of depression storage (m). Equation (2) is used to estimate the depth of runoff and flow based on
i, f, and e. Methods of estimating evapotranspiration (e) and infiltration rates (f ) in Equation (2) are
presented below.

Evapotranspiration (e): Evapotranspiration in Equation (2) is estimated based on a modified
temperature-based evapotranspiration equation developed by Hargreaves [34]. The method requires
fewer input parameters and gives reasonable estimates of evapotranspiration. The initial version of
Hargreaves equation for evapotranspiration is based on daily time steps. The equation was modified to
disaggregate the daily evapotranspiration estimates into sub-hourly estimates using a cosine function
given by:

ETsub−hourly = ETdaily ×

(
0.1302× ∆t× cos

(
2π×

(11.23 + t)
24

))
(3)

where ∆t is time step (h) and t is cumulative time (h). Equation (3) gives an estimate of diurnal
distribution of daily evapotranspiration based on previous studies [35,36].

Infiltration rate (f ): Initially, an implicit Green-Ampt infiltration formulation was evaluated.
The implicit Green-Ampt formulation required a longer simulation time. To reduce the simulation
time, an explicit method was applied in i-DSTss. After extensive review and comparison of several
explicit approaches, an explicit Green-Ampt approach presented by Barry et al. [37] was selected. The
explicit approach was compared to the implicit approach and the results were very similar for different
soil types [38]. This explicit method uses the W-Lambert function to solve the natural logarithm
equation in the Green-Ampt infiltration equation. In i-DSTss, the infiltration rate obtained using
explicit Green-Ampt equation or Curve Number method can be used to calculate the depth of runoff

using Equation (2). f and e estimated using the approaches discussed above are used to estimate runoff

depth using coupled continuity-Manning’s equation (Equation (2)).
Equation (2) is also implicit and can only be solved iteratively. The implicit equation given

by Equation (2) was also converted to an explicit equation following the approach by Mizumura
where an exponential equation is approximated with a quadratic equation by adding curve fitting
coefficients [39]. Equation (2) was modified using this approach to yield:{

0.730×WCON×∆t
4

}
x2 +

{
0.730×WCON × ∆t×

(
D1 − dp

)
− 1 + 0.292

2 ×WCON × ∆t
}
x

+
{
0.730×WCON × ∆t× (D1 − dp)

2 + 0.292×WCON × ∆t×
(
D1 − dp

)
+0.0146×WCON × ∆t + i∗ × ∆t} = 0

(4)
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After solving this quadratic equation D2 will be equal to x + D1.
Where WCON = −WS1/2

An , i∗ = i− e− f and x = D2 −D1 where D2 and D1 are depth of runoff in
time step 1 and 2. Equation (4) is computationally less intensive than Equation (2). Additional details
describing calculation of runoff are provided in Appendix A.

3.2. BMP Selection Module-Optimization Approach

The conceptual framework of BMP selection module is shown in Figure 2. The BMP selection
module includes several components integrated into an optimization module that uses an iterative
process to generate optimal solutions (solutions that satisfy all of constraints with respect to the multiple
objective functions). Inputs to BMP selection module include influent water quality data, list of BMPs
and BMP efficiency, target water quality, decision criteria, and weights. Several BMPs are included in
the BMP selection module including green roof, rain barrel, cistern, bioretention, grass swale, rain
garden, sand filter, dry well, infiltration trench, infiltration basin, box tree, porous pavement, wetland,
dry pond, and wet pond. Also, two types of BMPs, vegetated filter strip (VFS) and forebay, were added
as a pre-treatment.

The optimization module evaluates the inputs and selects the best BMP type iteratively with
respect to decision criteria including BMP cost while meeting target water quality requirements. The
BMP selection module has a built-in water quality database assembled from the National Stormwater
Quality Database (NSQD) [40]. This allows users to query the minimum, median or maximum
concentration for each pollutant based on National Climatic Data Center (NCDC) climate region, land
use and level of pollutant concentration to obtain influent water quality data. The land use categories
in the national stormwater quality database include commercial, freeways, industrial, institutional,
open space and residential sites. The tool has an option for users to input site specific water quality
data if available. The tool also allows specifying target water quality requirements for each of the
constituents. Based on input and target water quality, the level of treatment required is calculated for
each pollutant. BMP efficiency for each BMP type is obtained from international stormwater BMP
database [41]. The tool calculates the treatment efficiency required for each of the pollutants and selects
a BMP type that meets the required treatment efficiency.
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Figure 2. Conceptual framework of BMP selection module.

A linear optimization approach is implemented for BMP selection. The optimization process
begins with defining an objective function and constraints. The objective function consists of multiple
decision factors including environmental, economic, social and technical criteria. Meeting target water
quality is a priority in the optimization process. There are other features included to provide additional
flexibility to the tool such as ability to include or exclude BMPs from the selection process. When
multiple criteria are involved in the decision-making process, a multi-objective optimization that
includes more than one objective function is developed and all the objective functions are optimized
simultaneously. The process usually involves optimizing the objective function with respect to some
variables in the presence of constraints on those variables. In this study, the objective function is based
on multiple decision criteria, thus, it is defined as a Multi-Objective Optimization. In the subsequent
sections, we present (1) The Multi-Objective Optimization (MOO), (2) the objective function, and (3)
the constraints.
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3.2.1. Multi-Objective Optimization (MOO)

The i-DSTss selects a BMP based on multiple decision criteria (environmental, economic, social,
and technical criteria) using MOO approach. MOO concept has already been applied in other researches
in urban hydrology and treatment process selection [29,42]. MOO techniques may include multiple
conflicting criteria (e.g., economic versus technical) and thus, involve a trade-off between multiple
objectives. Analytic Hierarchy Process (AHP) involves assigning weights to different alternatives and
a pair-wise comparison of alternatives is used to evaluate trade-offs [43]. In MOO method, multiple
alternatives can be compared simultaneously and multiple objective functions are converted into
a single objective function and solved as a single optimization problem. The solution in a single
objective optimization can be regarded as optimal when the objective function achieves the smallest
or largest value (for minimization or maximization problems, respectively) within the solution space
defined by constraints. When dealing with conflicting objective functions, the solution can be seen
as pareto optimal where no objective function value can be improved without compromising some
other objective function value (Figure 3) [44]. When quantities included in the objective function
are different (e.g., technical versus economic) normalization can be used to ensure consistency of the
optimal solution. The normalized objective functions can be defined using a weighted sum approach.
Weights are usually applied to each criterion or objective function based on professional judgment
regarding the importance of each criterion to the decision-making. The MOO problem can be converted
to a single-objective mathematical optimization problem using a weighted sum method. In a weighted
sum method, the single objective function is constructed as a sum of objective functions multiplied by
weighting coefficients.
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3.2.2. The Objective Function

The i-DSTss selects a BMP type for a site based on environmental, technical, economic and social
criteria (discussed earlier) while meeting target water quality or level of treatment defined as constraints
in the optimization module. A list of criteria, sub-criteria, and a description is provided in Table 2.
Each BMP is assigned weights and ranked based on these sub-criteria. The weights, defined by the
user, reflect the importance of each sub-criterion in the BMP selection process. Ranks are defined by
experts and are used to reflect the merit of each BMP with respect to a criterion. That is, weights
consider only the relative importance of a criterion, while rankings compare the relative suitability
of each BMP with respect to a criterion. The weights are assigned qualitatively ranging from 0 to 5,
with a weight of 1 indicating a criterion is less important to the decision-making compared to another
criterion with a weight greater than 1. Users can assign a weight of zero to one or more of the criteria
to exclude the criteria. This may lead to the use of fewer and most relevant criteria (e.g., only economic
criterion) in the decision-making. A total score reflecting both weights and ranks is calculated for each
BMP which serves as a basis for comparison of BMPs in the BMP selection process. The total score, S,
defined as the sum-product of rankings and weights:

S =
m∑

i=1

wiRi (5)
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where wi is weight assigned by the user to criterion i, Ri is expert assigned ranking to a BMP based on
criterion i. i varies from 1 to m where m is the number of criteria (listed in Table 2). S (calculated for
each BMP) refers to the sum-product obtained by multiplying the weights and ranks and summing up
the products. If two BMPs meet the target water quality, a BMP that has a lower combined score S is
preferred to a BMP with relatively high total score. The objective function is defined as the sum of
scores (ΣS) where S is a score for one BMP. Thus, the multi-objective optimization problem is defined as:

Obj Val = min
n∑

j=1

S jX j (6)

where Obj Val is the value of the objective function (total scores considering all BMPs), Sj is combined
score calculated for one BMP using Equation (5). Xj is a binary decision variable with a value of 0 or 1
and n is number of BMPs. During the optimization process, Xj becomes zero if a BMP is not selected
and 1 if selected. The goal is to minimize Obj Val (e.g., cost if cost is the only criterion). Thus, a BMP
type is selected based on achieving minimum Obj Val. Note that this is subject to constraints that are
chosen by the user, discussed below.

