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Abstract: Flood classification is an important basis for flood forecasting, flood risk identification,
flood real-time scheduling, and flood resource utilization. However, flood classification results may
be not reasonable due to uncertainty, the fuzziness of evaluation indices, and the demerit of not
comprehensively considering the index weight. In this paper, based on the fuzzy clustering iterative
model, a sensitivity coefficient was applied to combine the subjective and objective weights into a
combined weight, then the fuzzy clustering iterative model with combined weight (FCI-CW) was
proposed for flood classification. Moreover, an immune grey wolf optimizer algorithm (IGWO) based
on the standard grey wolf optimizer algorithm and an immune clone selection operator was proposed
for the global search of the optimal fuzzy clustering center and the sensitivity coefficient of FCI-CW.
Finally, simulation results at Nanjing station and Yichang station demonstrate that the proposed
methodology, i.e., FCI-CW combined with IGWO, is reasonable and reliable, can effectively deal with
flood classification problems with better fitness and a comprehensive consideration of the subjective
and objective aspects, and has great application potential in sorting, evaluation, and decision-making
problems without evaluation criteria.

Keywords: flood classification; FCI; combined weight; GWO; immune clone selection operator

1. Introduction

Floods are one of the most frequent and disastrous natural hazards around the world, and cause
a serious loss of life and property every year [1–6]. Flood classification is an important basis for flood
forecasting, flood risk identification, flood real-time scheduling, and flood resource utilization [7–10].
Usually, flood classification is performed according to the flood intensity, whose basic principle is
to analyze the common points and differences of flood causes, spatial distribution, and the peak
quantity relation according to the essential characteristics and objective laws of floods, and to explore
the occurrence and possible consequences of different floods. In other words, a reasonable and
effective method will be used to cluster the flood samples into different grades, which contributes
to realizing the reasonable recognition, effective sorting, and comprehensive management of flood
disasters [11–13]. Obviously, flood classification is a problem of multi-attribute and multi-stage fuzzy
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synthetic evaluation [14,15]. Therefore, it is very important to establish a unified flood classification
index system and an advanced classification method to provide a scientific basis for decisions on flood
risk management [16,17].

Nowadays, there are many methods for flood classification, such as projection pursuit [18] and
its combinations with different optimization algorithms, including the particle swarm optimization
algorithm [19], the artificial fish swarm algorithm [20], the shuffled frog leaping algorithm [21],
the projection pursuit dynamic clustering model [22], the optimal curve projection dynamic model [23],
the fuzzy clustering iterative model (FCI) [24–26], variable fuzzy sets theory (VFS) [8], the weighted
fuzzy kernel-clustering algorithm (WFKCA) [27], and fuzzy c-means clustering [28]. However,
the computational process of projection pursuit and its improved methods is complicated, and there
is a lack of a complete theoretical basis for the subjective division based on projection values [26,27];
the establishment of relative membership in the VFS function depends on a physical analysis and
an expert’s instinct or experience according to different problems, leading to a hard decision during
application [29]. WFKCA, which is based on the attribute weighted fuzzy clustering idea in the kernel
feature space, has a good convergence property and its prototypes can be well-represented in the
original space; however, its computational process is complex, and it is worth thinking about how to
comprehensively obtain the index weight [30]. Fuzzy c-means clustering can classify and evaluate the
flood samples; however, it ignores the weights of indicators [27].

Fortunately, the FCI, which was proposed by Chen [7], is a sample classification method for
data analysis and pattern partition that not only considers the uncertainty and fuzziness of the flood
classification index system, but also considers the weights of flood classification indices [26]. Moreover,
it is difficult for the FCI to ensure the minimum general Euclidean weighted distance of the objective
function, and its global search is generally combined with optimization algorithms to improve the
possibility of a global optimal solution. Nevertheless, when the weights for the evaluation indices are
coded as a population of individual variables in the optimization algorithm for the FCI, the obtained
weights are calculated in terms of “mathematical weights”, which are only derived from the attribute
values of the sample, and cannot express the decision-maker’s subjective consciousness and risk
preference. In other words, this “mathematical weight” still requires repeated consistency tests and
subjective adjustments in fuzzy decision-making [31–33]. Therefore, considering the fact that the
spatial and temporal distributions of flood classification indices are uneven and serious, and even
comprehensive weights for indices are relatively complicated to calculate, it is necessary to carry
out a complete and integrated analysis on the index weight calculation before we implement flood
classification based on the FCI.

Currently, in the study of flood classification, the commonly used methods to determine the
weight of evaluation indexes are the Delphi method [8], the consistency theorem method [7,34],
the entropy weight method [24] and the projection pursuit method [35,36], which can be divided into
two types: subjective weighting methods, such as the Delphi method and the consistency theorem
method; and objective weighting methods, such as the entropy weight method and the projection
pursuit method. In other words, the subjective weighting method means that decision-makers combine
their own subjective understanding, judgment, and experience to analyze the physical meaning of
indices and then give the relative importance of indices; however, it has a larger subjective and
arbitrary component. The objective weighting method calculates the weight by using the difference
information of samples, has a strong mathematical theory, and may avoid subjective randomness;
however, sometimes, the physical meaning of indices in the evaluation cannot be clarified and deviation
may be caused by the amount of information in the data itself. Therefore, the subjective and objective
weighting methods have their own advantages and disadvantages, and the integration of them can
avoid the shortcomings and one-sidedness of a single method alone.

Therefore, based on the FCI and the thought of making full use of the subjective weight and
objective weight information, a sensitivity coefficient is presented to integrate the subjective weights
and objective weights into comprehensive weights, and a fuzzy clustering iteration model with
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combined weight (FCI-CW) is proposed in this paper. However, the computational process of FCI-CW
with a fuzzy clustering iterative solution is time-consuming and intractable, and cannot even achieve
global optimization with some initial conditions; so, an intelligent optimization technique is used to
deal with the optimization problem of FCI-CW. In this way, an immune grey wolf optimizer algorithm
(IGWO) is adopted for the fuzzy clustering to obtain better results.

The Grey Wolf Optimization algorithm (GWO) is a new metaheuristic optimization algorithm that
was proposed by Mirjalili in 2014 [37]. It is a new swarm intelligence optimization algorithm that has
superior performance in finding optimal solutions and less need to adjust the parameters, is easy to
implement, and has a strong search ability. In terms of function optimization, GWO has an advantage
over differential evolution algorithms in terms of the convergence accuracy and convergence speed.
In order to solve the global optimization of a fuzzy clustering problem, GWO is employed in this
paper. However, similar to other swarm intelligence optimization algorithms, GWO also has the
disadvantages of being prone to local optimization and having low precision. As a result, after a
detailed introduction, GWO is improved with the immune clonal method [38], and the immune grey
wolf optimizer algorithm (IGWO) with better performance is proposed. On this basis, the clustering
center and the sensitivity coefficient are combined with IGWO for the global optimal search to avoid
the sensitive problem of initial clustering centers and obtain the optimal fuzzy clustering center and
the optimal sensitivity coefficient.

Finally, the purpose of this paper is to establish a fuzzy clustering iterative model with combined
weight (FCI-CW) by organically integrating the subjective and objective weights without evaluation
criteria, and then executing the optimization solution of FCI-CW with IGWO. Additionally, we consider
two case studies on flood classification with the combination of FCI-CW and IGWO at Yichang
station and Nanjing station, respectively. The results demonstrate that the methodology proposed
in this paper is more reasonable and reliable as it comprehensively considers the subjective and
objective aspects, and thus provides a new effective approach for flood classification in a complex
decision-making environment.

The main contributions of this article are as follows:

(1) The fuzzy clustering iterative model with combined weight (FCI-CW) is proposed by using the
sensitivity coefficient to combine the subjective weight and objective weight.

(2) An immune grey wolf optimizer algorithm (IGWO) is proposed by employing an immune clone
selection operator based on the grey wolf optimizer algorithm.

(3) IGWO was employed to obtain the optimal fuzzy class center matrix and optimal sensitivity
coefficient of FCI-CW.

(4) Two case studies of flood classification at Nanjing station and Yichang station were carried out to
demonstrate the reasonableness and effectiveness of the proposed methodology.

For the reader’s convenience, the remainder of this paper is organized as follows. The FCI and the
combined weighting method are first introduced, and then FCI-CW is presented in detail in Section 2.
The basic principles of GWO are introduced, and then IGWO is carried out in detail in Section 3.
Section 4 displays the procedure of the proposed methodology, i.e., flood classification using FCI-CW
and IGWO. The proposed methodology is applied to the case studies in Section 5. Finally, conclusions
are given in Section 6.

