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Abstract: This study explores an alternative configuration of the hydroclimatic modeling chain
around the notion of asynchronous objective-function (AOF). AOFs are calibration criteria purposely
ignoring the correlation between observed and simulated variables. Within the suggested alternative
configuration, the hydrologic model is being forced and calibrated with bias corrected climate
variables over the reference period instead of historical meteorological observations. Consequently,
the alternative configuration circumvent the redundant usage of climate observation operated
within conventional configurations for statistical post-processing of simulated climate variables and
calibration of the hydrologic model. AOFs optimize statistical properties of hydroclimatic projections,
preserving the sequence of events imbedded within the forcing climate model. Both conventional
and alternative configurations of the hydroclimatic modeling chain are implemented over a mid-size
nivo-pluvial catchment located in the Saint-Lawrence Valley, Canada. The WaSiM-ETH hydrological
model is forced with a bias-corrected member of the Canadian Regional Climate Model Large
Ensemble (CRCM5-LE). Five AOFs are designed and compared to the common Kling-Gupta efficiency
(KGE) metric. Forced with observations, AOFs tend to provide a hydrologic response comparable
to KGE during the nival season and moderately degraded during the pluvial season. Using AOFs,
the alternative configuration of the hydroclimatic modeling chain provides more coherent hydrologic
projections relative to a conventional configuration.
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1. Introduction

Many studies assess the impact of climate change on regional water flow regimes by implementing
a hydroclimatic modeling chain [1–6] that translates climate variables projected by Global Climate
Models (GCM) or Regional Climate Models (RCM) into the future hydrologic regime of a given
watershed. Conventional configurations of the hydroclimatic chain (Figure 1) first apply statistical
post-processing to simulated climate variables in order to minimize mismatches with observations.
Quantile mapping [7,8] is a common post-processing method which defines transfer functions that
relate empirical distributions of climate observations and simulations over an overlapping reference
period. Corrected climate variables over reference and future periods are then produced applying the
transfer function to raw simulations. In parallel, a hydrologic model is forced with climate observations,
simulating hydrologic processes at the catchment scale. Through an iterative process, an optimization
algorithm calibrates the free parameters of the hydrologic model according to a given objective-function:
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A criterion minimising the error between simulated and observed streamflow. Hydrologic projections
over reference and future periods are finally produced forcing the calibrated hydrologic model with
the corrected climate variables.

Albeit frequently used to assess the impact of climate change on water resources, conventional
configurations of hydroclimatic chains raise concerns regarding their ability in producing consistent
hydrologic projections. These latter operate quantile mapping and calibration independently without
ensuring consistency between the redundant usages of climate observations (dashed lines, Figure 1).
Climate data heterogeneity and scarcity are among the most important limitations of hydroclimatic
modeling [9–11], motivating the use of modeling chains that rely exclusively on air temperature and
precipitation. Surrogating the deficient observation coverage by biased reanalyses or remote sensing
products often corrode the resulting simulated hydrological response [12,13]. In this context, avoiding
a non-added-value redundant use of climate observation may potentially lead to a reduction of the
overall uncertainty affecting the hydroclimatic modeling chain [14,15].

In opposition to meteorological applications, climate modeling is not constantly updated in
order to better reproduce the observed conditions of the climate system, these latter being exclusively
imposed at the onset of the projection run. It has for consequence that simulated climate series rapidly
depart from the sequence of observed climate events over the historical period (meteorology) but the
statistical properties of the climate system is preserved over a few decades [16]. Applied to simulated
climate time series, quantile mapping conducts an asynchronous transformation which preserves
the sequence of events embedded within the climate model [17]. In contrast, hydrologic models are
typically trained in reproducing the sequence of events observed over the historical period. Since most
climate change impact studies on water resources assess the projected change in statistical properties
between a reference and a future simulated flow regime [18], the use of the correlation component in
the objective functions appears questionable. Does it bring added-value to the resulting hydrologic
projections? Or on the other hand, does it taints the parametric identity of the calibrated model in
a way that would corrode the credibility of the resulting projections [19]? The redundant use of
climate observations may also be circumvented using bottom-up vulnerability-based (scenario-free)
approaches assessing the impact of climate changes on water resources [20–22].Water 2019, 11, x FOR PEER REVIEW 3 of 18 
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Figure 1. A conventional configuration of a hydroclimatic modeling chain.