Table 2. BMP selection sustainability criteria (user weighting component).

Category Criteria Description

Economic
LCA Life cycle cost of a BMP

Capital, O&M costs Cost of installation, operation and maintenance for a BMP
Property value Land cost and related property value of a BMP

Environmental
Flow reduction Potential for runoff volume captured or peak flow reduction

Pollutant reduction Pollutant load reduction potential
Green space Potential for creating green space covered with grass or trees

Social
Aesthetics Potential for creation of scenic values

Community Acceptance Acceptance by the community, affected populations
including local stakeholders and authorities

Nuisances Creating inconvenience or annoyances

Technical
Material availability Relative ease of obtaining construction materials

Feasibility Likelihood that projects can be easily implemented

Ease of Maintenance and operation Relative ease of operation and maintenance if failure occurs
due to clogging or other factors

3.2.3. Constraints

The BMP selection module is formulated such that the best BMP is selected with respect to a set of
criteria while meeting user defined constraints. Target water quality requirement for each pollutant is
defined as one of the constraints that has to be met by the BMP selected. Meeting the target water
quality requirements is a priority in the BMP selection process. There are other constraints that are
included to provide further flexibility to the user. For instance, users/utilities may want to include
or exclude a BMP because of some site-specific reasons. The inclusion of such constraints in the
optimization model makes the i-DSTss a flexible tool compared to other tools discussed earlier.

Target water quality constraint: Each BMP has a specific removal efficiency for specific pollutant.
The stormwater must be treated to meet the target water quality specified by the user or a standard
defined based on regulation. Thus, the process requires defining removal efficiency of each BMP. Data
on BMP removal efficiencies from International Stormwater BMP Database [41] is incorporated into
the tool. Removal efficiency required to meet target water quality is calculated as:

Removal e f f iciency required (%) =
(Input water quality− Target water quality)

Input water quality
× 100 (7)

Input water quality in Equation (7) is obtained from NSQD [40]. The NSQD, originally developed
based on EPA rain zone, was rearranged by NCDC climate regions and used as database for BMP
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selection module. Users can select Minimum, 1th quartile, median, 3th quartile or Maximum percentile
concentration levels (Figure 4). When the user selects a region, land use and concentration levels, the
input water quality data is automatically retrieved from the water quality database. Alternatively,
the user can manually enter water quality data specific to the site or based on local event-mean
concentrations (EMCs). Pollutants included in the water quality database include TSS, TN, TP, Zn, Cu,
Pb, NO3, PO4 and Bacteria (Total Coliform). The target concentration can be set to water quality standard
from EPA or user input values. The tool automatically selects a BMP type with treatment performance
(removal efficiency) that exceeds the required removal efficiency calculated using Equation (7). The
treatment performance is obtained from the International Stormwater BMP database.
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BMP inclusion option: The BMP selection module selects the best BMP option with respect to
all criteria including cost that meets the target water quality requirement. However, users may want
to keep an existing BMP or may want to include a BMP for site specific reason. The BMP inclusion
option within the i-DSTss will include this BMP and add additional BMP if required to meet the target
water quality.

BMP exclusion option: A user may want to exclude a BMP type from the selection process for
some site-specific reason. The BMP selection module provides flexibility to exclude a BMP from the list.

3.3. BMP Sizing Module

The BMP sizing module is developed to size BMPs based on user-defined percent flow reduction.
The BMP could be designed to capture and treat the first flush (e.g., first half-inch of rainfall) or
any other user specified percent flow reduction. The tool provides a more flexible option than other
simplified approaches that are based on only capturing and treating the first flush. BMPs are classified
into three different categories for the purpose of sizing, including: Green roof system, infiltration-based
BMPs, and storage-based BMPs.

The BMP sizing tool allows design based on a single or continuous rainfall event. BMPs are
traditionally designed based on a single-event rainfall (design storm approach) where peak runoff

or volume reduction are used as criteria for BMP design and the designs are usually based on the
bigger events. However, during preliminary testing, we observed that a relatively smaller storm event
preceded by larger antecedent rainfall could be more critical for sizing than a bigger event with no
antecedent rainfall condition. This demonstrates the advantage of tracking soil moisture and water
level (storage) in infiltration-based and storage-based BMPs using a continuous simulation approach.
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The option allows users to evaluate an event or continuous simulation approach and select a more
conservative design.

A mass balance approach was applied in the development of all types of BMPs. It is anticipated
that the physically based mass balance approach will improve the accuracy of BMP sizing compared to
the empirical approaches. For green roof system and infiltration-based BMPs, surface area of BMP
is determined based on percent volume captured whereas for storage-based BMPs, a BMP volume,
surface area, and outlet geometry are determined based on peak flow reduction. Additional details
about the sizing procedures for each BMP category is discussed below and under Appendix A.

3.3.1. Green Roof System

The mass balance approach was applied for green roof system where water input to the green
roof system is precipitation and the losses are evapotranspiration, overland flow and underdrain and
the difference is change in storage. The water balance equation is given by Equation (8) below.

i− ET −UD−OF =
∆θ
∆t

dsoil (8)

where i is precipitation intensity (mm/h), ET is evapotranspiration rate (mm/h), UD is underdrain rate
(mm/h), OF is overflow rate (mm/h), ∆t is time step (h), ∆θ is changing in soil moisture, and dsoil is
depth of soil/media (mm). Multiplying the rates by the time step we get:

P− ET′ −UD′ −OF′ = ∆θ× dsoil (9)

where P is precipitation (mm), ET’ is evapotranspiration (mm), UD’ is underdrain (mm), and OF’ is
overflow (mm). Overflow refers to part of the inflow that does not infiltrate or become underdrain
discharged through an overflow system. Underdrain refers to flow that originates from gravity water
held between field capacity and saturation.

Possible conditions for ET’, UD’ and OF’ calculation included in the model are:

(a) If θ < θWP → no transpiration , ET′ = ET calculated using Equation (3), OF′ = 0, and UD′ = 0
(b) If θWP ≤ θ ≤ θFC → ET′ = Min (ET calculated using Equation (3), (θ− θWP) × dsoil), OF′ =

0, and UD′ = 0
(c) If θFC < θ < θs → ET′ = Min (ET calculated using Equation (3) and (θFC − θWP) × dsoil), OF′ =

0 , and UD′ = (θ− θFC) × dsoil

(d) If i > ks, θ = θs → no transpiration , ET′ = ET calculated using Equation (3) → OF′ =

(i− ks) × ∆t, and UD′ = (θs − θFC) × dsoil

Where θ is calculated soil moisture content, θWP is soil moisture content at wilting point, θFC is
soil moisture content at filed capacity point, θs is soil moisture content at saturation, i is precipitation
intensity, ks is saturate hydraulic conductivity, ∆t is time step and dsoil is depth of soil.