2. The Fuzzy Clustering Iteration Model with Combined Weight (FCI-CW)

2.1. Overview of the Fuzzy Clustering Iteration Model

As one of the most important concepts in fuzzy mathematics, the FCI model was proposed by
Chen [7]. In this theory, a fuzzy membership function can be defined as a rule to explore a mapping
between a given set of observations and their relevant factors. The implementation of the model
consists of following steps [16,26,30].
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Assume that there are n samples to form the set X = {x1, x2, . . . , xn}, and any sample xi has m
indices, and the actual values of sample xi can be denoted as

xi = (xi1, xi2, . . . , xim). (1)

Hence, the sample set is described as a n×m matrix X

X = (xij)n×m =


x11 x12 · · · x1m
x21 x22 · · · x2m
· · · · · · · · · · · ·
xn1 xn2 · · · xnm

 (2)

where xij is the eigenvalue of index j for sample xi, i = 1, 2, . . . , n; j = 1, 2, . . . , m; and n, m is the total
number of assessment samples and assessment indices, respectively. In order to deal with values of
different orders of magnitude, all of the eigenvalues of matrix X are transformed into normalized
eigenvalues as:

rij = (xij − xmin(j))/(xmax(j)− xmin(j)) (3)

where rij is the normalized eigenvalue of index j for sample xi, obviously 0 ≤ rij ≤ 1; and xmax(j),
xmin(j) denote the maximum and minimum eigenvalues of index j, respectively. After the
normalization of all the eigenvalues, the normalized matrix R is calculated as:

R = (rij)n×m =


r11 r12 · · · rn1

r21 r22 · · · rn2

· · · · · · · · · · · ·
rn1 rn2 · · · rnm

. (4)

Assume that the m indices of n samples can be clustered with c classes, and the fuzzy clustering
matrix is defined as follows:

U = (uhi)c×n =


u11 u12 · · · u1n
u21 u22 · · · u2n
· · · · · · · · · · · ·
uc1 uc2 · · · ucn

,
c

∑
h=1

uhi = 1; 0 ≤ uhi ≤ 1. (5)

where uhi denotes the relative membership degree of sample i belonging to class h. Assume that the
eigenvalues of m indices for class h are denoted as the clustering center of the class h standard, then an
index matrix can be obtained as the fuzzy class center matrix.

S =
(

sjh

)
m×c

=


s11 s12 · · · s1c
s21 s22 · · · s2c
· · · · · · · · · · · ·
sm1 sm2 · · · smc

, 0 ≤ sjh ≤ 1 (6)

where sjh is the eigenvalue of index j of the class h standard. For depicting different indexes’ effects,
we induct weights into a cluster. The index weight vector is defined as follows:

ω = (ω1, ω2, · · · , ωm), 0 ≤ ωj ≤ 1,
m

∑
j=1

ωj = 1. (7)

Here, a weighted general Euclidean distance D(ri − sh) is used to represent the difference between
sample i denoted as ri and class h denoted as sh:
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D(ri − sh) = uhi · ‖ωj · (ri − sh)‖ = uhi ·
[

m

∑
j=1

[
ωj · (rij − sjh)

]2
] 1

2

. (8)

In order to gain the optimal fuzzy clustering matrix U and the optimal center matrix S, an objective
function can be established to minimize the square sum of the general Euclidean weighted distance
(GEWD) from the minimum class 1 to the maximum class c, and the optimal of the GEWD can be
established as follows.

min{F(ωj, uhi, sjh) =
n
∑

i=1

c
∑

h=1

[
uhi

∥∥∥ωj(rij − sjh)
∥∥∥]2
}

s.t.
c
∑

h=1
uhi = 1; 0 ≤ uhi ≤ 1;

m
∑

j=1
ωj = 1; 0 ≤ ωj ≤ 1.

(9)

Based on the Lagrange function approach, the index weight ω = (ω1, ω2, · · · , ωm), the fuzzy
clustering matrix U = (uhi)c×n, and the fuzzy class center matrix S = (sjh)m×c are described as follows:

ωj =

 m

∑
j=1

n
∑

i=1

c
∑

h=1
u2

hi

[
(rij − sjh)

]2

n
∑

i=1

c
∑

h=1
u2

hi

[
(rij − sjh)

]2


−1

(10)

uhi =

 c

∑
k=1

m
∑

j=1

[
ωj(rij − sjh)

]2

m
∑

j=1

[
ωj(rij − sjk)

]2


−1

(11)

sjh =
n

∑
i=1

u2
hiω

2
j rij/

n

∑
i=1

u2
hiω

2
j (12)

Finally, the optimal weight vectorω = (ω1, ω2, · · · , ωm)
T , the optimal fuzzy membership matrix

U = (uhi)c×n, and the optimal fuzzy clustering center matrix S = (sjh)m×c can be obtained through an
iterative solution via Equations (11)–(13).

The details of the steps of the fuzzy clustering iterative solution are illustrated as follows [8,16,26]:
Step 1 Set the precision of ε1, ε2, and ε3 for calculating ωj, uhi, and sjh, and set the maximum

iterative number T.
Step 2 Let the iterative number be t = 0, assume that the original weight matrix ωt

j satisfies

the constraint 0 ≤ ωj ≤ 1,
m
∑

j=1
ωj = 1 shown in Equation (7), and assume that the original fuzzy

membership matrix ut
hi satisfies the constraint

c
∑

h=1
uhi = 1; 0 ≤ uhi ≤ 1 shown in Equation (5).

Step 3 Calculate the corresponding original clustering center st
jh by importing ut

hi and ωt
j into

Equation (12).
Step 4 Seek an approximate clustering matrix ωt+1

j by importing st
jh and ut

hi into Equation (10).

Step 5 Seek an approximate clustering matrix ut+1
hi by importing st

jh and ωt+1
j into Equation (11).

Step 6 Seek an approximate clustering center matrix st+1
jh by importing ut+1

hi and ωt+1
j into

Equation (12).
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Step 7 Compare the corresponding values ωt
j and ωt+1

j , ut
hi and ut+1

hi , and st
jh and st+1

jh , respectively,
and update the iteration counter by t = t + 1 until the termination conditions in Equation (13) are
satisfied or the iteration counter reaches the maximum iterative number; otherwise go to Step 3.

max
∣∣∣ωt

j −ωt+1
j

∣∣∣ ≤ ε1

max
∣∣∣ut+1

hi − ut
hi

∣∣∣ ≤ ε2

max
∣∣∣st+1

jh − st
jh

∣∣∣ ≤ ε3

(13)

Step 8 Finally, ωt+1
j , ut+1

hi , and st+1
jh are obtained through the above computational steps.

The objective value GEWD of the FCI is then calculated as the objective function fitness.
To be clear, the FCI obtains access to the index weight vector so as to minimize the GEWD

by the above iterative calculation. However, this may lead to the objective function not being able
to implement the global optimization with some initial conditions [31]. Intelligent optimization
techniques are usually combined with the FCI to deal with the optimization problem, increase the
possibility of searching for the global optimal solution, and avoid the problem of sensitivity to the
initial clustering center. They improve the computational efficiency and optimization performance of
the conventional iterative calculation approach [26,33].

Moreover, the optimal weight vector based on the above process is calculated only according to the
sample data itself. Although its value is between 0 and 1 and its sum is 1, just the “mathematical weight”
is given in the meaning of the data calculation, as it cannot reasonably reflect the decision-makers’
subjective cognition and the objective difference information of samples [31,33].

Hence, to solve the problem of weight in the FCI, a comprehensive weight is used, and a fuzzy
clustering iteration model with a combined weight is proposed.

2.2. Combined Weight for Flood Classification

In order to comprehensively reflect the knowledge of decision-makers’ experience and judgment
and the importance of evaluation indices, as well as reduce the subjective randomness of the evaluation
process, the subjective weight and the objective weight are integrated to determine a more reasonable
combined weight, so as to improve the utilization of information and the reliability of the results.
In this way, a more practical evaluation result will be reached.

Generally speaking, the calculation methods for combined weight include the additive synthesis
method [39], the multiplicative synthesis method [40], and the minimum relative entropy method [41].

Assume that the subjective weight and the objective weight are denoted asωS = (ωS1, ωS2, . . . , ωSm)

andωO = (ωO1, ωO2, . . . , ωOm), respectively. The main calculation procedures to obtain the combined
weightω = (ω1, ω2, . . . , ωm) of the above three methods are as follows:

(1) the additive synthesis method [39]

ωj = β ·ωSj + (1− β) ·ωOj, j = 1, 2, . . . , m. (14)

where β is the preference coefficient for the subjective and objective weight and 0 ≤ β ≤ 1. Obviously,
the combined weight changes with the selection of β. Usually, β is set as 0.5.