In this study, we propose an alternative configuration of the hydroclimatic modeling chain that
forces and calibrates the hydrologic model directly with post-processed climate simulations, instead
of observations (Figure 2). Since the sequence of events embedded within the climate model differs
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from historical observations, a calibration criteria must purposely ignore correlation between observed
and simulated streamflow. Such a criteria is hereafter referred to as “asynchronous objective-function”
(AOF, defined in Section 2.1). We first evaluate in Section 3.1 the hydrological performance of five
exploratory AOFs forcing the WaSiM-ETH hydrologic model with climate observations over three
mid-size catchments located in the St. Lawrence Valley, Canada (Section 2.3). We subsequently
examine the capacity of the alternative configuration in constructing consistent hydrologic projections
over the reference period simulated by the climate model (Section 3.2). We expect correlation-based
calibration to dominate AOFs over the observed historical period, whereas AOFs provide more accurate
hydrologic projections. The scope of the study remains a proof a concept aiming to define the notion of
asynchronous objective functions (AOFs) and demonstrating its applicability in the scope of climate
change impact studies.
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Figure 2. Alternative configuration of the hydroclimatic modeling chain.

2. Methodology

The proposed step-by-step methodological framework (detailed in Appendix A) aims firstly
at the testing of five exploratory AOFs in a standard modeling framework: The hydrologic model
is forced with climate observations and performance is evaluated between synchronized observed
and simulated streamflow values. AOFs are compared to the KGE metric over three catchments
using a common split-sample test. Any AOFs presenting inappropriate performance will then be
excluded from further analysis. A site-to-site variability of the simulated hydrological response is
performed next to confirm the good behavior of the modeling chain before it full application to a
single site. Hydrological projections are subsequently constructed from climate model simulations.
Since projections are not synchronized to observations, performance is evaluated using statistical
criteria excluding correlation. The evaluation of the split sample-sample test (calibration/validation
periods) remains consistent with previous analyses.

2.1. Asynchronous Objective Functions

Commonly referred to as ‘calibration metrics’ or ‘optimization metrics’, objective functions
are goodness-of-fit measures orienting a calibration process toward an optimal parametric solution.
The numerous calibration metrics described in the literature [23] are used individually or in a group of
two or three [24–26]. It is also possible to transform the streamflow time series prior to using a metric
in order to attribute more weights to high, intermediate, or low flows [27]. The selection of a given
objective-function is known to affect the response simulated by a hydrologic model forced with either
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climate observations [28,29] or climate model simulations [27,30,31]. Most common calibration metrics,
among which the root mean square deviation (RMSD, [32]), Nash–Sutcliffe efficiency (NSE, [33]) and
Kling–Gupta efficiency (KGE, [34]), contain a correlation component, which means they are designed
to provide an optimized simulated time series synchronized with observations.

Asynchronous objective functions (AOFs) are here defined as calibration metrics that purposely
neglects to account for the correlation between the observed and simulated variables. AOFs rather
minimize deviations of other statistical properties between the observed and simulated variables.
Five exploratory AOFs are described in Table 1 and tested in Section 3. AOF1 refers to the root mean
square deviation applied to the interannual hydrograph (Equation (1)):

AOF1 =

√∑365
i=1

(
Qobs,i −Qsim,i

)2

365
(1)

where Qobs,i and Qsim,i are observed and simulated mean annual streamflow, and i, the day of the year.
AOF1 relies on the assumption that the hydrologic regime associated to the climate model should

be imprinted with statistical properties comparable to observations, notwithstanding the distinct
sequence of daily events. AOF2 seeks minimizing the absolute deviation (AD) in the n-th moments of
the observed and simulated streamflow distributions (Equation (2)):

AOF2 = ADn,t =
∣∣∣µsim

n,t − µ
obs
n,t

∣∣∣ (2)

AOF3 refers to the absolute deviation (AD) between mean values (µ1) for the m-quantiles of the
simulated and observed distributions (Equation (3)):

AOF3 = ADm =
∣∣∣∣µsim

1,m − µ
obs
1,m

∣∣∣∣ (3)

AOF4 and AOF5 (Equations (4) and (5)) result from the combinations of AOF1 with AOF2 and
AOF3, respectively:

AOF4 = [AOF1; AOF2] (4)

AOF5 = [AOF1; AOF3] (5)

AOF1 is the most straightforward AOF since it is constructed through a single optimisation criteria
and does not require a Pareto-based optimisation algorithm in opposition to others AOFs. AOF2 is
configured to optimise the first three moments: Mean, variance and skewness (n = 1 to 3, Table 1).
A biannual sub-scaling (t = 2) preprocessing is applied, so the moments are optimised distinctly for the
nival (December to May, DJFMAM) and pluvial seasons (June to November, JJASON, see Section 2.3
for a description of the hydrologic regime). The resulting number of optimisation criteria for AOF2
thus reaches 6. AOF3 is configured to optimise the mean values of five quantiles from the streamflow
distributions (m = 1–5 without any temporal sub-scaling, thus five optimisation criteria). Since AOF1
is equivalent to a first order criteria, we excluded the first moment (n = 1) from AOF4 and the 50th
percentile value (m = 3) from AOF5 to avoid the potential redundancy.
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Table 1. Description and configuration of asynchronous objective functions (AOFs).