For conditions (a) to (c), θ is calculated using Equation (9). For the last condition (d), the soil is
assumed to be saturated, because for green roofs, saturation may occur in a relatively short period
of time particularly for high intensity rainfall (i > ks). Based on this assumption, the overflow can be
estimated as OF’ = (i − ks) × ∆t. Based on Feddes model the transpiration ceases when soil is saturated
while evaporation may occur, which is calculated using Equation (3) [45].

3.3.2. Infiltration-Based BMPs

A mass-balance approach was implemented for infiltration-based BMPs for each layer where
the outflow from the top layer becomes inflow to the next layer. The number of layers vary in
infiltration-based BMPs with some BMP having three layers (surface/ponding layer, a soil layer and a
storage/gravel layer) and others with only a surface layer or a combination of surface layer with either
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soil layer or storage layer (Figure 5). Thus, Infiltration-based BMPs are classified into four groups to
account for the variations in the laying system:

(a) Infiltration-based BMPs with both soil layer and storage layers: Porous pavement, Grass swale
(with surface layer), Bioretention (with surface layer), Sand filter (non-surface);

(b) Infiltration-based BMPs with storage layer but without soil layer: Dry well (with surface layer),
Infiltration trench, Sand filter (surface);

(c) Infiltration-based BMPs with soil layer but without storage layer: Vegetated filter strip, Rain
garden (with surface layer), Box tree (with surface layer);

(d) Infiltration-based BMPs with neither soil layer nor storage layer: Infiltration basin, wetland
(surface/ponding layer only).

The mass balance approach was developed to handle these variations in configurations.
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The mass balance equations for each layer are given in Equations (10) to (12).

Surface layer : P + Runo f f − ET − INF−OF =
∆s1

∆t
(10)

Soil layer : INF− ET′ − PER =
∆s2

∆t
(11)

Storage layer : PER− PER′ −UD =
∆s3

∆t
(12)

where INF is infiltration rate, ∆s is changes in storage, PER, and PER’ are percolation rates into and out
of a storage layer respectively. Darcy’s principle is applied to calculate percolation rate.

i f θ ≤ θFC → PER = 0 , this suggest that suction is greater than gravity and water is held tightly
with the soil, thus, percolation will not occur.

i f θ > θFC → PER = kse−HCO(θs−θ) , gravity forces are greater than suction forces and water
percolates downward (drainage occurs). Here ks is saturated hydraulic conductivity, HCO is decay
constant typically in the range of 5 to 15, θs is soil moisture content at saturation, θFC is soil moisture
content at filed capacity, and θ is soil moisture content during the time interval [20].

The goal is to determine the surface area of the BMP based on percent flow captured. Thus, the
tool can also generate a design curve relating percent flow captured to a sizing factor (defined as the
ratio of BMP area to impervious area).

3.3.3. Storage-Based BMPs

The BMPs under this category include dry pond and wet pond. A level pool routing approach
is implemented for storage-based BMPs. Level pool routing is a procedure based on mass balance
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applicable to hydraulic structures like reservoirs, dams, and stormwater ponds. The key assumption is
a horizontal water surface and negligible velocity in the reservoir. This allows an invariable relationship
between storage (water surface height) and discharge, because any change in storage results in a
change in the uniform water surface elevation and in turn the height of water above the flow control
devices [46]. Storage/level pool routing in i-DSTss includes multiple orifices and weirs as outlet
structures and sizes storage volume and outlet geometry based on an optimization approach. The
routing method determines water surface elevation, elevation-storage curve, elevation-discharge curve
and a storage-discharge curve.

An optimization approach was applied for sizing the reservoir and outlet structures. The objective
function is set to minimize the reservoir volume which could lead to reduction in excavation cost and/or
the surface area required to install the BMP. There are several constraints included in the optimization
procedure including target peak flow reduction, drawdown time, and restrictions on diameter of
orifices and width of weirs. The outputs are reservoir size, outlet geometry, and outflow hydrograph.
The conceptual framework for the optimization of storage-based BMPs is shown in Figure 6.
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The mass balance equation for sizing the reservoir and the outlet is given by:

i×ABMP + Runo f f − E×ABMP −UF×ABMP −OF×ABMP =
∆s
∆t

(13)

Inflow into the pond is the runoff from the watershed plus the precipitation volume during the
time step over the pond. Here the precipitation volume during the time step over the pond is relatively
small compared to the runoff from the site because the pond assumed to have a small area relative to
the watershed area, thus precipitation volume over the pond is neglected. Outflow out of the pond is
the sum of overflow rate (over the weir), underflow rate (through orifices), and volume of evaporation
(E) during the time step from the pond. Again, the E volume during the time step from the pond is
relatively small especially for smaller time intervals because the pond has a small area relative to the
watershed area, thus E from the pond is also neglected.

Therefore, by neglecting evaporation and precipitation we will have:

In f low−Out f low =
∆s
∆t

(14)

Runo f f −UF−OF =
∆s
∆t

(15)

where UF (cms) is the underflow (orifice flow), OF (cms) is the overflow output (weir flow), and ∆s/∆t
(cms) is rate of change in storage. Details on the development of procedures for design of storage-based
BMPs is provided in Appendix A.

3.4. Cost Module

A cost module is included where capital, operation and maintenance (O&M), and BMP
rehabilitation costs are estimated based on BMP size obtained from the sizing module [47–49].
The total life cycle cost of project is the summation of capital, O&M, rehabilitation, administrative,
and inspection costs for a life span of project calculated based on inflation rate and rate of return for a
specific region.

The cost components considered in the calculation of life cycle cost of a project are shown in
Table 3. Capital costs occur in the first year when the stormwater control is installed. The rehabilitation
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or replacement costs occur every few years depending on type and size of BMP and location of project.
The O&M costs occur annually throughout the life of the BMP [50]. Present value is used to compare
scenarios with respect to total cost. An example of how the capital, the O&M, and the rehabilitation
costs are distributed over time is shown in Figure 7. Also, an example of the distribution total cost
into capital, O&M, rehabilitation, and administrative costs during the lifetime of project is shown
in Figure 8. Equation (18) is used to calculate the total cost and Equation (19) is used to calculate
present value.

BMP construction cost is calculated as:

Construction cost = αVβ (16)

where V is BMP volume, α and β are coefficients that vary with BMP type [48]. Capital cost is
calculated as:

Capital cost = Construction cost + Land cost + Cost contingency (17)

Land cost is a user input and cost contingency is calculated as a percentage of the construction cost.
The total cost is given by:

Total cost = Capital cost + O&M cost + Rehabilitation cost + Administrative cost (18)

O&M and administrative costs are also estimated as a percentage of the construction cost.
The tool calculates present value (PV) for a series of capital, O&M and rehabilitation costs occurring

at different time periods during the lifetime of the project. PV for the lifetime of project is calculated
based on total cost and discount rate.

PV =
n∑

i=1

TCi × (1 + discount rate)−i (19)

where i refers to the year number and n is the lifetime of project in years.
TCi is total cost for the ith year, calculated as:

TCi = Total costi × (1 + in f lation rate)i (20)

Capital costs are subject to financing costs and consist primarily of land, construction and
contingency costs [48]. The construction costs for each BMP is calculated as a function of BMP size
and adjusted for year and location of construction based on the Engineering News-Record (ENR)
construction cost index database. A summary of cost categories is shown in Table 3.

Table 3. Cost categories during the life cycle of the project.

Cost Category Description

Capital costs
Construction cost BMP construction cost
Land cost (user input value) Cost of acquiring the land
Cost contingency, % of construction cost (~7%) Unexpected cost

O&M costs, % of construction cost (~4%) Costs incurred each year for
maintenance and operation

Rehabilitation costs, % of construction cost (~70%) Cost for replacing a BMP

Administrative and inspection costs, % of construction cost (~0.5%) Inspection cost
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4. Verification of Component Modules

The section includes verification of component modules presented in Section 3 including hydrology
module and BMP sizing modules using field observations. The section also includes evaluation of
scenarios for BMP selection module.