(2) the multiplicative synthesis method (MS) [40]

ωj = (ωSj ×ωOj)/
m

∑
j=1

(ωSj ×ωOj) . (15)

(3) the minimum relative entropy method (MRE) [41]
According to the principle of minimum relative information entropy, the following objective

function is constructed to make ωj as close as possible to ωSj and ωOj. Based on the Lagrange function
approach, ωj is calculated as follows:
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ωj = (ωSj ·ωOj)
0.5/

[
m

∑
j=1

(ωSj ·ωOj)
0.5

]
, j = 1, 2, . . . , m. (16)

2.3. The Fuzzy Clustering Iteration Model with Combined Weight

In this section, the additive synthesis method mentioned above is adopted after the subjective
weight and the objective weight have been obtained by the corresponding weighting methods. For the
subjective weight, there is the Delphi method [8], the consistency theorem method [34], and so on;
for the objective weight, there is the entropy weight method [24], the projection pursuit method [35,36],
etc. In other words, the fusion of the subjective and objective weights is carried out to calculate the
combined weight with the sensitivity coefficient β. Therefore, the objective function of the GEWD in
Equation (9) is correspondingly transformed to Equation (17) as follows:

minF = min{F(β, ωSj, ωOj, uhi, sjh) =
n
∑

i=1

c
∑

h=1

[
uhi

∥∥∥(β ·ωSj + (1− β) ·ωOj) · (rij − sjh)
∥∥∥]2
}

s.t.
c
∑

h=1
uhi = 1; 0 ≤ uhi ≤ 1

(17)

According to the Lagrange function approach, the Lagrange function is constructed as follows:

L(U, S, λ, β) =
n

∑
i=1

c

∑
h=1

[
uhi

∥∥∥(β ·ωSj + (1− β) ·ωOj) · (rij − sjh)
∥∥∥]2
− λ

(
c

∑
h=1

uhi − 1

)
. (18)

Set ∂L
∂uhi

= 0, ∂L
∂sjh

= 0, ∂L
∂β = 0, ∂L

∂λ = 0. Based on a theoretical derivation, a new iteration model of
FCI-CW can be obtained:

uhi =

 c

∑
k=1

m
∑

j=1

[
(β ·ωSj + (1− β) ·ωOj) · (rij − sjh)

]2

m
∑

j=1

[
(β ·ωSj + (1− β) ·ωOj) · (rij − sjk)

]2


−1

(19)

sjh =
n

∑
i=1

u2
hi · (β ·ωSj + (1− β) ·ωOj)

2 · rij/
n

∑
i=1

u2
hi(β ·ωSj + (1− β) ·ωOj)

2 (20)

β =

n
∑

i=1

c
∑

h=1

m
∑

j=1
u2

hi · (rij − sjh)
2 ·ωOj(ωOj −ωSj)

n
∑

i=1

c
∑

h=1

m
∑

j=1
u2

hi · (rij − sjh)
2 · (ωOj −ωSj)

2
. (21)

2.4. The Procedure of FCI-CW

We aim to minimize the objective function in Equation (17) of FCI-CW. The subjective and
objective weights are denotedωS = (ωS1, ωS2, . . . , ωSm) andωO = (ωO1, ωO2, . . . , ωOm), respectively;
the sensitivity coefficient is denoted β; the fuzzy clustering matrix is denoted U = (uhi)c×n; and
the fuzzy class center matrix is denoted S = (sjh)m×c. We adopt the sensitivity coefficient and the
clustering center matrix to calculate the optimal fuzzy clustering matrix. Its steps are illustrated
as follows:

Step 1 Set the iteration counter to g = 0;
Step 2 Obtain the subjective weight ωSj and the objective weight ωOj according to the subjective

weighting method and the objective weighting method separately; initialize s0
jh and β0, set the objective

function value of Equation (17) to F0 = ξ, where ξ is a large constant; and set the precision ε;
Step 3 Calculate the combined weight ω

g
j based on Equation (14);
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Step 4 Calculate the membership matrix ug
hi based on Equation (19);

Step 5 Calculate the fuzzy class center matrix sg
ih based on Equation (20);

Step 6 Calculate the sensitivity coefficient βg based on Equation (21);
Step 7 Calculate the objective function value Fg = F(βg, ωSj, ωOj, uhi

g, sjh
g);

Step 8 Compare Fg with Fg−1. If
∣∣Fg − Fg−1

∣∣ < ε, stop the calculation; otherwise g = g + 1 and
return to Step 3.

From the above procedure, we can see that the computational process of the FCI is time-consuming
and intractable when the number of data in the dataset is large. So, GWO is adopted for the fuzzy
clustering to obtain better results. Taking into consideration the disadvantages of GWO, IGWO is
presented after the introduction of GWO.

3. The Immune Grey Wolf Optimizer Algorithm

3.1. Overview of the Grey Wolf Optimizer Algorithm

GWO is a biologically inspired optimization algorithm that simulates the social hierarchy and
hunting mechanism of grey wolves in nature, and was proposed by Mirjalili [37,42]. The grey wolves
are gregarious animals, and there are usually a dozen wolves in each pack, which build a strict grey
wolf pyramid hierarchy. In GWO, the crowd is split into four different groups (alpha, beta, delta,
and omega), which are employed for simulating the leadership hierarchy, i.e., α � β � δ � ω, as
shown in Figure 1.

Water 2019, 11, x FOR PEER REVIEW 8 of 23 

 

Step 1 Set the iteration counter to 0g = ; 
Step 2 Obtain the subjective weight Sjω  and the objective weight Ojω  according to the 

subjective weighting method and the objective weighting method separately; initialize 0
jhs  and 0β , 

set the objective function value of Equation (17) to 0 =F ξ , where ξ  is a large constant; and set the 
precision ε ; 

Step 3 Calculate the combined weight g
jω  based on Equation (14); 

Step 4 Calculate the membership matrix g
hiu  based on Equation (19); 

Step 5 Calculate the fuzzy class center matrix g
ihs  based on Equation (20); 

Step 6 Calculate the sensitivity coefficient gβ  based on Equation (21); 

Step 7 Calculate the objective function value ( , , , , )g g g g
Sj Oj hi jhF F u sβ ω ω= ; 

Step 8 Compare gF  with 1gF − . If 1g gF F ε−− < , stop the calculation; otherwise 1g g= +  and 
return to Step 3. 

From the above procedure, we can see that the computational process of the FCI is time-
consuming and intractable when the number of data in the dataset is large. So, GWO is adopted for 
the fuzzy clustering to obtain better results. Taking into consideration the disadvantages of GWO, 
IGWO is presented after the introduction of GWO. 

3. The Immune Grey Wolf Optimizer Algorithm 

3.1. Overview of the Grey Wolf Optimizer Algorithm 

GWO is a biologically inspired optimization algorithm that simulates the social hierarchy and 
hunting mechanism of grey wolves in nature, and was proposed by Mirjalili [37,42]. The grey wolves 
are gregarious animals, and there are usually a dozen wolves in each pack, which build a strict grey 
wolf pyramid hierarchy. In GWO, the crowd is split into four different groups (alpha, beta, delta, and 
omega), which are employed for simulating the leadership hierarchy, i.e., α β δ ω   , as shown 

in Figure 1. 
Specifically, firstly, the alpha wolf (α ) is the leader of the wolves, and it is mostly responsible 

for making decisions about hunting, the sleeping place, the time to wake, and so on. The alpha’s 
decisions are dictated to the pack. Secondly, the beta wolf ( β ) is a subordinate wolf that helps the 
alpha wolf in decision-making or other pack activities. The beta wolf should respect and advise the 
alpha, but commands the other lower-level wolves as well. Thirdly, the delta wolf ( δ ) has to 
command to the alpha wolf and beta wolf, but can also dominate the omega wolves. Finally, the 
lowest ranking grey wolf is an omega wolf. The omega wolves (ω ) always have to submit to all the 
other dominant wolves, such as the alpha wolf, the beta wolf, and the delta wolf. 

 

Figure 1. The grey wolf social hierarchy. 

For mathematical modeling of the GWO algorithm, which simulates the hunting behavior of 
grey wolves, we need to first generate a group of wolves randomly in the search space, then use α , 
β , and δ wolves to estimate the position of the prey. As for other wolves, they are ordered to 
calculate the distance between themselves and the α , β , and δ  wolves, then get close to the prey 

Figure 1. The grey wolf social hierarchy.