Description Equation Configuration Number of Criteria

AOF1

Root mean square deviation (RMSD)
between observed (Qobs,i) and simulated
mean annual streamflow (Qsim,i), where i is
the day of the year.

(1) - 1

AOF2 Absolute deviation (AD) of n-th moments
(µn) with temporal sub-scaling (t) (2) n = 1–3

t = 2 6

AOF3 Absolute deviation (AD) of the m-th
quantiles mean values (µ1) (3) m = 1 to 5 5

AOF4 Combination of AOF1 and AOF2 (4) n = 2, 3
t = 2 5

AOF5 Combination of AOF1 and AOF3 (5) m = 1, 2, 4, 5 5

2.2. Alternative Configuration of the Hydroclimatic Modeling Chain

Figure 2 (see Introduction) depicts the proposed alternative configuration of the hydroclimatic
modeling chain, which aims to circumvent the typical redundant usage of the climate observations
that affect conventional configurations (Figure 1). Quantile mapping of simulated climate variables is
operated identically to the conventional configuration. The hydrologic model is forced however with
corrected climate variables over the reference period and calibrated according to a given asynchronous
objective-function (AOF, Section 2.1). The latter minimises statistical deviations between simulated
hydrologic projections over the reference period and their corresponding observations. Hydrologic
projections are produced by forcing the hydrologic model calibrated over the modeled reference
period with corrected climate variables. In opposition to the conventional configuration of the
hydroclimatic modeling chain, the alternative configuration do only requisite a single usage of the
climate observations, it is fully operated within the sequence of events embedded within the climate
model. Forcing and calibrating hydrologic models with simulated climate variables remains a marginal
practice, but is yet documented in literature [35].

2.3. Domain, Data, and Modeling Setup

Asynchronous objective functions are tested over three intermediate size catchments (515–633 km2)
located in the St. Lawrence River Valley, Southern Quebec, Canada (Figure 3). Catchments are
characterized by a nivo-pluvial hydrologic regime and a moderate slopes (5.9–6.4%). Forest is the
dominant land cover type (59–77%) along with regenerating forest, wetlands and agriculture. The total
annual precipitation is roughly 1000 mm while mean air temperature varies from −12 ◦C in January
to 18 ◦C in July. Daily precipitation and temperature observations are interpolated by kriging to
0.1 degree, from in situ observations. Daily streamflow observations are extracted from hydrometric
stations 022507 (Du Loup, 47.61◦ N, −69.64◦ E), 030101 (Nicolet Sud-Ouest, 45.80◦ N, −72.00◦ E) and
052233 (De l’Achigan, 45.90◦ N, −73.50◦ E).

The physically-based distributed hydrologic model WaSiM-ETH [36,37] was implemented over
Du Loup, Nicolet Sud-Ouest and De l’Achiguan catchments (Figure 3, further details on the modeling
setup are provided by Ricard and Anctil [13]). The river network is generated from a burned 50-m
resolution digital elevation model (Figure 4a, Du Loup catchment is given as an example), resampled to
500 m and manually corrected. Land use is extracted from various sources provided by local agencies
(Figure 4b). Percentages of clay, silt, and sand (Figure 4c) were retrieved from soil textures defined by
Shangguan et al. [38].
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Reference evapotranspiration (E0) is evaluated using the Hamon temperature-based empirical
formulation [39]:

E0 = 0.1651 · fi ·
hd
12
·

216.6 · es

T + 273.3
(6)

where fi is an empirical correction factor (-), hd is the day length (h), and es is the saturation vapor
pressure at temperature T (hPa).

Snowmelt is simulated using a temperature-index degree-day method [36]:

M = c0(T − Tm) ·
∆t
24

(7)

where M is the melting rate (mm·d−1), c0 is a temperature-dependent melt factor (mm·◦C−1
·d−1), Tm is

the temperature limit for snow melt (◦C), and ∆t is the time step (h).
Vertical fluxes within the unsaturated zone are based on Richards equation [40] applied to a 10-m

deep column composed of 30 numeric layers. Surface runoff is a function of precipitation intensity



Water 2019, 11, 2012 7 of 18

and hydraulic conductivity, while transient soil hydraulic properties follow the Van Genuchten
equations [41]. The fraction of snow melt taken as surface runoff (QDsnw) is defined empirically [36]:

Qs = Qsnw ·QDsnw (8)

where Qs is the surface runoff (mm) and Qsnw is the snow melt (mm).
Interflow (Qint) is generated at soil layer boundaries considering slope and hydraulic

conductivity [38]:
Qint = ks(θm) · ∆z · dr tan(β) (9)

where ks, the saturated hydraulic conductivity (ms−1), θm is the water content in layer m (-), ∆z is the
layer thickness (m), dr is a scaling parameter to consider river density (m−1), and β is the local slope
angle (◦).