4.1. Hydrology Module

The outputs from the hydrology module were compared to observed data from a 6.4 ha catchment
in Yellowstone Drive in Madison, Wisconsin [51]. Plan view of Yellowstone Drive catchment in Madison,
Wisconsin is shown Figure 9. Percentage of area under various land cover types in Yellowstone Drive
catchment is shown in Table 4. Precipitation data for a period of 4 months at one-minute time interval
was obtained. The comparison of observed and simulated hydrograph for the site is shown in Figure 10.
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Table 4. Percentage of area under each land cover.

Land Cover Type Percent Area

Streets 17%
Driveways 6%

Roofs 17%
Sidewalks 5%

Other Impervious <1%
Lawns/Open 55%
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Figure 10. (a) Comparison of observed and simulated runoff for Yellowstone Drive catchment (b)
Scatter diagram of observed and simulated data.

Most papers discussing calibration of watershed models (e.g., [52,53]) use the coefficient of
determination, R2, to measure the quality of calibration, which describes the degree of co-linearity
between simulated and observed values and varies from 0 to 1. The model fit obtained in this work
is relatively good (R2 = 0.77) given that R2 values greater than 0.5 are considered acceptable [54].
Although R2 has been widely used for model evaluation, this statistic is oversensitive to outliers and
insensitive to additive and proportional differences between simulated values and observed data [55].
Hence, measures such as the Nash–Sutcliffe coefficient of efficiency (NSE) [56] and Root Mean Square
Error (RMSE) are often considered to be more appropriate [57]. Thus, the NSE was also calculated.
The limitation of NSE is that it does not include weighting, thus ignores differences in uncertainty in



Water 2019, 11, 2022 18 of 45

observations [58]. NSE determines the model efficiency as a fraction of the observed flow variance
reproduced by the model as:

NSE = 1−

∑n
i=1(Si −Oi)

2∑n
i=1(Oi −OMean)

2 (21)

where Oi is observed flow, Si is simulated flow, and OMean is observed mean flow.
Also, percent bias (PBIAS) was calculated which measures the average tendency of the simulated

data to be larger or smaller than observed counterparts which has been applied in hydrology related
research for evaluation of models [59]. PBIAS can vary between small and large values, both negative
and positive, and by definition PBIAS values close to zero indicate better model performance and can
be calculated as:

PBIAS =

∑n
i=1(Oi − Si)∑n

i=1 Oi
× 100 (22)

Based on Moriasi et al. [59], a PBIAS value of less than ±25 and greater than ±10 represents
“satisfactory” model performance. Moriasi et al. [59] recommend that NSE value in the range of 0.6
and 0.8 represents “good” model performance.

The hydrology module was also tested for an additional location; a small 1324 m2 parking lot in
Madison, Wisconsin [51]. The comparison of observed and simulated output for the site is shown in
Figure 11.
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4.2. BMP Selection Scenario Analysis

To test the BMP selection module, the tool was tested for south east NCDC climate region for
different scenarios, including land use types (Freeways, Residential, and Industrial) and pollutant
concentration levels (minimum, median, and maximum concentration values) resulting in different
inflow water quality. The results of BMP scenario analysis are presented in Tables 5–7. As stated earlier,
the BMP removal efficiency data is obtained from the international stormwater BMP database [41].
Tables 5–7 to show summary of land use types, pollutant concentration levels, input water quality
corresponding to the land use type and pollutant concentration level, and the BMP type selected by the
module. The results from the BMP selection module for a residential land use for different input water
quality based on minimum, median and maximum concentration form the BMP database are shown
in Table 5. The tool selected rain garden for the minimum inflow concentration case, a bioretention
for median concentration, and a combination of pretreatment and a bioretention for the maximum
inflow concentration (a vegetated filter strip (VFS) combined with a bioretention) to meet required
removal efficiency. The BMP selection module was tested for a second scenario in Table 6; an industrial
land use for the minimum, median and maximum concentration levels. For industrial land use with
minimum and median level of concentrations, the tool selected a wetland and a combination of BMPs
(a forebay and a wetland) when a maximum concentration level was used.

Table 5. BMP selection by land use (residential) and pollutant concentration.

Land Use
Water Quality

Parameter (unit)
Level of Concentration

Min Median Max

Residential

TSS (mgL) 0.25 38.00 2380.52
TP (mgL) 0.01 0.23 21.20
TN (mgL) 0.20 1.51 10.30

Bacteria (100 mL) 25.50 1870.00 48,392.00
Pb (ugL) 0.15 5.00 368.00
Zn (ugL) 1.00 74.00 2077.40
Cu (mgL) 0.50 10.00 7270.00

NO3 (mgL) 0.05 0.64 1.26
PO4 (mgL) 0.00 0.10 6.00

Optimal BMP Rain garden Bioretention VFS-Bioretention

Table 6. BMP selection by land use (industrial) and pollutant concentration.

Land Use
Water Quality

Parameter (unit)
Level of Concentration

Min Median Max

Industrial

TSS (mgL) 0.50 48.00 1130.00
TP (mgL) 0.01 0.19 2.14
TN (mgL) 0.21 2.03 8.01

Bacteria (100 mL) 25.50 1870.00 48,392.00
Pb (ugL) 0.10 6.80 370.00
Zn (ugL) 1.00 101.00 7700.00
Cu (mgL) 1.00 10.00 950.00

NO3 (mgL) 0.13 0.51 1.24
PO4 (mgL) 0.00 0.10 6.00

Optimal BMP Wetland Wetland Forebay-Wetland
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Table 7. BMP selection by land use (freeways) and pollutant concentration.

Land Use
Water Quality

Parameter (unit)
Level of Concentration

Min Median Max

Freeways

TSS (mgL) 0.50 33.00 823.00
TP (mgL) 0.01 0.25 3.35
TN (mgL) 0.20 0.84 8.14

Bacteria (100 mL) 25.50 1870.00 48,392.00
Pb (ugL) 0.15 5.20 230.00
Zn (ugL) 1.00 48.00 1000.00
Cu (mgL) 1.00 6.00 122.00

NO3 (mgL) 0.03 0.51 2.20
PO4 (mgL) 0.00 0.10 6.00

Optimal BMP Grass swale Grass swale Forebay-Grass swale

The tool was also tested for a freeways land use option under the three concentration levels. As
shown in Table 7, for the minimum and median concentration levels, a grass swale was selected. The
tool selected the same BMP but with a forebay as pretreatment to meet the required removal efficiency
for the maximum concentration level. The tool selected the same BMP for the minimum and median
concentration levels (a wetland and grass swale) for some of the scenarios (e.g., industrial and freeways
land use options). This suggests that the wetland and grass swale options meet the target concentration
levels for both concentration levels (minimum and median). In both cases, the BMP selection changed
to a combination of BMPs when the input concentration was changed to a maximum concentration.
This suggests that the tool will select a relatively expensive BMP combination option only if the inflow
concentration exceeds some threshold.

Default weighting values were used for all criteria described in Table 2. The default weights
assigned to each criterion are shown in Figure 12. The tool allows users to change weights assigned to
each criterion. If the user changes the weights assigned to each criterion, the BMP selection module
may select another BMP or combination of BMPs. As discussed earlier, meeting target water quality
is the driving factor in the BMP selection process. If multiple BMPs meet the target water quality
requirement, the optimal BMP type with respect to all criteria will be selected. If cost is the only
criterion, a relatively low cost BMP that meets the target water quality requirement is selected.Water 2019, 11, x FOR PEER REVIEW 21 of 43 
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4.3. BMP Sizing Module

4.3.1. Green Roof System

The output from green roof model was compared to observed data from South Dakota School of
Mines research site. The results are shown in Figure 13. It was demonstrated that the green roof model
within i-DSTss captured runoff patterns from a smaller size green roof with an area of 3 square meter
(Figure 14).
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4.3.2. Infiltration-Based BMPs

To demonstrate the performance of Infiltration-based BMPs, we used data from a permeable
pavement LID practices. The parking lot area in Madison, Wisconsin with permeable pavement at
the outlet of the parking lot is shown in Figure 15. Inflow and outflow volumes were measured for
different events [60]. A comparison of measured and simulated outflow volumes is shown in Figure 16.
The authenticity of the tool was assessed based on comparison of simulated and measure outflow.
Statistical evaluation techniques including R2, NSE and PBIAS were used as performance measures.
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Figure 16. Measures versus simulated outflow volume.