Specifically, firstly, the alpha wolf (α) is the leader of the wolves, and it is mostly responsible
for making decisions about hunting, the sleeping place, the time to wake, and so on. The alpha’s
decisions are dictated to the pack. Secondly, the beta wolf (β) is a subordinate wolf that helps the alpha
wolf in decision-making or other pack activities. The beta wolf should respect and advise the alpha,
but commands the other lower-level wolves as well. Thirdly, the delta wolf (δ) has to command to the
alpha wolf and beta wolf, but can also dominate the omega wolves. Finally, the lowest ranking grey
wolf is an omega wolf. The omega wolves (ω) always have to submit to all the other dominant wolves,
such as the alpha wolf, the beta wolf, and the delta wolf.

For mathematical modeling of the GWO algorithm, which simulates the hunting behavior of grey
wolves, we need to first generate a group of wolves randomly in the search space, then use α, β, and
δ wolves to estimate the position of the prey. As for other wolves, they are ordered to calculate the
distance between themselves and the α, β, and δ wolves, then get close to the prey and encircle it, and
finally capture the prey successfully. The modeling steps of GWO are detailed as follows:

Assume that there are N wolves in a pack, denoted as Y = {Y1, Y2, · · · , YN}, and the searching
space has D dimensions. The position of grey wolf i at the generation g can be expressed as
Yg

i = (yg
i,1, yg

i,2, . . . , yg
i,D), and the position of α, β, and δ wolves can be respectively denoted as Yα,

Yβ, and Yδ, who are in, respectively, the best, the second best, and the third best current position of
grey wolves.
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Hence, the behavior of grey wolves encircling the prey can be mathematically expressed using
the following equations:

Dg
i =

∣∣∣C · Yg
p − Yg

i

∣∣∣ (22)

Yg+1
i = Yg

i −A ·Dg
i (23)

where Yg
p is the position of the prey at the generation g. The vectors C and A can respectively be

obtained by Equations (24) and (25) as follows.

C = 2 · r1 (24)

A = 2a · r2 − a (25)

where r1 and r2 are random vectors ranging from 0 to 1. As the time of iteration increases, a decreases
from 2 to 0.

In order to mathematically simulate the hunting behavior, assume that α, β, and δ wolves are
closest to the prey and have better knowledge about the potential location of the prey, and that we can
rely on the position of these three kinds of wolves to estimate the prey’s position. The way to update
the position of grey wolves at the generation g is as shown in Equation (26):

Yg+1
i = (Y1 + Y2 + Y3)/3 (26)

Y1 = Yα −A1 ·D1 Y2 = Yβ −A2 ·D2 Y3 = Yδ −A3 ·D3 (27)

D1 =
∣∣∣C1 · Yα − Yg

i

∣∣∣ D2 =
∣∣∣C2 · Yβ − Yg

i

∣∣∣ D3 =
∣∣∣C3 · Yδ − Yg

i

∣∣∣ (28)

A1 = 2a · r3 − a A2 = 2a · r4 − a A3 = 2a · r5 − a (29)

C1 = 2 · r6 C2 = 2 · r7 C3 = 2 · r8 (30)

where r3, r4, r5, r6, r7, and r8 are random vectors ranging from 0 to 1, similar to the above-mentioned r1

and r2; obviously, the calculation of A1, A2, and A3 is similar to the calculation of A, and the calculation
of C1, C2, and C3 is similar to the calculation of C.

With these equations, the position would be in a random place within a circle that is defined by
the positions of α, β, and δ in the search space. In other words, α, β, and δ estimate the position of
the prey, and the other wolves update their positions randomly around the prey. Finally, when the
generation g reaches the maximum generation G, Yα is put out as the optimal positon of GWO.

GWO carries out the process of encircling, hunting, and attacking prey based on α, β, and δ with
a simple structure, a lower number of control parameters, and easy programming. However, it also
easily falls into the local optimal. The reason is that, with the deepening of the optimization iteration
and the rapid decline of the population diversity, the differences among the individuals become smaller
and smaller, and cannot be found in the solution space, thus resulting in a premature convergence in
the global search. Therefore, based on the immune clonal theory, this paper proposes an immune grey
wolf optimizer algorithm (IGWO), which chooses the elite individuals for immune clone selection to
improve the global convergence accuracy and the overall optimization ability.

3.2. Immune Clone Selection Operator

The immune clone selection operator is a deep search for elite individuals. Its essence is to clone
the elite individuals according to their fitness, thus producing a certain number of mutant individuals
to expand the range of the search and improve the diversity of the population [43]. The details of the
calculation procedure are as follows [38].

Step 1 The current population is ranked according to fitness, and the best nn individuals are
selected to form the elite population.
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Step 2 All the individuals in the elite population are respectively cloned to form a temporary
population S. The clone size is directly proportional to the affinity, and the population number Nc of S
is calculated as:

Nc =
nn

∑
i=1

round(
β× nn

i
+ b) (31)

where the round() function results in round numbers; the number of β is between 0 and 1; b is an
integer constant; and b ≥ 1, which ensures that each individual from the elite population has a certain
number of clones.

Step 3 All the individuals in S are successively implemented based on a mutation operator mm
times to obtain better candidate solutions nearby to themselves. The mutation operator is shown in
Equations (32)–(34) as follows:

new yxg
i,j = yg

i,j + p× η × yg
i,j × r1 − p× η × yg

i,j × r2 (32)

p =

{
1, r3 ≤ 0.5
0, else

(33)

η= 1− exp(1− G/(g + 1)) (34)

where yg
i,j is the j-th dimension variable of the i-th individual at generation g, new yxg

i,j is a new variable

generated from yg
i,j based on the mutation operator; r1, r2, and r3 are random numbers between 0 and

1; and η is clonal variation parameter. From Equation (34), we can see that as the generation number
increases, the clonal variation parameter decreases, which indicates that η is close to 1 at the beginning,
and the variation range is large. A global search is implemented to maintain the diversity of the
population at this time, and, when the generation number equals the maximum evolution generation,
η is close to 0. Then, a local search is carried out in a small range to improve the local fine tuning ability
and to ensure the search’s accuracy.

Step 4 The best nn individuals are selected from S to replace the elite population in the
next generation.

Hence, IGWO is developed to optimize the fuzzy clustering objective function of FCI-CW. For your
convenience, the immune clone selection operator is performed every 20 generations, and we set
nn = N/4, mm = 200.

3.3. The Pseudo Code of IGWO

The Pseudo code of IGWO can be expressed as in Table 1.

Table 1. The pseudo code of the immune grey wolf optimizer algorithm (IGWO).

Algorithm Immune Grey Wolf Optimizer Algorithm (IGWO)

1: Set generation g = 0
2: Initialize the grey wolf population Y0

i , i = 1, 2, . . . , N.
3: Initialize a, A1, A2, A3, C1, C2, C3, nn, mm.
4: Calculate the fitness of each individual
5: Yα = the best search individual
6: Yβ = the second best search individual
7: Yδ = the third best search individual
8: While (g < Max number of generations)
9: For each search individual
10: Update position of each current search individual by Equation (26)
11: End for
12: Update a, A1, A2, A3, C1, C2, C3
13: Calculate the fitness of all search individuals
14: Choose the best nn individuals to form the elite population
15: Clone the elite population to form the temporary population

S by Equation (31)
16: execute the mutation operator by Equation (32)
17: replace the elite population and the GWO population
18: Update Yα, Yβ, and Yδ,
19: g = g + 1
20: End while
21: Output Yα
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3.4. Simulation of IGWO for Solving Benchmark Optimization Problems

In this section, six well-known benchmark optimization problems (shown in Table 2) are employed
to evaluate the search ability of the IGWO algorithm by a comparison with the simple GWO and
differential evolution (DE) algorithms [44,45].

Table 2. The benchmark functions.

Function Expression Dim Shift Position Optimal Value

Sphere f1(x) = ∑D
i=1 x2

i 30 [−100,100] 0
Rastrigin f2(x) = ∑D

i=1 [x
2
i − 10 cos(2πxi) + 10] 30 [−5.12,5.12] 0

Ackley f3(x) = −20 exp(−0.2
√

1
D ∑D

i=1 x2
i )−

exp[ 1
D ∑D

i=1 cos(2πxi)] + 20 + e
30 [−30,30] 0

Schwefel 2.21 f4(x) = max
1≤i≤D

{|xi|} 30 [−100,100] 0

Schwefel 2.22 f5(x) = ∑D
i=1|xi|+ ∏D

i=1|xi| 30 [−10,10] 0

Schaffer’s f7
f6(x) =

1
4000 ∑D−1

i=1 (x2
i + x2

i+1)
0.25

[sin2(50(x2
i + x2

i+1)
0.1
) + 1]

30 [−100,100] 0

For the sake of comparison, the algorithm parameters are set as below: the number of individuals
is 30; and the maximum generation number is 1000. For DE, its mutation parameter and crossover
parameter are set as 0.5 and 0.4, respectively. The simulation results are shown in Table 3, and each
function is independently processed 50 times. The convergence curves for each function are respectively
shown in Figures 2–7. The Y-axis is the value of the corresponding function.