Both surface runoff and interflow are delayed using recession constants [36]:

Qs,i = Qs,i−1 · e−∆t/ks + Qs ·
(
1− e−∆t/ks

)
(10)

Qh,i = Qh,i−1 · e−∆t/kh + Qh ·
(
1− e−∆t/kh

)
(11)

where Qs,i and Qh,i are delayed surface runoff and interflow at time step i (mm), Qs and Qh are the
surface runoff and interflow at time step i (mm), ∆t is the time step (h), and ks and kh are recession
constants (h).

Calibration of the model is operated using the Pareto Archived Dynamically Dimensioned Search
optimization algorithm (PA-DDS, [42]) applied to the eight free parameters described in Table 2.
Calibration is operated from 1980 to 1989 with a 1500-iteration budget. Validation is computed using
the 1990–2009 period. For all simulations, we allowed an additional year for burning the hydrologic
model. AOFs are evaluated in Section 3, relative to a seasonal variation of the Kling–Gupta efficiency
(KGEs, [26]):

KGEs =
[
KGEDJFMAM; KGEJJASON

]
(12)

KGE = 1−
√
(r− 1)2 + (∝ −1)2 + (β− 1)2 (13)

where DJFMAM refers to the period from December to May and JJASON, June–November, r is the
correlation coefficient between the observed and simulated values, α is the ratio between the standard
deviations, and β is the bias. All components, including KGE, target 1 as the best score.

Simulated climate variables are extracted from the Canadian Regional Climate Model Large
Ensemble (CRCM5-LE, [43]). The latter consists in the dynamical downscaling of the 50-member
CanESM2-Large ensemble [44] using the CRCM5 [45] at a 12-km resolution over Northeastern North
America. Climate simulations run from 1950 to 2100 following RCP8.5. For the purpose of the present
study, daily mean air temperature and total precipitation are taken from the first member. Univariate
quantile mapping is applied to simulated precipitation and temperature with a 50-bin transfer function,
a monthly sub-scaling, and a three-month moving window. Precipitation below 1 mm is excluded
from the calculation of the transfer function in order to prevent the ‘drizzle effect’ [46]. An additive
correction is applied to air temperature while a multiplicative correction is applied to precipitation.
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Table 2. Calibration parameters.

Module Calibration
Parameter Description Unit Boundaries

Reference
evapotranspiration fi

Seasonal correction factors
(DJFMAM, JJASON) (-) [0.5;2]

Snow accumulation
and melt

c0
Temperature-dependent

melt factor (mm·◦C−1
·d−1) [0;5]

Tm
Temperature limit for

snow melt (◦C) [−2;2]

Unsaturated zone fluxes

QDsnw
Fraction of surface runoff

on snow melt (-) [0;1]

dr
Scaling parameter for

river density (m−1) [1;100]

ks
Surface runoff

recession constant (h) [1;100]

kh
Interflow

recession constant (h) [1;150]

3. Results

In Section 3.1, the hydrologic model is forced with climate observations over three catchments
(Figure 3). In this common setup, observed and simulated streamflow values are synchronized. It is
thus expected that a calibration based on the KGEs should dominate the AOFs, the former includes a
correlation component. In Section 3.2, hydrologic projections are constructed over the climatic reference
period for a single catchment. Configurations of the modeling chain are constructed using KGEs and
most performing AOFs. In this case, it is hypothesized that the AOFs would do better because of the
lack of synchronicity between the observed streamflow and the simulated climate time series.