R2, NSE, and PBIAS values for observed and simulated volumes from the permeable pavement
are shown in Figure 17.
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4.3.3. Storage-Based BMPs

Two different scenarios are presented to demonstrate the storage-based BMPs. The results are
presented in Figure 18 and Table 8. Inflow and outflow hydrograph for dry detention pond for 25
and 50 percent peak flow reduction as shown in Figure 18a,b respectively. The peak flow dropped
from 0.23 cms to 0.17 cms and 0.11 cms for 25 and 50 percent peak flow reduction respectively.
These hydrographs have been generated from a watershed with area of 8.1 hectare and 50 percent
imperviousness and precipitation time series also shown in Figure 18. Summary of outputs for two
different scenarios is shown in Table 8. Also, the change in percent of peak flow reduction and
corresponding change in pond volume, depth and bottom width is shown in Table 8.
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Table 8. Summary for two different scenarios (50 and 25 percent peak flow reduction).

Peak Flow Reduction (%) 50 25

Pond depth (m) 1.8 1.3
Pond storage (m3) 170 64

Pond surface area (m2) 95 49
Length at bottom (m) 6.1 4.2
Width at bottom (m) 2.0 1.4

Total discharge by weir and orifice (cms) 2.73 2.57
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5. The User Interface

The user interface design and the level of interactivity are important factors to enable broader use
of any decision support tool. A user interface should facilitate easy quantitative data input and allow
user intervention to change alternatives [61]. Usually, little attention is given to the user interface when
a decision support tool is intended as a conceptual demonstration or evaluation of approaches [62],
or when it is intended for a highly specific use, or for expert users who are more concerned with
the theory behind the decision process [63,64]. This i-DSTss tool is intended to be used by a wide
range of utilities, and/or by users who may not be modelers, and therefore employs a user interface
that allows easy interaction. Interactivity can be in the form of data inputting, ability to monitor the
decision process, and/or changing constraints or rules that reflect the user’s preferences or giving a
warning message if any design standards are violated [42,65,66]. It is important that the user interface
integrates the various underlying modules. The organization of the graphical user interface is shown
in Figure 19. The user will be able to modify the inputs for different modules including runoff, water
quality, removal efficiency, BMP sizing, and cost analysis as shown in Figure 19. Within each input, the
user has the ability to change and modify the various factors that affect the outcomes. User can then
run i-DSTss and visualize the outputs also from the user interface.
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6. Conclusions

The i-DSTss tool integrates several modules, including hydrology, BMP selection, BMP sizing
and cost. Decision support tools in stormwater management become more useful to the users when
they integrate multiple criteria and objective functions. The i-DSTss includes technical, environmental,
social and economic criteria in the BMP selection module. The graphical user interface allows altering
constraints that may result in a different type and size of BMP. To assess the authenticity of the tool,
prediction from the tool for each module type (hydrology and sizing) were compared with observed
data and the goodness-of-fit was evaluated in each case. The hydrology module predicted runoff from
small residential area and a parking lot with R2 and NSE values greater than 0.7 in each case. The BMP
sizing module includes sizing options for green roofs, infiltration-based BMPs and storage-based BMPs.
The tool predicted outflow rate from a permeable pavement with R2 and NSE values greater than 0.8.
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It was demonstrated through scenario evaluation that the BMP selection module recommended cost
effective BMPs. A significant merit of the tool is that complex approaches were translated into easy
to use, computationally less intensive, yet rigorous physically based modules that could be verified
with observations. The tool can aid decision makers in analyzing various stormwater scenarios at the
site-scale level.
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Appendix A. Detailed Procedures

In this section detailed procedures for the various modules in the i-DSTss framework (hydrology
module, BMP selection module, and BMP sizing module) are provided.

Appendix A.1. Hydrology Module

The hydrology module includes event and continuous simulation methods for calculating runoff

from precipitation time series. The Green-Ampt and Curve Number methods are used for runoff

calculation. In both Green-Ampt and Curve Number methods, the runoff depth is calculated using
a mass balance approach considering precipitation intensity (i), evapotranspiration rate (e), and
infiltration rate (f ). The runoff depth is used to calculate overland flow.

Appendix A.1.1. Green-Ampt Method:

The following steps are used to calculate runoff.

Step 1: Calculate precipitation intensity, i (mm/h)

i =
P
∆t

(A1)

where P (mm) is incremental precipitation, ∆t (h) = ti+1 − ti is time step and i (mm/h) is
precipitation intensity.
Step 2: Calculate cumulative infiltration, Ft (mm) [37]

Ft = Ψ × IMD×

−1−


t∗ + ln

[
1 + t∗ +

√
2t∗

(1+
√

2t∗/6)

]
1

1+t∗+
√

2t∗

(1+
√

2t∗/6)

− 1


 (A2)

where t∗ = Ks×∆t
Ψ×IMD , Ks(mm/h) is saturated hydraulic conductivity, Ψ (mm) is suction head, IMD is

initial soil moisture deficit calculated as:

IMD = θs − θi (A3)

where θs and θi are saturated and initial soil water content respectively.
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The cumulative infiltration, Ft at time t depends on initial soil moisture deficit (IMD), and other
soil physical properties such as suction head (ψ), and saturate hydraulic conductivity (Ks). Higher
IMD and ψ values suggest a higher cumulative infiltration Ft at time t.

Step 3: Calculate infiltration rate, f (mm/h) [32]

f = Ks

(
1 +

Ψ × IMD
Ft

)
(A4)

The infiltration rate depends on cumulative amount that has already infiltrated calculated in Step
2, initial soil moisture deficit, suction head, and saturated hydraulic conductivity. The initial moisture
deficit (IMD) is important parameter for calculation of the cumulative infiltration (Ft), and infiltration
rate (f ). Thus, IMD has to be updated each time step based on water input to account for the effect of
IMD on infiltration rate. Equation for updating IMD is given in Step 4 below.

Step 4: Update soil moisture account [20]

The soil moisture is updated every time step to account for the effect of soil moisture condition on
infiltration and runoff.

The soil moisture is continuously updated depending on whether there is precipitation input
or not.

Case 1: If there is precipitation input (P , 0), the soil moisture deficit (IMD) is updated using Equation
(A5) below.

IMDti = Max
(
IMDti−1 −

f × ∆t

4
√

Ks
, 0

)
(A5)

where IMDti is the soil moisture deficit at the end of a time step and IMDti−1 is the soil moisture deficit
at beginning of the time step.

Equation (A5) suggests that the soil moisture deficit at the end of a time step is a function of the
soil moisture deficit at beginning of the time step, amount infiltrated during time step (∆t), f × ∆t, and
the saturated hydraulic conductivity of the soil.

Case 2: If there is no precipitation input (P = 0), then the soil moisture deficit (IMD) is updated using
Equation (A6) below.

IMDti = Min
(
IMDti−1 + IMDmax ×Kr × ∆t,θs − θr

)
(A6)

where θr is residual soil water content, and Kr (h) is moisture deficit recovery constant calculated as:

Kr
(
h−1

)
=

√
Ks(mm/h)

2.95 .

The moisture deficit recovery constant (Kr) is a parameter that describes how fast the soil moisture
changes in the absence of precipitation input and it is dependent on saturate hydraulic conductivity of
the soil.