Table 3. The test function results for the differential evolution (DE), grey wolf optimization (GWO),
and IGWO algorithms.

Function Algorithm Best Worst Mean Standard Deviation

Sphere
DE 1.15 × 10−19 1.49 × 10−18 5.60 × 10−19 6.33 × 10−19

GWO 1.35 × 10−60 6.54 × 10−59 2.77 × 10−59 3.11 × 10−59

IGWO 1.05 × 10−223 8.78 × 10−220 4.51 × 10−220 0

Rastrigin
DE 84.5 109 99.5 11.9

GWO 0 3.22 8.04 × 10−1 1.61
IGWO 0 0 0 0

Ackley
DE 1.09 × 10−10 1.41 × 10−10 1.29 × 10−10 1.53 × 10−11

GWO 1.51 × 10−14 2.93 × 10−14 1.87 × 10−14 7.11 × 10−15

IGWO 4.44 × 10−15 7.99 × 10−15 6.22 × 10−15 2.05 × 10−15

Schwefel 2.21
DE 1.00 5.69 3.20 2.05

GWO 8.27 × 10−15 4.68 × 10−14 2.83 × 10−14 1.58 × 10−14

IGWO 4.52 × 10−42 4.21 × 10−36 1.05 × 10−36 2.10 × 10−36

Schwefel 2.22
DE 2.96 × 10−12 9.44 × 10−12 5.94 × 10−12 3.14 × 10−12

GWO 4.06 × 10−35 7.89 × 10−35 6.29 × 10−35 1.69 × 10−35

IGWO 1.24 × 10−135 1.80 × 10−132 9.01 × 10−133 1.02 × 10−132

Schaffer’s f7

DE 2.36 × 10−02 9.19 × 10−02 4.74 × 10−02 3.15 × 10−02

GWO 1.09 × 10−15 4.99 × 10−15 3.11 × 10−15 1.74 × 10−15

IGWO 2.00 × 10−67 7.36 × 10−67 3.72 × 10−67 2.46 × 10−67

Table 3 lists the best, worst, mean, and standard deviation results from the different algorithms
over 50 independent runs. As inferred from Table 3, compared with DE and GWO, IGWO can obtain
the best values, the smallest averages, and the smallest variances in terms of optimal results. What
is more, Figures 2–7 show the convergence curves of DE, GWO, and IGWO, respectively. It can be
observed that the proposed method is able to effectively avoid premature convergence and obtain
better convergence precision. On the whole, the optimization performance of IGWO is obviously better
than that of DE and GWO, and it can be illustrated that the targeted improvement strategy for IGWO
is effective. Hence, the paper proposes a new and feasible method with good search capability to solve
optimization problems.
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4. The Procedure for Flood Classification Using FCI-CW and IGWO

4.1. Search-Variable Representation and Fitness Function

Since IGWO is a real-parameter optimization algorithm, when IGWO is adopted to optimize
the objective function of FCI-CW, the search-variable representation should be considered first.
Here, the fuzzy class center matrix S =

(
sjh

)
m×c

as well as the sensitivity coefficient β are both

chosen to be optimization variables and encoded as a position of individuals. This means that a grey
wolf in GWO is a string of real numbers of the mc + 1 dimension vector, which can be described as:

Yi = {s11, s12 . . . , s1c, s21, s11, . . . , s2c, . . . , sm1, sm2, . . . , smc, β} (35)

where the first c elements s11, s12 . . . , s1c represent the first cluster, the next c elements represent the
second cluster center, and so on; the last element represents the sensitivity coefficient. In this way, S
and β can be obtained by IGWO.

When using IGWO to solve the objective function of the GEWD shown in Equation (17),
it will be considered as the fitness function, and a smaller fitness leads to a better effect of fuzzy
clustering. Therefore, the purpose of IGWO is to obtain the minimum optimal solution by continuous
iterative optimization.

4.2. The Procedure of FCI-CW and IGWO

Finally, the procedure for flood classification using FCI-CW and IGWO can be described as in
Figure 8.
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5. Case Study

5.1. The First Case at Nanjing Station

According to the flood records of Nanjing station in the lower reaches of the Yangtze River from
1951 to 2005, the flood samples are as shown in Table 4 [8,26]. There are 10 floods, with data on
the flood peak level, the number of days that the flood level was over 9 m, the flood discharge in
DaTong station, the flood volume from May to September, and the synthetic index of discharge and
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time, where the final index is the composite value of the flood discharge and its duration according to
References [8,26].

Table 4. The flood classification index values of 10 flood samples from Nanjing station.

Number of Floods Year Flood Peak
Level (m)

The Days of Flood
Level over 9 m (day)

Flood Peak
Discharge in DaTong

Station (m3·s−1)

Flood Volume from
May to September

(108 m3)

The Synthetic Index of
Discharge and Time

(1) 1954 10.22 87 92,600 8891 7800
(2) 1969 9.20 8 67,700 5447 1710
(3) 1973 9.19 7 70,000 6623 3280
(4) 1980 9.20 10 64,000 6340 2730
(5) 1983 9.99 27 72,600 6641 3560
(6) 1991 9.70 17 63,800 5576 1930
(7) 1992 9.06 13 67,700 5295 1575
(8) 1995 9.66 23 75,500 6162 2390
(9) 1996 9.89 34 75,100 6206 2702
(10) 1998 10.14 81 82,100 7773 5283

On the basis of the Chinese National Standard for Hydrological Forecasting, which was
implemented on January 1, 2009, and according to the flood recurrence periods of less than 5 years,
5–20 years, 20–50 years, and more than 50 years, the floods are divided into four grades, i.e., small
floods, common floods, large floods, and catastrophic floods. Considering the fact that the flood
samples in this paper are at least common floods, the aim of the first study is to divide the flood records
into three classes; in other words, the floods are also clustered into catastrophic floods, large floods,
and common floods, also denoted as I, II, and III.

Hence, in this case study, FCI-CW and IGWO are applied to flood classification at Nanjing Station.
The parameters employed for FCI-CW are set as follows: the number of flood samples,

indices, and clusters is n = 10, m = 5, and c = 3, respectively. According to an
analysis of the historical flood characteristics of Nanjing station and the influence of various
indices on the flood intensity [8], the subjective weight by the Delphi method [35,36] is
ωS = (0.16, 0.25, 0.19, 0.15, 0.25). Meanwhile, according to the projection pursuit method [35,36],
the objective weight isωO = (0.17, 0.23, 0.20, 0.19, 0.21).

The parameters employed for IGWO are set as follows: population size N = 50; maximum
evolution generation G = 600.

Firstly, in order to compare the optimization performance of DE, GWO, and IGWO, Table 5 shows
their statistical results over 30 runs. The results show that the three kinds of evolutionary algorithms
have different precisions, to a certain extent. The standard deviation and average value of IGWO are
both the smallest, and can basically achieve the same optimal solution every time, which indicates
that, compared with DE and GWO, IGWO has better robustness and higher convergence precision.
Of course, the number of flood samples in this case study is very small, which leads to a classification
effect at an order of magnitude. If the number of samples and the index dimension increases, the
optimization effect of IGWO will be more obvious and effective.

Table 5. The comparison results of objective fitness by the different algorithms for the first case study.

Algorithms Minimum Maximum Average Standard Deviation

DE 2.032220 × 10−2 2.324090 × 10−2 2.099263 × 10−2 1.266623 × 10−3

GWO 2.030084 × 10−2 2.030152 × 10−2 2.030128 × 10−2 1.364308 × 10−8

IGWO 2.023083 × 10−2 2.023083 × 10−2 2.023083 × 10−2 3.878990 × 10−18

In this case study, the minimum objective function value is 2.023083 × 10−2, and the optimal
search result of IGWO was output to obtain the optimal fuzzy class center matrix S∗ and the optimal
sensitivity coefficient β∗ shown in Equations (36) and (37), respectively. Afterwards, the index weight
matrix was calculated asω∗ = (0.1644, 0.2412, 0.1944, 0.1676, 0.2324), which was combined with the
subjective weight and the objective weight by using β∗ to obtain the best optimal value of GEWD.
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Finally, the optimal fuzzy clustering matrix U∗ was achieved as shown in Equation (39).