3.1. Hydrological Performance over the Historical Period

Figure 5 presents the Du Loup River interannual and annual hydrographs (1990, 1995, 2000,
and 2005) in validation, simulated by the WaSiM-ETH model forced and calibrated with historical
meteorological observations. Calibration is steered either with KGEs (Equation (12)) or with
asynchronous objective functions AOF1–AOF5 (Section 2.1). The interannual performance is expressed
in terms of RMSD (Equation (1), RMSD = 0 in case of perfect agreement) and the annual performance,
in terms of KGE (Equation (13), which target = 1). Results show that KGEs calibration provides
an accurate representation of the interannual hydrograph (RMSDhst,KGEs = 1.84 m3/s), with annual
performance (KGE) ranging from 0.64 to 0.77. The synchronism of the nival peak flows is accurately
represented but amplitudes are generally underestimated (1995, 2000, and 2005). AOF1 leads to
a hydrologic performance comparable to KGEs. Synchronicity of the interannual hydrograph is
marginally improved (RMSDhst,AOF1 = 1.30 m3/s). AOF1 annual performance improves in most cases
(1995, 2000 and 2005), ranging from 0.75 to 0.86, since AOF1 tends to improve the synchronicity of
simulated nival peak flows but to degrade flow variance during the pluvial season, relative to the KGEs.
AOF2 offers a much poorer representation of the interannual hydrograph (RMSDhst,AOF2 = 10.4 m3/s).
Annual performance falls to 0.37 from 0.66 mostly because the simulated nival peak flows are
systematically overestimated or out of phase, while the pluvial season variance is underestimated.
AOF3 also offers a poor representation of the interannual hydrograph (RMSDhst,AOF3 = 4.38 m3/s).
Annual performance ranges from 0.35 to 0.70 mostly because the simulated nival peak flows are
underestimated, while the pluvial season variance is improved relative to AOF1. AOF4 leads to a
moderately degraded interannual hydrograph (RMSDhst,AOF4 = 3.22 m3/s). The amplitude of the
mean annual nival peak flow is slightly overestimated while its recession synchronicity, out of phase.
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Some annual hydrographs are improvements over the KGEs (1995, 2000, and 2005) but not systematically
(1990). Flow variance is more accurate than other objectives-functions during the pluvial season.
AOF5 allows marginal improvements of annual hydrograph over KGEs (RMSDhst,AOF5 = 1.62 m3/s).
Its annual performance is also very similar to AOF1, ranging from 0.75 to 0.89. It generally provides
a robust representation of nival peak flows in terms of amplitude, timing, and volume, but it
underestimates the pluvial flow variance.
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Figure 5. Observed (grey) and simulated (red) Du Loup River interannual and annual hydrographs
(1990, 1995, 2000, and 2005, validation period). The WaSiM-ETH hydrologic model is forced and
calibrated with historical meteorological observations (hst). Calibration is operated with a seasonal
variation of the Kling-Gupta efficiency metric (KGEs) and asynchronous objective functions AOF1 to
AOF5. Interannual performance is expressed in RMSD, annual performance, in KGE.

Figure 6 illustrates the distribution of the validation annual performance values for calibration
exploiting the KGEs or AOF1 to AOF5 for Du Loup, Nicolet Sud-Ouest and De l’Achigan catchments
(Figure 3, sample size = 60, 20 years × 3 catchments). Performance is expressed in terms of KGE and
its variance (α), bias (β), and correlation (r) components (Equation (13)). Hydrologic performance is
presented separately for the nival (DJFMAM) and pluvial (JJASON) seasons. Nival KGEs values range
from 0.46 to 0.93: The median (MKGE,KGEs

DJFMAM ) is 0.77. According to the non-parametric Wilcoxson rank-sum

test, AOF1 and AOF5 offer nival performances comparable to the KGEs (MKGE,AOF1
DJFMAM = 0.73, p = 0.16,

MKGE,AOF5
DJFMAM = 0.73, p = 0.21, significance level set to 0.05). AOF4 do not lead to a comparable performance,

the estimated p-value is however fairly close to the significance level (MKGE,AOF4
DJFMAM = 0.74, p = 0.02).

The poor AOF2 or AOF3 representation of the nival flow regime, depicted in Figure 5, is here confirmed.
Their median annual performance values are significantly degraded relative to KGEs (MKGE,AOF2

DJFMAM = 0.56,

p = 2.59 × 10−13 and MKGE,AOF3
DJFMAM = 0.55, p = 1.13 × 10−10). Poorer nival performances are driven by a

severe degradation of the correlation (r), but also an overestimation of flow variance (α) for AOF2.
Most AOFs (not AOF3) improve nival bias (β) over the KGEs, while AOF4 and AOF5 improve flow
variance. AOFs tend to degrade nival correlation relative to KGEs, the degradation remains moderate
for AOF1 and AOF5, as for AOF4 to a certain extent. Hydrologic performance over the pluvial season
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(JJASON) is generally poorer than for the nival season (DJFMAM) due to a degradation in both
variance and bias. Pluvial performance of the KGEs ranges from −0.22 to 0.91 with MKGE,KGEs

JJASON = 0.64.
Most AOFs (not AOF2) present moderate but significant degradation pluvial performances relative to
KGEs (MKGE,AOF1