Step 5: Calculate evapotranspiration

The evapotranspiration is calculated using Hargreaves equation [34]

ET = 0.023(0.408)(Tmean + 17.8)(Tmax − Tmin)
0.5Ra (A7)

where Tmax = maximum air temperature (◦C), Tmin = minimum air temperature (◦C), Ra = extraterrestrial
radiation (MJ·m−2), and 0.408 is a unit conversion factor. Extraterrestrial radiation, Ra, is estimated
based on latitude and the calendar day of the year given as:

Ra =
24× 60
π

Gscdr[ωs sin(ϕ) sin(δ) + cos(ϕ) cos(δ) sin(ωs)] (A8)
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where Gsc = solar constant (0.0820 MJ·m−2
·min−1), ϕ = latitude (radians), converted from degrees

latitude to radians (radians = degrees(π/180)), and the term 24 × 60 is a factor to convert minute to day.
The remaining parameters are determined based on the calendar day of the year:

dr = 1 + 0.33 cos
( 2π

365
J
)

(A9)

where dr = inverse relative distance from earth to sun, and J = calendar day of the year,

δ = 0.409 sin
( 2π

365
J − 1.39

)
(A10)

ωs = cos−1(− tan(ϕ) tan(δ)) (A11)

where δ = solar declination (radians), and ωs = sunset hour angle (radians).
The initial version of Hargreaves equation for evapotranspiration is based on daily time steps.

The equation was modified to disaggregate the daily evapotranspiration estimates into sub-hourly
estimates using a cosine function given by [35,36]:

e = ET ×
(
0.1302× ∆t× cos

(
2π×

(11.23 + t)
24

))
(A12)

where ∆t is time step (h) and t is cumulative time (h).

Step 6: Calculate the rainfall excess i∗

The rainfall excess i∗ is calculated using precipitation intensity, infiltration and evapotranspiration
rates calculated in steps 1, 3, and 5.

i∗pervious = i− f − e (A13)

i∗impervious = i− e (A14)

where i∗pervious is rainfall excess from pervious area and i∗impervious is rainfall excess from impervious area.

Step 7: Calculate ponding depth [20]

The rainfall excess i∗ represents part of the precipitation input available for surface ponding and
runoff. A fraction of the surface ponding, obtained after deducting depression storage, is available
for runoff. This faction of surface ponding is used to calculate runoff amount. The runoff amount is
estimated using Manning’s equation.

dD
dt

= i∗ −
w× s

1
2

A× n

(
D− dp

) 5
3 (A15)

Equation (A15) is implicit and requires iteration to calculate D (surface ponding depth). The
equation was transformed into explicit form by converting the exponential equation to a quadratic
equation as described in [39]:

D
5
3 = aD2 + bD + c (A16)

where a = 0.730, b = 0.292, and c = 0.0146

dD
dt

= i∗ + WCON
(
D− dp

) 5
3 (A17)

Dti+1 −Dti

∆t
= i∗ + WCON

(
Dti +

1
2

(
Dti+1 −Dti

)
− dp

) 5
3

(A18)
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If Dti+1 −Dti = x, we have:

x = i∗ × ∆t + WCON × ∆t×
(1

2
x + (Dti − dp

)
)

5
3 (A19)

x = i∗ × ∆t + WCON × ∆t×
{
a×

(1
2

x + (Dti − dp

)
)2 + b×

(1
2

x + (Dti − dp

)
) + c

}
(A20)

x = i∗ × ∆t + WCON × ∆t×
{
a×

(1
4

x2 + x
(
Dti − dp

)
+ (Dti − dp)

2
)
+ b×

(1
2

x + (Dti − dp

)
) + c

}
(A21)

Equation (A21) can be rearranged into a quadratic form (Ax2 + Bx + C = 0) as:{
a×WCON×∆t

4

}
x2 +

{
a×WCON × ∆t×

(
Dti − dp

)
− 1 + b

2 ×WCON × ∆t
}
x

+
{
a×WCON × ∆t× (Dti − dp)

2+b×WCON × ∆t×
(
Dti − dp

)
+ c×WCON × ∆t + i∗ × ∆t

}
= 0

(A22)

Then Dti+1 can be calculated using the expression x = −B±
√

B2−4AC
2A as:

For pervious area A, B and C are given by:

A =
a×WCONpervious × ∆t

4
(A23)

B = a×WCONpervious × ∆t×
(
Dti − dp,pervious

)
− 1 +

b
2
×WCONpervious × ∆t (A24)

C = a×WCONpervious × ∆t× (Dti − dp,pervious)
2 + b×WCONpervious × ∆t×

(
Dti − dp,pervious

)
+c×WCONpervious × ∆t + i∗ × ∆t

(A25)

For impervious area A, B and C are given by:

A =
a×WCONimpervious × ∆t

4
(A26)

B = a×WCONimpervious × ∆t×
(
Dti − dp,impervious

)
− 1 +

b
2
×WCONimpervious × ∆t (A27)

C = a×WCONimpervious × ∆t× (Dti − dp,impervious)
2 + b×WCONimpervious × ∆t

×

(
Dti − dp,impervious

)
+ c×WCONimpervious × ∆t + i∗ × ∆t

(A28)

Where WCONpervious = −
WS1/2

Apervious×npervious
, WCONimpervious = −

WS1/2

Aimpervious×nimpervious

Step 8: Calculate overland flow/runoff [20]

After calculation of runoff depth in Step 7, overland flows are calculated separately for pervious
and impervious areas using Equations (A29), (A30) below.

Q = Qpervious area + Qimpervious area (A29)

Q =
1

npervious
×W ×% pervious×

(
Dti+1 − dp−pervious

) 5
3
× S

1
2 +

1
nimpervious

×W ×% impervious×
(
Dti+1 − dp−impervious

) 5
3
× S

1
2 (A30)

where dp−pervious, npervious are depression storage and Manning’s coefficient for pervious area and
dp−impervious, nimpervious are depression storage and Manning’s coefficient for impervious area. W and S
are width and slope of watershed respectively.
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Appendix A.1.2. Curve Number Method:

Similar to the Green-Ampt approach, overland flow is calculated using a mass balance approach
considering precipitation intensity (i), evapotranspiration rate (e), and infiltration rate (f ).

Step 1: Calculate precipitation intensity, i (mm/h)

i =
P
∆t

(A31)

Step 2: Calculate cumulative infiltration F (mm) [20]

F = p−
p2

p + S
(A32)

where p (mm) is cumulative precipitation and S is retention parameter calculated as [33]:

S =
1000

CNcomposite
− 10 (A33)

where CNcomposite is composite Curve Number calculated using Equation (A34) below.

CNcomposite =

∑n
i=1 CNi ×Ai∑n

i=1 Ai
(A34)

where CNi, Ai are Curve Number and area for ith segment respectively and n is number of total
segments.
Step 3: Calculate infiltration rate f (mm/h)

f =
Fti+1 − Fti

∆t
(A35)

Step 4: Update retention parameter [20]

For event simulation, a constant value is used for the retention parameter. For continuous
simulation, the retention parameter is updated depending on whether there is precipitation input or
not to account for the effect of soil moisture content on infiltration (Note: The updated S is used to
calculate F).

Case 1: If there is precipitation input (P , 0), the retention parameter is updated using Equation
(A36) below.

Sti = Max
(
Sti−1 − f × ∆t, Smin

)
(A36)

Equation (A36) suggests that retention parameter value at end of the time step is a function of the
retention parameter value at beginning of the time step and amount infiltrated during time step (∆t).

Case 2: If there is no precipitation input (P = 0), then the retention parameter is updated using Equation
(A37) below.

Sti = Min
(
Sti−1 + Smax ×Kr × ∆t, Smax

)
(A37)

Equation (A37) suggests that retention parameter value at end of the time step is a function of the
retention parameter value at beginning of the time step, and moisture deficit recovery constant (Kr).

where:
Smin =

1000
CNmax

− 10 (A38)
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Smax =
1000

CNmin
− 10 (A39)

where CNmax is maximum Curve Number, and CNmin is minimum Curve Number.
The methods for calculating evapotranspiration, runoff depth and overland flow are similar to the

methods used in Green-Ampt approach discussed earlier.