S∗ =

 0.9683 0.9652 0.8356 0.8597 0.8178
0.6653 0.2561 0.3429 0.2788 0.2040
0.1336 0.0432 0.1080 0.1526 0.1034

 (36)

β∗ = 5.595729× 10−1 (37)

ω∗ = (0.1644, 0.2412, 0.1944, 0.1676, 0.2324) (38)

U∗ =

 0.9477 0.0052 0.0240 0.0093 0.0227 0.0273 0.0111 0.0131 0.0088 0.8543
0.0327 0.0456 0.2021 0.0781 0.9078 0.4074 0.0820 0.8664 0.9593 0.0992
0.0196 0.9492 0.7740 0.9125 0.0696 0.5653 0.9069 0.1204 0.0319 0.0466

 (39)

According to the clustering results in Equation (39), we can conclude that there was a huge flood
disaster in 1954 and 1998; there was a medium flood disaster in 1983, 1995, and 1996; and there was
a small flood disaster in 1969, 1973, 1980, 1991, and 1992, as shown in Table 6. This sorting result is
identical to that obtained with the optimal curve projection dynamic cluster method (OC-PDC) [23],
variable fuzzy set theory (VFS) [8], the fuzzy clustering iteration model with a chaotic differential
evolution algorithm (FCI-CDE) [26], and the weighted fuzzy kernel-clustering algorithm with an
adaptive differential evolution algorithm (WFKCA-ADE) [27], which demonstrates that the proposed
methodology for flood classification is reasonable and reliable.

Table 6. The results from the comparison of the proposed method with other methods at Nanjing station.

Number of Floods Year OC-PDC VFS FCI-CDE WFKCA-ADE The Proposed Method

(1) 1954 I I I I I
(2) 1969 III III III III III
(3) 1973 III III III III III
(4) 1980 III III III III III
(5) 1983 II II II II II
(6) 1991 III III III III III
(7) 1992 III III III III III
(8) 1995 II II II II II
(9) 1996 II II II II II

(10) 1998 I I I I I

OC-PDC, optimal curve projection dynamic cluster; VFS, variable fuzzy set theory; FCI-CDE, fuzzy clustering
iteration model with a chaotic differential evolution algorithm; WFKCA-ADE, weighted fuzzy kernel-clustering
algorithm with an adaptive differential evolution algorithm.

Moreover, VFS only considers the subjective weight; however, there is unavoidable factual
evidence, which means that an objective weight is also needed to describe the distribution
characteristics of flood samples. Moreover, the index weight is coded as a search-variable
representation in FCI-CDE [26], and its optimal fitness, i.e., the GEWD, is 1.277551× 10−2, which is less
than the optimal value 2.020046 × 10−2 by the proposed method. However, its optimal weight vector,
denoted asω

′
= (0.0908, 0.6267, 0.1141, 0.0801, 0.0883), is just the “mathematical weight” in the sense

of sample data calculation, which indicates that the importance of the second index is much larger
than the sum of the other four indices. This is contrary to the decision-maker’s subjective cognition
and the actual situation, so it is necessary to reasonably modify the weight results.

Furthermore, the effect of the sensitivity coefficient on the classification results using FCI-CW
and IGWO was evaluated, as shown in Table 7. Here, the sensitivity coefficients were chosen to
be different values, such as 0, 0.2, 0.4, 0.45, 0.5, 0.55, 0.6, 0.8, and 1. In other words, when β = 0 in
Equation (17), it means that only the objective weight was employed, and the FCI-CW was degraded
into a fuzzy clustering iteration model with objective weight (FCI-OW); when β = 1 in Equation (17),
it means that only the subjective weight was employed, and the FCI-CW was degraded into a fuzzy
clustering iteration model with subjective weight (FCI-SW); and when β = 0.5 in Equation (17), it is
the traditional parameter selection using the additive synthesis method. According to Table 7, when
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β was calculated as 5.595729 × 10−1, the GEWD was the smallest of all, which indicates that the
proposed methodology to calculate the fuzzy class center matrix and the sensitivity coefficient for
flood classification is reasonable. This renders it superior to the conventional methods, since only
considering subjectivity or objectivity, or just setting β = 0.5, lacks a powerful mathematical basis.

Table 7. The comparison results of the general Euclidean weighted distance (GEWD) with different
sensitivity coefficients for the first case study.

β 0 0.2 0.4 0.45 0.5

GEWD 2.037210 × 10−2 2.028914 × 10−2 2.024230 × 10−2 2.0236234 × 10−2 2.02324 × 10−2

β 0.55 5.595729 × 10−1 0.6 0.8 1
GEWD 2.023087 × 10−2 2.023083 × 10−2 2.023157 × 10−2 2.025693 × 10−2 2.031831 × 10−2

Finally, we also calculate the GEWD for the combined weights that were obtained by the
multiplicative synthesis method shown in Equation (15) and the minimum relative entropy method
shown in Equation (16). Their GEWDs are 1.019555 and 1.020171, respectively, which are larger than
the adopted combined weight method, i.e., the additive synthesis method with a sensitivity coefficient.

5.2. The Second Case of Yichang Station

According to the flood records of Yichang station, which is the representative hydrological station
for the Three Gorges Reservoir in the middle reaches of the Yangtze River, the flood samples are as
shown in Table 8 [8]. There are 12 floods, with data on the flood peak level, the flood peak discharge,
three-day floods, seven-day floods, and fifteen-day floods. The aim of the study is to divide the flood
records into three classes, also denoted as I, II, and III, similarly to the first case.

Table 8. The flood classification index values of 12 flood samples from Yichang station.

Number of Floods Year Flood Peak
Level (m)

Flood peak
Discharge (m3·s−1)

Three-Day Flood
(108 m3)

Seven-Day Flood
(108 m3)

Fifteen-Day Flood
(108 m3)

(1) 1931 55.0 64,600 163.2 350.4 621.3
(2) 1935 54.6 56,900 137.1 283.3 509.5
(3) 1954 55.7 66,800 170.1 385.3 785.1
(4) 1958 53.5 59,500 148.8 305.1 550.2
(5) 1966 54.0 59,600 151.7 334.2 592.4
(6) 1969 51.5 41,900 105.1 217.4 412.2
(7) 1974 54.8 61,000 151.8 301.6 545.7
(8) 1980 54.0 54,600 139.7 300.8 545.6
(9) 1981 55.4 70,800 172.5 334.8 558.3

(10) 1982 54.6 59,000 146.9 303.8 583.8
(11) 1983 53.3 52,600 129.9 268.1 491.3
(12) 1998 54.5 63,600 151.3 347.8 728.2

In this study, FCI-CW and IGWO are applied to flood classification at Yichang station.
The parameters employed for FCI-CW are set as follows: the number of flood samples,
indices, and clusters is n = 12, m = 5, and c = 3, respectively. According to
an analysis of the historical flood characteristics of Yichang station and the influence of
various indices on the flood intensity, the subjective weight by the Delphi method [36]
is ωS = (0.3388, 0.2042, 0.2004, 0.1283, 0.1283). Meanwhile, according to the projection pursuit
method [24], the objective weight isωO = (0.188, 186, 0.200, 0.197, 0.229). The parameters employed
for IGWO are set as follows: population size N = 50; maximum evolution generation G = 600.

Firstly, in order to compare the optimization performance of DE, GWO, and IGWO, Table 9 shows
their statistical results over 30 runs. The results show that the three kinds of evolutionary algorithm
have different precisions, to a certain extent. The standard deviation and the average value of IGWO
are both the smallest, and can basically achieve the same optimal solution every time, which indicates
that, compared with DE and GWO, IGWO has better robustness and higher convergence precision.
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Table 9. The comparison results of objective fitness by the different algorithms for the second case study.

Algorithms Minimum Maximum Average Standard Deviation

DE 2.750000 × 10−2 3.150000 × 10−2 2.888000 × 10−2 1.213095 × 10−3

GWO 2.648600 × 10−2 2.990000 × 10−2 2.732100 × 10−2 1.142702 × 10−6

IGWO 2.644227 × 10−2 2.644230 × 10−2 2.644227 × 10−2 6.633250 × 10−16

In this case study, the minimum objective function value is 2.644227 × 10−2, and the optimal
search result of IGWO was output to obtain the optimal fuzzy class center matrix S∗ and the optimal
sensitivity coefficient β∗ shown in Equations (40) and (41), respectively. Afterwards, the index weight
matrix was calculated asω∗ = (0.2789, 0.1970, 0.2002, 0.1556, 0.1683), which was combined with the
subjective weight and the objective weight. Finally, the optimal fuzzy clustering matrix U∗ was
achieved as shown in Equation (43).