JJASON = 0.53, p = 9.53 x 10−5, MKGE,AOF2
JJASON = 0.37, p = 4.19 x 10−6, MKGE,AOF3

JJASON = 0.57, p = 0.022,

MKGE,AOF4
JJASON = 0.56, p = 0.008, MKGE,AOF5

JJASON = 0.55, p = 0.007). The reduced AOF performance is driven by
an underestimation of the flow variance (except for AOF4) and a degradation of the correlation. Most
AOFs (not AOF2) improve however the pluvial bias representation (β) over the KGEs.
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Figure 6. Hydrologic annual performance over the validation period for Du Loup, Nicolet Sud-Ouest
and De l’Achigan catchments (n = 60). Calibration is operated with a seasonal variation of
the Kling–Gupta efficiency (KGEs) metric and asynchronous objective functions AOF1 to AOF5.
Performance is expressed in terms of KGE metric and its variance (α), bias (β), and correlation (r)
components from December to May (DJFMAM) and June to November (JJASON).

3.2. Hydrologic Projections over the Reference Period

AOFs present site-specific hydrological responses over the historical period (see Appendix B).
By and large however, most performing AOFs are considered to provide fairly comparable behaviors
from one catchment to another and further analyses of the hydrologic projections conducted in this
section are limited to Du Loup catchment (Figure 3). Figure 7 presents raw and corrected interannual
air temperature and total precipitation taken from the first member of CRCM5-LE as well as the local
observations. As denoted by Leduc et al. (2019) over Northeast America, a strong warm bias reaching
+4 ◦C affects winter air temperature (Figure 7a). Another +2 ◦C bias is observed in summer. Applying
quantile mapping (Section 2.3) narrows notably the seasonal biases, except for a residual ~+1◦C bias
in January. This residual winter bias affecting temperature can be explained by the coarse monthly
sub-scaling of the transfers function combined to the length of the three-month moving window, which
is potentially inappropriate for such large seasonal biases. Leduc et al. (2019) also denoted a +1 to +2
mm/day bias affecting CRCM5-LE simulated precipitation. The impact of bias correction on simulated
total annual precipitation can be observed in Figure 7b. A residual negative bias up to −70 mm/a exists
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for precipitation totals above 1000 mm/a. The latter can be explained by the scaling mismatch between
simulated precipitation and interpolated data from in situ observation or the application of a fixed
threshold correcting the drizzle effect [47]. Nonetheless, in both instances, quantile mapping largely
improves the climate simulation over the reference period.
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Figure 7. Observed (grey), raw (black), and bias-corrected (blue) interannual air temperature (a) and
cumulative precipitations (b) simulated by the CRCM5-RCM over the Du Loup catchment.

Figure 8 compares the hydrologic projections simulated using both the conventional and alternative
configurations of the hydroclimatic modeling chain (Figures 1 and 2), forced with bias-corrected air
temperature and precipitation taken from the first member of the CRCM5-LE over the reference period
(Figure 7). The WaSiM-ETH model is calibrated independently with KGEs, AOF1, AOF4, and AFO5
objective functions. AOF2 and AOF3 are excluded because their poor performance over the historical
period (Section 3.1). Results are presented in Figure 8 as mean annual hydrographs and sorted
logarithmic streamflow values below 10th and above 90th percentiles. Hydrologic projections are
illustrated for both nival (DJFMAM) and pluvial (JJASON) seasons.

In all cases, projected mean annual hydrographs are affected by a notable degradation when
compare to the performance achieved over the historical period (RMSDhst ranges from 1.30 m3/s to
1.84 m3/s, Figure 8). The amplitude of the projected nival flows is generally underestimated and out of
phase. Within the conventional configuration (cnv), KGEs offers a weak representation of the mean
interannual hydrograph (RMSDcvn,KGEs = 5.60 m3/s). It also offers a systematic underestimation of peak
flows combined to an overestimation of low flow, regardless the season. Mean annual hydrographs
simulated with the alternative configuration (alt) are systematically better than for the conventional
configuration. Integrating AOFs, RMSDalt ranges from 3.74 m3/s to 4.46 m3/s. The latter enhances the
amplitude and timing of the projected nival mean flows, which translate into an average improvement
in terms of RMSD of 1.54 m3/s relative to KGEs within the conventional configuration.