Appendix A.2. BMP Selection Module

The BMP selection module selects a BMP for site from a list of BMP built into the tool based on
input water quality, target water quality, BMP efficiency, and other factors such as technical, economic,
environmental and social criteria.

Appendix A.2.1. Input Water Quality

Input water quality is obtained from national stormwater quality database (NSQD) based on
NCDC climate region, land use and level of concentration [40].

Appendix A.2.2. Target Water Quality

Target water quality requirements refers to water quality requirements for discharge or reuse
which can be obtained from standards set by the U.S. Environmental Protection Agency (USEPA) or
user input values.

Appendix A.2.3. BMP Removal Efficiency

The BMP removal efficiencies are calculated based on input water quality concentration and target
water quality using Equation (A40) below.

Removal e f f iciency required (%) =
(Input water quality− Target water quality)

Input water quality
× 100 (A40)

Then the calculated removal efficiencies are compared with BMP removal efficiency obtained
from international stormwater BMP database [41]. A BMP with a removal efficiency greater than
the calculated value is selected. Other criteria including economic, environmental and social are
considered during the selection process. A multi-objective optimization procedure is used during the
selection. Meeting the target water quality requirement is a priority in the selection process.

Appendix A.3. BMP Sizing Module

For the purpose of BMP design, we categorized the BMPs in three different groups including green
roof system, infiltration-based BMPs, and storage-based BMPs. Details about the sizing procedures for
each BMP category is discussed below.

Appendix A.3.1. Green-Roof System

A mass balance approach was applied for green roof system. The water input to the green
roof system is precipitation. The losses include evapotranspiration, overflow, and underdrain. The
difference between water input and the losses becomes change in storage. Thus, the rate of water input
and loss is given by:

i− ET −UD−OF =
∆θ
∆t

dsoil (A41)

where i is precipitation intensity (mm/h), ET is evapotranspiration rate (mm/h), UD is underdrain rate
(mm/h), OF is overflow rate (mm/h), ∆t is time step (h), ∆θ is changing in soil moisture, and dsoil is
depth of soil/media (mm). Multiplying the rates by the time step we get:

P− ET′ −UD′ −OF′ = ∆θ× dsoil (A42)
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where P is precipitation (mm), ET’ is evapotranspiration (mm), UD’ is underdrain (mm), and OF’ is
overflow (mm). Overflow refers to part of the inflow that does not infiltrate or become underdrain
discharged through an overflow system. Underdrain refers to flow that originates from gravity water
held between field capacity and saturation.

ET’, UD’ and OF’ are calculated based on water content. ET’ includes transpiration from vegetation
and evaporation from the land surface. We assumed transpiration does not occur if the soil moisture
content is below the wilting point and at saturation. Evaporation occurs for all moisture conditions
above the residual water content. Possible conditions for ET’, UD’ and OF’ calculation included in the
model are:

I f θ < θWP → no transpiration , ET′ = ET calculated by Hargreaves Equation, OF′ = 0, and UD′ = 0
I f θWP ≤ θ ≤ θFC → ET′ = Min(ET calculated by Hargreaves Equation and (θ− θWP) × dsoil), OF′ =
0, and UD′ = 0
I f θFC < θ < θs → ET′ = Min(ET calculated by Hargreaves Equation and (θFC − θWP) × dsoil), OF′ =
0 , and UD′ = (θ− θFC) × dsoil

I f i > ks, θ = θs → no transpiration, ET′ = ET calculated by by Hargreaves Equation → OF′ =
(i− ks) × ∆t, and UD′ = (θs − θFC) × dsoil

where θ is soil moisture content, θWP is soil moisture content at wilting point, θFC is soil moisture
content at filed capacity point, θs is soil moisture content at saturation, i is precipitation intensity, and
ks is saturate hydraulic conductivity.

Updating water content of media:

The underdrain and overflow amounts are dependent on the water content of the media. Thus,
the moisture content is updated every time step.

θr ≤ θti+1 =

{
P− ET′ −UD′ −OF′

dsoil
+ θti

}
≤ θs (A43)

Equation (A43) suggests that the soil moisture content ranges from residual moisture content (θr)
to saturated moisture content (θs).

Calculate runoff flow from green roof:

Q = QOF′ + QUD′ (A44)

Q =
1.49

n
w×
√

s× (OF′)
5
3 + K(UD′)n (A45)

where k = 0.3, and n = 2

Appendix A.3.2. Infiltration-Based BMPs

A mass-balance approach is used to determine overflow and underdrain rates. The inflow into
BMPs includes precipitation over the surface area of the BMP and runoff from the drainage area.
Outflow/loss from the BMP includes evapotranspiration and infiltration. The BMPs may have up to
three layers (surface/ponding layer, a soil layer and a storage/gravel layer). The mass balance approach
is applied for each layer.

The mass balance equations for each layer is given in following Equations (A46)–(A48):

Surface layer : P + Runo f f − ET − INF−OF =
∆s1

∆t
(A46)
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where P is precipitation rate, Runoff is runoff calculated from hydrology module, INF is infiltration
rate, ET is evapotranspiration rate, OF is overflow rate, ∆s1 is changes in storage in surface layer, and
∆t is time step.

Soil layer : INF− ET′ − PER =
∆s2

∆t
(A47)

where ET’ is evapotranspiration in soil layer, PER is percolation rates into a storage layer, and ∆s2 is
changes in storage in soil layer.

Storage layer : PER− PER′ −UD =
∆s3

∆t
(A48)

where PER’ is percolation out of a storage layer and into a native soil, UD is underdrain rate, and ∆s3

is changes in storage in storage/gravel layer.
Darcy’s principle is applied to calculate percolation rate in the soil and storage layer Equations

(A47) and (A48).

i f θ ≤ θFC → PER = 0 , this suggest that suction is greater than gravity and water is held tightly with
the soil, thus, percolation does not occur.
i f θ > θFC → PER = kse−HCO(θs−θ) where ks is saturated hydraulic conductivity, HCO is decay
constant typically in the range of 5 to 15, θs is soil moisture content at saturation, θFC is soil
moisture content at filed capacity, and θ is soil moisture content during the time interval [20].

Note that when θ > θFC, gravity forces are greater than suction forces and water percolates
downward (drainage occurs)

Drawdown time is the time that water captured by the BMP must drain. This time may range
from 24 h to 48 h.

Drawdown time (h) =
ponding depth

in f iltration rate
+

θ× soil depth
percolation rate

(A49)

Appendix A.3.3. Storage-Based BMPs

Level pool routing method is implemented in i-DSTss. The level pool routing procedure is a
method for calculating the water level (h) and outflow hydrograph given inflow hydrograph and
storage-outflow characteristics. The solution involves integrating the continuity equation as indicated
below, and rearranging terms such that all the unknown quantities are on the left-hand side of
the equation.

dS(t)
dt

= I(t) −O(t) (A50)

S(ti+1) − S(ti) =

∫ S(ti+1)

S(ti)
dS(t) =

∫ ti+1

ti

I(t)dt−
∫ ti+1

ti

O(t)dt (A51)

S(ti+1) − S(ti) =
∆t
2
[I(ti+1) + I(ti)] −

∆t
2
[O(ti+1) + O(ti)] (A52)

2S(ti+1)

∆t
+ O(ti+1) = [I(ti+1) + I(ti)] +

[
2S(ti)

∆t
−O(ti)

]
(A53)

The solution involves the development of outflow as a function of storage and then solving it
sequentially for every time step. For a level pool reservoir, the storage and the outflow are functions of
water surface elevation. The storage-elevation relationship depends on the shape of pond and the
outflow-elevation relationship depends on outlet structures (e.g., orifices and weirs.)