S∗ =

 0.024 0.021 0.021 0.018 0.013
0.626 0.554 0.584 0.506 0.377
0.870 0.843 0.884 0.809 0.668

 (40)

β∗ = 6.027070× 10−1 (41)

ω∗ = (0.2789, 0.1970, 0.2002, 0.1556, 0.1683) (42)

U∗ =

 0.004 0.030 0.025 0.034 0.021 0.998 0.022 0.015 0.022 0.012 0.225 0.030
0.049 0.884 0.127 0.877 0.834 0.001 0.755 0.951 0.153 0.895 0.658 0.306
0.947 0.087 0.848 0.089 0.144 0.001 0.223 0.033 0.824 0.093 0.116 0.665

 (43)

Moreover, according to the clustering results in Equation (43), we can conclude that there was
a huge flood disaster in 1931, 1954, 1981, and 1998; there was a medium flood disaster in 1935, 1958,
1966, 1974, 1980, 1982, and 1996; and there was a small flood disaster in 1969, as shown in Table 10.
This sorting result is identical to that obtained with VFS [8], which demonstrates that the proposed
methodology for flood classification is reasonable and reliable.

Table 10. The comparison results of the proposed method with VFS at Yichang station.

Number of Floods Year VFS The Proposed Method

(1) 1931 I I
(2) 1935 II II
(3) 1954 I I
(4) 1958 II II
(5) 1966 II II
(6) 1969 III III
(7) 1974 II II
(8) 1980 II II
(9) 1981 I I

(10) 1982 II II
(11) 1983 II II
(12) 1998 I I

Finally, the effect of the sensitivity coefficient on the classification results using FCI-CW and IGWO
was evaluated, as shown in Table 11. Here, the sensitivity coefficients were chosen to be different
values, such as 0, 0.2, 0.4, 0.45, 0.5, 0.55, 0.6, 0.8, and 1. According to Table 11, When β was calculated
as 6.027070 × 10−1, the GEWD was the smallest of all, which indicates that the proposed methodology
is reasonable. This renders it superior to the conventional methods, since only considering subjectivity
or objectivity, or just setting β = 0.5, lacks a powerful mathematical basis.
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Table 11. The comparison results of the GEWD with different sensitivity coefficients for the second
case study.

β 0 0.2 0.4 0.45 0.5

GEWD 2.740795 × 10−2 2.687555 × 10−2 2.655286 × 10−2 2.650519 × 10−2 2.647082 × 10−2

β 0.55 0.6 6.027070 × 10−1 0.8 1
GEWD 2.644981 × 10−2 2.644229 × 10−2 2.644227 × 10−2 2.655053 × 10−2 2.689421 × 10−2

Therefore, the simulation and analysis results of the second case are identical with those of
the first case, and illustrate that it is necessary to adopt the sensitivity coefficient to effectively and
comprehensively consider subjectivity and objectivity in classification problems.

6. Conclusions

In view of the problem that flood classification has no evaluation standard and the comprehensive
weight is not easy to calculate, a fuzzy clustering iterative model based on a combined weight was
proposed by organically integrating the subjective and objective weights into a combined weight
with the sensitivity coefficient. At the same time, a better-performance IGWO was put forward based
on GWO and the immune clonal theory. On this basis, the optimal fuzzy clustering center matrix
and the sensitivity coefficient of FCI-CW were obtained by IGWO. The simulation results show that
the proposed methodology, i.e., FCI-CW with IGWO, is simple and feasible, and the classification
results are reasonable, reliable, and robust. The proposed methodology can not only effectively
deal with the uncertainties and fuzziness of flood classification, but also consider the subjective and
objective weights of the evaluation indices, and has a good and wide application in sorting, evaluation,
and decision-making problems without an evaluation standard.

Last but not the least, a balance between efficiency and accuracy is needed to be reached in the
future, and our future work is to establish a comprehensive evaluation index system, propose subjective
weight description methods and objective weight calculation methods in a complex environment,
and combine other intelligent evolution techniques for flood classification, especially for the risk
assessment of urban floods.

Author Contributions: The research presented here was carried out in collaboration between all authors. Q.Z.
and L.L. designed and conducted the experiments. Q.Z. wrote the initial draft of the paper. L.L. reviewed and
edited the paper. Y.D. analyzed and discussed the results. H.Q. prepared the figures for this paper. All authors
read and approved the final paper.

Funding: This research was funded by the Open Research Program of Changjiang River Scientific Research
Institute (Grant No. CKWV2017505/KY), the National Key R&D Program of China (Item No. 2016YFC0402202),
and the National Natural Science Foundation of China (Grant No. 91647114).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Barredo, J.I. Major flood disasters in Europe: 1950–2005. Nat. Hazards 2007, 42, 125–148. [CrossRef]
2. Zou, Q.; Zhou, J.Z.; Zhou, C.; Song, L.X.; Guo, J.; Liu, Y. The practical research on flood risk analysis based

on IIOSM and fuzzy α-cut technique. Appl. Math. Model. 2012, 36, 3271–3282. [CrossRef]
3. Zhao, Y.; Gong, Z.W.; Wang, W.H.; Luo, K. The comprehensive risk evaluation on rainstorm and flood disaster

losses in China mainland from 2004 to 2009: Based on the triangular gray correlation theory. Nat. Hazards
2014, 71, 1001–1016. [CrossRef]

4. Anders, S.O.; Zhou, Q.Q.; Jens, J.L.; Karsten, A.N. Comparing Methods of Calculating Expected Annual
Damage in Urban Pluvial Flood Risk Assessments. Water 2015, 7, 255–270. [CrossRef]

5. He, B.S.; Huang, X.L.; Ma, M.H.; Chang, Q.R.; Tu, Y.; Li, Q.; Zhang, K.; Hong, Y. Analysis of flash flood
disaster characteristics in China from 2011 to 2015. Nat. Hazards 2018, 90, 407–420. [CrossRef]

6. Wang, X.W.; Xie, H.J. A Review on Applications of Remote Sensing and Geographic Information Systems
(GIS) in Water Resources and Flood Risk Management. Water 2018, 10, 608. [CrossRef]

http://dx.doi.org/10.1007/s11069-006-9065-2
http://dx.doi.org/10.1016/j.apm.2011.10.008
http://dx.doi.org/10.1007/s11069-013-0698-7
http://dx.doi.org/10.3390/w7010255
http://dx.doi.org/10.1007/s11069-017-3052-7
http://dx.doi.org/10.3390/w10050608


Water 2019, 11, 80 21 of 22

7. Chen, S.Y. Theory and Application Engineering Fuzzy Sets; National Defense Industry Press: Beijing, China,
1998. (In Chinese)

8. Xu, D.M.; Chen, S.Y.; Qiu, L. Study on flood classification based on variable fuzzy sets theory.
Water Resour. Power 2011, 29, 23–25. (In Chinese)

9. Johanna, S.; Andreas, P.; Catharina, S.; Henrik, A.; Jerry, N.; Jonas, N.; Karin, J.; Misagh, M.; Per, B.; Petter, P.;
et al. Re-Thinking Urban Flood Management—Time for a Regime Shift. Water 2016, 8, 332. [CrossRef]

10. Bracken, L.J.; Oughton, E.A.; Donaldson, A.; Cook, B.; Forrester, J.; Spray, C.; Cinderby, S.; Passmore, D.;
Bissett, N. Flood risk management, an approach to managing cross-border hazards. Nat. Hazards 2016, 82,
217–240. [CrossRef]

11. Vose, D. Risk Analysis: A Quantitative Guide; John Wiley & Sons: Chichester, UK, 2008.
12. Heimhuber, V.; Hannemann, J.; Rieger, W. Flood Risk Management in Remote and Impoverished Areas—A

Case Study of Onaville, Haiti. Water 2015, 7, 3832–3860. [CrossRef]
13. Rui, Y.H.; Fu, D.F.; Minh, H.D.; Mohanasundar, R.; Zevenbergen, C.; Pathirana, A. Urban Surface Water

Quality, Flood Water Quality and Human Health Impacts in Chinese Cities. What Do We Know? Water 2018,
10, 240. [CrossRef]

14. Cochrane, J.L.; Zeleny, M. Multiple Criteria Decision Making; The University of South Carolina Press: Columbia,
SC, USA, 1973.