The alternative configuration of the hydroclimatic modeling chain generally improves the
representation of seasonal extremes values relative to KGEs. AOF5 provides the best representations
of the projected nival peak flows (RMSDalt,AOF5 = 0.03), while AOF1 and AOF4 underestimate and
overestimate the latter respectively (RMSDalt,AOF1 = 0.07, RMSDalt,AOF4 = 0.08). The representation of
extreme nival low flows is more accurate using AOF4 and AOF5 (RMSDalt,AOF4 = 0.10, RMSDalt,AOF5
= 0.09), but notably overestimated using AOF1 (RMSDalt,AOF1 = 0.57). Projected pluvial high flows
are systematically underestimated. AOF4 provides however a better representation than AOF1 and
AOF5 (RMSDalt,AOF4 = 0.22, RMSDalt,AOF1 = 0.47, RMSDalt,AOF5 = 0.43). On the other hand, projected
pluvial low flows are generally overestimated: AOF4 and AOF5 (RMSDalt,AOF4 = 0.21, RMSDalt,AOF5
= 0.10) providing a better representation than AOF1 (RMSDalt,AOF1 = 0.49). Within the alternative
configuration, KGEs provides a surprisingly accurate representation of the mean annual hydrograph
(RMSDalt,KGEs = 4.42 m3/s) but fail to translate into a good representation of seasonal extreme values.
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Projected nival low flows and high flows and pluvial low flows are notably degraded relative to the
conventional configuration.Water 2019, 11, x FOR PEER REVIEW 12 of 18 
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Figure 8. Observed (grey) and projected interannual hydrographs simulated by conventional (cvn,
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hydrologic model is calibrated independently with KGEs, AOF1, AOF4, and AOF5 objective functions.
Projections are also expressed through mean annual hydrographs and sorted logarithmic (ln) streamflow
values below 10th and above 90th percentiles for both nival (DJFMAM) and pluvial (JJASON) seasons.

4. Discussion

4.1. AOFs Provide an Appropriate Hydrological Response over the Historical Period

Five exploratory asynchronous objective functions (AOFs) were designed and defined in Section 2.1
and used as calibration criteria purposely ignoring the correlation between simulated and observed
streamflow. This property makes AOFs particularly suitable in a context where synchronicity between
climate and hydrologic variables is unavailable; as in the case of constructing hydrologic projections
using hydroclimatic modeling chains. Hydrologic performance of AOFs over the historical period was
evaluated and compared to a seasonal variation of the Kling–Gupta efficiency metric (KGE). Results
presented in Section 3.1 revealed the capacity of most performing AOFs to provide a hydrologic
response comparable to KGE during the nival season, the latter being moderately degraded during the
pluvial season. Hydrologic performance of AOFs is highly conditional to the application of a calibration
criteria constraining an accurate representation of the interannual hydrologic cycle. AOFs excluding
such a seasonal constrain (AOF2 and AOF3) led to deficient representations of the flow regime. AOFs
tend to reduce biases over both nival and pluvial seasons relative to KGE. Most performing AOFs
also demonstrated a certain capacity to preserve the correlation, suggesting that the latter can be
surrogated during the nival season by an appropriate interannual criteria within an AOF. AOFs tend
to underestimate pluvial flow variance relative to KGEs except for AOF4 that fairs better. AOF3 finally
provided a hydrological response comparable to other performing AOFs in a strictly pluvial regime.
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4.2. The Alternative Configuration of the Modeling Chain Enforces the Consistency of Hydrological Projections

An alternative configuration of the hydroclimatic modeling chain was tested and compared
to a conventional configuration in Section 3.2. The WaSiM-ETH hydrologic model has been forced
over the Du Loup catchment with bias corrected climate variables taken from CRCM5-LE over the
reference period, instead of historical meteorological observations. Both conventional and alternative
configurations were constructed independently with KGEs and the best performing AOFs identified in
Section 3.1 (AOF1, AOF4, and AOF5). The alternative configuration of the hydroclimatic modeling chain
generally provided more coherent hydrologic projections relative to the conventional configuration.
Projection of the interannual hydrograph was systematically improved, while seasonal extremes values
were improved in most cases. The projected hydrologic response varied from one AOF to another.
AOF1 provided accurate projections of the mean annual hydrograph and nival peak flows. On the
other hand, it underestimated pluvial peak flows and overestimated low flows, both nival and pluvial.
The first order nature of AOF1 (RMSD applied to interannual values) could explain its propensity
to favor a sound representation of nival high flows to the expense of other hydrologic processes.
In contrast, AOF5 presented the most degraded projection of the interannual hydrograph, but the most
performant projections of seasonal extremes values. Relative to AOF1, the construction by quantiles
of AOF5 weighted more effectively the extreme events. The absence of temporal sub-scaling within
AOF5 construction could explain the resulting degradation of the projected interannual hydrograph.
Regardless a poorer performance over the historical period, AOF4 presented a balanced projected
hydrological response. Relative to other AOFs, AOF4 did not notably degrade either the projected
interannual hydrograph or seasonal extremes. Consequently, the application of a given AOF should
be motived by the objectives defined in the scope of a given study. AOF1 would be recommendable
for assessment on water availability, AOF5 for assessments on extremes, and AOF4 for ecosystemic
studies integrating multiple hydrologic considerations. Projections of the interannual hydrograph
were affected by a systematic degradation relative to the historical period. This loss can be explained
by a sensitivity of the hydrologic model to residual biases or inconsistency within post-processed
climate variables. It can also be explained by a statistical mismatch between observed and simulated
climate variable over the calibration period due to non-stationarity. Exploring a larger parametric
space (Table 2) could have potentially provided better projected hydrological response, but would
have further exposed the latter to overfitting.