Qoutlet structures = QOri f ice + QWeir (A54)

Qoutlet structures = COri f ice ×
π
4
×D2

×

√

19.6× h + CWeir ×W ×H1.5 (A55)
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where COri f ice and CWeir are orifice and weir coefficients respectively. D (m) is orifice diameter, h (m) is
elevation of center of orifice, W (m) is weir width and H (m) is crest elevation.

For trapezoid shape pond the volume of pond is given by:

V = LWD + (L + W)ZD2 +
4
3

Z2D3 (A56)

where V (m3) is volume at specific depth, D (m) is elevation or depth, L (m) is length of pond at bottom,
W (m) is width of pond at bottom and Z is side slope.

Calculating Drawdown Time

Drawdown time (h) =
Sti+1 − Sti

Average
(
Qti+1 , Qti

) (A57)

where Sti+1 , Sti (m3) are storage volumes at the end and at the beginning of the time step, and Qti+1 , Qti

(m3/h) are discharge rates at the end and at the beginning of the time step.

Appendix B. Demonstration of Operation of the Tool

The section includes flowchart of the processes involved in i-DSTss and demonstration of the
operation of the tool from the beginning to the end. Figure A1 demonstrates the modeling process
included in the i-DSTss.Water 2019, 11, x FOR PEER REVIEW 33 of 43 
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Demonstration of the operation of the tool are presented below. The first page of the tool is shown
in Figure A2. Users can press the “Start the i-DST” button to go to the next page.
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The hydrology module: The first module is the hydrology module. User can use hydrology module
provided in i-DSTss or they may use outputs from another hydrology models. In the interface shown
in Figure A4, users can select “user input” option to use their runoff data. Otherwise, they need to
select the “calculated” option. As shown in Figure A4, event-based and continuous simulation options
are provided. In both cases, users can select Green-Ampt or curve number method.
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“Climate data”, “Evapotranspiration”, “Weighted soil parameters”, and “Watershed parameters”
can be changed using the interface shown in Figure A5. For precipitation, the user may choose the
daily or sub-hourly data to input the precipitation time series.
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If users select a sub-hourly data, they can input the precipitation time series data in the Excel
spreadsheets which is linked to interface shown in Figure A5. After inputting the precipitation time
series in the spreadsheet, the user can click “BACK TO GUI” button to come back to the Graphical
User Interface (GUI) (Figure A6).



Water 2019, 11, 2022 36 of 45
Water 2019, 11, x FOR PEER REVIEW 35 of 43 

 

 

Figure A6. Precipitation time series input page 

The “Weighted soil parameter” section allows inputting soils data for up to 10 land segments. 
Users can choose different soil types and percentage of area under each soil type. When users select 
a soil type, the soil parameters will be populated automatically (Figure A7). 

 

Figure A7. Defining soil type and watershed parameters 

The output pages in Figures A8-A9 show time series of runoff hydrograph, precipitation, and 
infiltration rate. 

 

Figure A6. Precipitation time series input page.

The “Weighted soil parameter” section allows inputting soils data for up to 10 land segments.
Users can choose different soil types and percentage of area under each soil type. When users select a
soil type, the soil parameters will be populated automatically (Figure A7).
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The output pages in Figures A8 and A9 show time series of runoff hydrograph, precipitation, and
infiltration rate.
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The BMP selection module: The BMP selection module selects a BMP type based on inflow water
quality, target water quality, BMP removal efficiency and other criteria such as cost. The BMP selection
module includes water quality data, BMP removal efficiency, user preference, and weighting inputs as
shown in Figure A10.
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Figure A10. BMP selection module.

The water quality data is obtained from the national stormwater quality database. If the users
have their own water quality data there is an option to input their own data (“Input data” button). The
input water quality data changes with NCDC climates region, land use, and level of concentration. For
the purpose of demonstration, the “Southeast” climate region, “Industrial” for land use, and “Median”
concentration levels are selected (Figure A11).
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The “Show water quality parameters” button can be used to display water quality data
corresponding to climate region, land use, and concentration level. The BMP removal efficiencies
for different BMP types are obtained from BMP international database. There is a “User preference”
option which provides a list of BMPs. User can include or exclude BMPs from the selection process by
selecting BMPs from Figure A12. The left side is for including BMPs and the right side is for excluding
the BMPs.Water 2019, 11, x FOR PEER REVIEW 37 of 43 
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User can run the BMP selection module by clicking on “Run BMP Selection” button. The optimal
BMP will be selected using an optimization procedure. For instance, here a wetland has been selected.
Once the data is input, users can run the model to select a BMP type. The select BMP type will be
displayed in the box shown in Figure A14 under the “Run BMP selection” button.
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The BMP sizing module: For the purpose of sizing, BMPs have been categorized into three different
groups including green roof system, infiltration based BMPs such as bioretention and storage-based
BMPs such as detention and retention pond (Figure A15).
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(a) Green roof system: In the “Green roof system”, the goal is to determine how much area has to
be under the green roof to achieve a specific percent flow reduction. The area of the watershed,
percent imperviousness and the runoff hydrograph come from the hydrology module. As shown
in Figure A16, by running the tool for 20 percent flow reduction, the surface area that has to be
under a green roof is calculated. User may also view the hydrographs from the graphical output.
In the Figure A16 the blue line shows the hydrograph without green roof and the red line shows
the hydrograph with green roof.
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(b) Infiltration-based BMPs: The next group of BMPs are infiltration-based BMPs. For the
infiltration-based BMPs, the user inputs the area of the BMP and the tool will calculate the
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percent capture and drawdown time. The tool also shows the graphical outputs of inflow and
outflow hydrographs as shown in Figure A17.
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The tool also tracks the water level inside the surface (ponding) layer (Figure A18).
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(c) Storage-based BMPs: The third group of BMPs are storage-based BMPs such as detention pond
and retention pond. Since ponds usually are used for stormwater management for bigger area, the
area of watershed has been increased in this scenario. The input is percent peak flow reduction and
the output is geometry of the pond and geometry of the outlet structures. By inputting 50 percent
peak flow reduction and other input parameters, the tool determines optimal size/geometries of
pond and outlet structures through an optimization process. By minimizing the size/volume of
the pond, the cost will be minimized. Users can view inflow and outflow hydrographs and the
peak flow reduction in the graphical output section as shown in Figure A19.
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The cost module: The last module is BMP cost module (Figure A20). The cost estimate is based
on the size of the BMP determined using the BMP sizing module above. The size information
from sizing module will be transferred to the cost module. For example, dry pond was used in the
BMP sizing module, the data from BMP sizing module (surface area and the volume) are displayed
here automatically.
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module will be transferred to the cost module. For example, dry pond was used in the BMP sizing 
module, the data from BMP sizing module (surface area and the volume) are displayed here 
automatically.  

Figure A20. Cost Module 

User can also use the cost module to calculate cost of other BMP types by clicking on “Other 
BMP type” button and selecting a BMP type and input the area and volume to calculate the cost.  

ENR cost data for the 20 cities in the United States have been used and user can change the 
different cities. If a city is not listed, they can use the Thiessen polygon and use the data from the 
closest city  

After running the cost analysis, the total cost will be calculated. The total cost includes capital 
cost, operation maintenance costs and other related costs. The tool displays graphical outputs of 
capital costs, rehabilitation cost, operation maintenance costs, administration costs, and present 
value. The tool will also show the distribution of all components of cost over the lifetime of the project 
as shown in Figure A21. 

Figure A20. Cost Module.

User can also use the cost module to calculate cost of other BMP types by clicking on “Other BMP
type” button and selecting a BMP type and input the area and volume to calculate the cost.

ENR cost data for the 20 cities in the United States have been used and user can change the
different cities. If a city is not listed, they can use the Thiessen polygon and use the data from the
closest city

After running the cost analysis, the total cost will be calculated. The total cost includes capital cost,
operation maintenance costs and other related costs. The tool displays graphical outputs of capital
costs, rehabilitation cost, operation maintenance costs, administration costs, and present value. The
tool will also show the distribution of all components of cost over the lifetime of the project as shown
in Figure A21.
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