15. Nalal, H.K.; Ratnayake, U.R. Flood risk analysis using fuzzy models. J. Flood Risk Manag. 2011, 4, 128–139.
[CrossRef]

16. Chen, S.Y. Theories and Methods of Variable Fuzzy Sets in Water Resources and Flood Control System;
Dalian University of Technology Press: Dalian, China, 2005. (In Chinese)

17. Kellens, W.; Vanneuville, W.; Verfaillie, E.; Deckers, P.; Maeyer, P.D. Flood risk management in flanders:
Past developments and future challenges. Water Resour. Manag. 2013, 27, 3585–3606. [CrossRef]

18. Wang, S.J.; Zhang, X.L.; Hou, Y.; Ding, J. Projection pursuit model for evaluating of flood events.
J. China Hydrol. 2002, 22, 1–4. (In Chinese)

19. Dong, Q.J.; Wang, X.J.; Ai, X.S.; Zhang, Y.M. Study on flood classification based on project pursuit and
particle swarm optimization algorithm. J. China Hydrol. 2007, 27, 10–14. (In Chinese)

20. Wang, L.L.; Chen, X.H.; Li, Y.A. Study on flood classification based on project pursuit and artificial fish
swarm algorithm. Yangtze River 2008, 39, 34–37. (In Chinese)

21. Wang, L.L.; Chen, X.H.; Li, Y.A. Study on flood classification based on shuffled frog leaping algorithm and
projection pursuit model. Water Resour. Power 2009, 27, 62–64. (In Chinese)

22. Wang, Z.; Ni, C.J. Study on projection pursuit dynamic cluster model and its application to flood disaster
evaluation. J. Sichuan Norm. Univ. (Nat. Sci.) 2008, 31, 635–638. (In Chinese)

23. Ni, C.J.; Wang, S.J.; Wang, J. Optimal curve projection dynamic cluster index and its application in flood
classification—A case study of a flood observed at Nanjing observation station. J. Catastrophol. 2011, 26, 1–4.
(In Chinese)

24. Sun, Q.; Duan, Q.C.; Qiu, L. Application of fuzzy clustering model based on entropy weights in flood
classification. J. North China Inst. Water Conserv. Hydroelectr. Power 2007, 28, 4–6. (In Chinese)

25. Ying, G.; Zhao, S.X. Application of fuzzy clustering based on entropy weights in flood classification. J. North
China Inst. Water Conserv. Hydroelectr. Power 2009, 30, 9–11. (In Chinese)

26. He, Y.Y.; Zhou, J.Z.; Kou, P.G.; Lu, N.; Zou, Q. A fuzzy clustering iterative model using chaotic differential
evolution algorithm for evaluating flood disaster. Expert Syst. Appl. 2011, 38, 10060–10065. [CrossRef]

27. Liao, L.; Zhou, J.Z.; Zou, Q. Weighted fuzzy kernel-clustering algorithm with adaptive differential evolution
and its application on flood classification. Nat. Hazards 2013, 69, 279–293. [CrossRef]

28. Wang, Z.; Wu, J.; Cheng, L.; Wei, Y.M. Regional flood risk assessment via coupled fuzzy c-means clustering
methods: An empirical analysis from China’s Huaihe River Basin. Nat. Hazards 2018, 93, 803–822. [CrossRef]

29. Zou, Q.; Zhou, J.Z.; Zhou, C.; Song, L.X.; Guo, J. Comprehensive flood risk assessment based on set pair
analysis-variable fuzzy sets model and fuzzy AHP. Stoch. Environ. Res. Risk Assess. 2013, 27, 525–546.
[CrossRef]

30. He, Y.Y.; Wan, J.H.; Lei, X.H.; Singh, H. Flood disaster level evaluation using a particle swarm optimization
algorithm considering decision-maker’s preference. Water Sci. Technol. Water Supply 2017, 18, 288–298.
[CrossRef]

http://dx.doi.org/10.3390/w8080332
http://dx.doi.org/10.1007/s11069-016-2284-2
http://dx.doi.org/10.3390/w7073832
http://dx.doi.org/10.3390/w10030240
http://dx.doi.org/10.1111/j.1753-318X.2011.01097.x
http://dx.doi.org/10.1007/s11269-013-0366-4
http://dx.doi.org/10.1016/j.eswa.2011.02.003
http://dx.doi.org/10.1007/s11069-013-0707-x
http://dx.doi.org/10.1007/s11069-018-3325-9
http://dx.doi.org/10.1007/s00477-012-0598-5
http://dx.doi.org/10.2166/ws.2017.118


Water 2019, 11, 80 22 of 22

31. Guo, Y. Research on application of engineering fuzzy sets theory in water resources and flood control system.
Ph.D. Thesis, Dalian University of Technology, Dalian, China, 2006. (In Chinese)

32. Wang, X.J.; Zhao, R.H.; Hao, Y.W. Flood control operations based on the theory of variable fuzzy sets.
Water Resour. Manag. 2011, 25, 777–792. [CrossRef]

33. He, Y.Y.; Song, X.C.; Wan, J.H. Flood disaster fuzzy clustering iterative assessment model considering
preference information of decision-makers. Syst. Eng. Theory Pract. 2016, 36, 2680–2688. (In Chinese)

34. Chen, S.; Guo, Y. Variable fuzzy sets and its application in comprehensive risk evaluation for flood-control
engineering system. Fuzzy Optim. Decis. Mak. 2006, 5, 153–162. [CrossRef]

35. Wu, C.G.; Wang, Y.M.; Tang, Y.M.; Huang, Q.; Jin, J.L. Variable fuzzy recognition model for the flood hazard
assessment based on set pair analysis. J. Northwest A F Univ. 2012, 40, 221–226. (In Chinese)

36. Wei, Y.M.; Jin, J.L.; Yang, C.J.; Huang, S.F.; Fan, Y.; Chen, D.Q. Theory of Risk Management of Flood Disaster;
Science Press of China: Beijing, China, 2002. (In Chinese)

37. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [CrossRef]
38. Hu, C.J.; Zhang, J. Immune differential evolution algorithm using clone selection. Appl. Res. Comput. 2010,

22, 2342–2347. (In Chinese)
39. Zou, Q.; Zhou, J.Z.; Yang, X.L.; He, Y.Y.; Zhang, Y.C. A comprehensive assessment model for severity degree

of dam failure impact based on attribute interval recognition theory. J. Sichuan Univ. Eng. Sci. Ed. 2011, 43,
45–50. (In Chinese)

40. Li, Y.H.; Zhou, J.Z.; Zhang, Y.C.; Liu, L.; Qin, H. Risk decision model for the optimal operation of reservoir
flood control and its application. Water Power 2009, 35, 19–21, 37. (In Chinese)

41. Liu, J.; Wang, B.D. Variable fuzzy model based on combined weights and its application to risk assessment
for flood control engineering. J. Dalian Univ. Technol. 2009, 49, 272–275. (In Chinese)

42. Mirjalili, S.; Saremi, S.; Mirjalili, S.M.; Coelho, L. Multi-objective grey wolf optimizer: A novel algorithm for
multi-criterion optimization. Expert Syst. Appl. 2016, 47, 106–119. [CrossRef]

43. Qin, H.; Zhou, J.Z.; Li, Y.H.; Lu, Y.L.; Yang, J.J.; Zhang, Y.C. Optimal dispatch of cascade hydroelectric
stations based on cultured clone select algorithm. J. Syst. Simul. 2010, 22, 2342–2347. (In Chinese)

44. Storn, R.; Price, K. Differential evolution—A simple and efficient heuristic for global optimization over
continuous spaces. J. Glob. Optim. 1997, 11, 341–359. [CrossRef]

45. Wen, X.H.; Zhou, J.Z.; He, Z.Z.; Wang, C. Long-Term Scheduling of Large-Scale Cascade Hydropower
Stations Using Improved Differential Evolution Algorithm. Water 2018, 10, 383. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s11269-010-9726-5
http://dx.doi.org/10.1007/s10700-006-7333-y
http://dx.doi.org/10.1016/j.advengsoft.2013.12.007
http://dx.doi.org/10.1016/j.eswa.2015.10.039
http://dx.doi.org/10.1023/A:1008202821328
http://dx.doi.org/10.3390/w10040383
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	The Fuzzy Clustering Iteration Model with Combined Weight (FCI-CW) 
	Overview of the Fuzzy Clustering Iteration Model 
	Combined Weight for Flood Classification 
	The Fuzzy Clustering Iteration Model with Combined Weight 
	The Procedure of FCI-CW 

	The Immune Grey Wolf Optimizer Algorithm 
	Overview of the Grey Wolf Optimizer Algorithm 
	Immune Clone Selection Operator 
	The Pseudo Code of IGWO 
	Simulation of IGWO for Solving Benchmark Optimization Problems 

	The Procedure for Flood Classification Using FCI-CW and IGWO 
	Search-Variable Representation and Fitness Function 
	The Procedure of FCI-CW and IGWO 

	Case Study 
	The First Case at Nanjing Station 
	The Second Case of Yichang Station 

	Conclusions 
	References