4.3. Limitations

The work described in this manuscript is limited to many “singles”: Single regional climate model,
single member, single hydrologic model, single calibration period, etc. Generalising the applicably
of AOFs within alternative configurations of the hydroclimatic modeling chain appears mandatory
in further works. Applying the alternative configuration to a regional scale or large multi-members
climate ensemble appears noteworthy challenges. Assessing the representability between calibration
and validation periods considering non-stationary conditions between observations and multi-member
climate simulations is another relevant question to further explore. Assessing the representability of the
modelled sequence of extreme events prior to assessing formal statistical evaluation between the future
and reference also appear relevant. Peaks-over-threshold statistical assessment could theoretically be
very sensitive to a mismatch between the observed and modelled amount of extreme events over a
given period. Other AOF constructions could also be tested. The intention while designing AOFs was
to understand better their nature and behavior. More complex or performing AOFs can undoubtedly
be designed, integrating additional n-moments, quantiles, or temporal sub-scaling. If available,
other hydrological variables such as evapotranspiration, snow cover, or soil water content could be
optimised in a similar way to AOF1. Variables simulated by a hydrologic model forced with historical
meteorological observation could also surrogate observations. More complex constructions of AOFs
would however further expose optimisation to equifinality and would thus request either an additional
computing budget or adapted calibration strategies.
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5. Conclusions

We introduced and tested an alternative configuration to the common hydroclimatic modeling
chain with the aim of reinforcing the consistency of hydrological projections and circumventing the
redundant usage of climate observations. We introduced a new type of calibration criteria, namely
asynchronous objective functions (AOFs), which purposely ignore correlation between observed and
simulated variables. The suggested configuration forces the hydrologic model with bias-corrected
climate variables, thus preserving the sequence of events imbedded within the climate models.
Results demonstrated that performing AOFs provided a hydrologic response comparable to the
KGE metric over the nival historical period. They also demonstrated the capacity of the alternative
configuration of hydroclimatic modeling chain to enforce the consistency of the projected interannual
hydrograph and seasonal extreme values relative to a conventional configuration. AOFs presented
distinct, but complementary, hydrologic responses, advocating for an appropriate application of AOFs
according to the objective of a given study. The work described in this manuscript remains a proof of
concept that requests further investigation and generalization to larger climate simulation ensembles,
additional validation sites, and other climate regimes. This suggests, however, an innovative and fairly
simple method enforcing the confidence affecting the production of hydrological projections.
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Appendix A. Methodological Framework

Step 1. Testing AOFs

• Five exploratory AOFs are designed (AOF1–AOF5).
• The hydrologic model is forced with climate observations over three sites.
• Optimization is conducted with AOFs and KGE as cost-functions.
• Performance is evaluated between synchronized observed and simulated streamflow values using

the KGE metric.
• AOFs presenting inappropriate performance are excluded from step 2.
• Site-to-site variability of the resulting simulated hydrological response is evaluated before

conducting step 2 to one site.

Step 2. Comparing conventional and alternative configuration of the hydroclimatic modeling chain

• Conventional and alternative configurations of the hydroclimatic modeling chain are implemented.
The hydrologic model is forced with climate simulation.

• Optimization is conducted with KGE and most performing AOFs as cost functions.
• Performance of both configurations is evaluated between asynchronized observed and projected

streamflow values using metrics excluding correlation.

Appendix B. Site-to-Site Variability of the Simulated Hydrological Response

Figures A1–A3 present the distribution of the validation annual performance for Du Loup,
Nicolet Sud-Ouest and De l’Achigan catchments evaluated independently (equivalent to Figure 6).
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AOFs present site-specific hydrological responses over the historical period. While AOF1 and AOF5
outperform other AOFs over Du Loup catchment (Figure A1), AOFs offer a much more volatile response
over Nicolet Sud-Ouest during the pluvial season (Figure A2). Long tailed distributions observed over
De l’Achigan (Figure A3) are finally affected by isolated outlying weak annual performance values.
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