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Abstract: Rainfall-induced landslides form an important natural threat in Vietnam. The purpose of
this study is to explore regional landslide susceptibility mapping in the mountainous district of A
Luoi in Thua Thien Hue Province, where data on the occurrence and causes of landslides are very
limited. Three methods are applied to examine landslide susceptibility: statistical index, logistic
regression and certainty factor. Nine causative factors are considered: elevation, slope, geological
strata, fault density, geomorphic landforms, weathering crust, land use, distance to rivers and annual
precipitation. The reliability of the landslide susceptibility maps is evaluated by a receiver operating
characteristic curve and the area under the curve is used to quantify and compare the prediction
accuracy of the models. The certainty factor model performs best. This model is optimized by
maximizing the difference between the true positive rate and the false positive rate. The optimal
model correctly identifies 84% of the observed landslides. The results are verified with a validation
test, whereby the model is calibrated with 75% randomly selected observed landslides, while the
remaining 25% of the observed landslides are used for validation. The validation test correctly
identifies 81% of the observed landslides in the training set and 73% of the observed landslides in the
validation set.
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1. Introduction

Landslides caused by tropical storms are common in the mountainous areas of Vietnam and have
a major impact on local living conditions [1]. Therefore, prediction of the landslide susceptibility is of
great importance to reduce the loss of life or property. Causative factors for landslides are numerous
and varied, including geomorphological and geological as well as human-influenced factors [2].
Rainfall-induced landslides are generally caused by changes in pore water pressure, which lead to a
reduction of soil strength and consequently slope instability. These changes are often produced by an
increase in the groundwater level [3–6], an increase in the saturation degree of the soil [7–10], or by the
formation of a perched water table [11]. Hence, causative factors for predicting landslide susceptibility
must be carefully assessed on the basis of relevance, availability and scale. However, this is difficult
in Vietnam because systematic studies and inventories of spatial characteristics and land-use have
only been initiated recently. Lee and Dan [12] evaluated the landslide susceptibility in the province of
Lai Chau in Vietnam, with an emphasis on the influence of tectonic fractures. Bui et al. [13] applied
the statistical index and the logistic regression methods to estimate the landslide susceptibility in the
province of Hoa Binh and concluded that the distance to roads, slope and lithology are important
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causative factors for landslides. Long and De Smedt [14] used the analytical hierarchical process
approach for analysing landslide susceptibility in the province of Thua Thien Hue and concluded that
slope angle and precipitation are the main causative factors for landslides. Long and De Smedt [15]
applied a physically based slope stability model to determine safety factors for landslides in Thua
Thien Hue Province using the maximum daily precipitation recorded in a 28-year period as a triggering
mechanism for slope instability. Hung et al. [16] presented landslide susceptibility maps for the upper
Lo River catchment in northern Vietnam, using the analytical hierarchy process and a weighted
linear combination model, and concluded that slope and weathering crust are of great importance for
predicting landslides.

The most obvious approach to every study of landslide susceptibility is to compile a landslide
inventory and analyse the relationship with possible causative factors to predict landslide prone areas.
Various statistical techniques have been proposed for assessing landslide susceptibility. In bivariate
statistical analysis, the importance of each causative factor is determined on the basis of the observed
landslide density within each class of a factor map, after which all factor maps are combined by a
weighting procedure to obtain a landslide susceptibility map. There are several ways in which such
analyses can be performed. A very popular technique is the statistical index method [17–29].

In multivariate statistical analyses, all causal factors controlling the landslide events are analysed
together to indicate the relative contribution of each of these factors to the degree of hazard [30].
There are also different techniques for this. One is the logistic regression analysis, which is widely
used to predict success or failure of a process based on a set of observations. Instead of using a linear
relationship between the independent variables and the response, a logistic function is used [28].
Many studies have used logistic regression to assess landslides [13,25,31–41]. Budmir et al. [42]
presented an overview of landslide probability mapping using logistic regression.

Certainty factor analysis was introduced as an alternative to statistical approaches to avoid
limitations such as independency of the data. Certainty factor analysis expresses belief or the disbelief
of a hypothesis, including inconclusiveness due to insufficient, inaccurate or contradicting data.
Certainty factor analysis has become the standard approach for uncertainty management in rule-based
systems and has been applied successfully for assessing landslide susceptibility [26,39,43–48].

The aim of this work is to test the statistical index, logistic regression and certainty factor analysis
for predicting rainfall-induced landslide susceptibility in Vietnam. The results obtained by the different
methods are compared and the most accurate technique is identified and validated.

2. Materials and Methods

2.1. Study Area

The Thua Thien Hue Province is located in the centre of Vietnam. The climate is generally warm
and humid because it is located in the tropical monsoon region. The area is frequently influenced by
an intertropical convergence zone that typically causes tropical low pressures and typhoons, leading
to annual rainfall of about 3500 mm with an average of 200 rainy days per year [49]. The wet season
lasts 4 months, from September to December, with 70–80% of the total rainfall.

The A Luoi district in the west along the border with Laos is very mountainous. The mountains
are strongly incised and steep, with attitudes ranging from 500 to 1700 m. The landscape is dominated
mainly by shrubs or bare soil, as a result from bombings and spraying of defoliants during the Second
Indochina War, and by small remains of broad evergreen tropical forest mixed with afforested land,
mainly acacia plantations. The area is sparsely populated, mostly by ethnic minorities clustered in
small villages in the valleys. These people practice crop cultivation, for example wetland rice, cassava,
and maize, and harvest forest products such as rattan and bamboo.

In the A Luoi district, tropical storms usually occur several times a year, which often causes
landslides, especially in the mountainous areas with steep slopes. In recent years, the risk of landslides
has increased due to man-made activities as agriculture and deforestation [50]. Văn et al. [51] identified
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181 landslides with a total area of about 7 km2, based on the interpretation of aerial photographs and
field research. A study area of 263 km2 was selected for assessing the landslide susceptibility covering
the main mountain ranges and all observed landslides (Figure 1). The observed landslide density in
this area is about 2.7%. Unfortunately, no details were found or noted about the width, depth, types or
causes of the landslides. Such data are often missing or incomplete, especially in remote and rural
regions such as this study area.
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Figure 1. Location of the study area in the district of A Luoi, Thua Thien Hue Province, Vietnam.

2.2. Data Sources

Nine digital causative factor maps with a pixel size of 30 m by 30 m were prepared for landslide
susceptibility analysis [14,50]:

• Elevation: a digital elevation map (DEM) was obtained by digitizing the topographic map on
scale 1:50,000 of the Ministry of Natural Resources and Environment (Figure 1), and an elevation
class map was derived by classifying the height in intervals of 250 m (Table 1).

• Slope: a digital slope angle map was derived from the DEM and a slope class map by separating
the slope angles into six classes: (1) flat-gentle (<5◦), (2) fair (5–15◦), (3) moderate (15–25◦),
(4) fairly moderate (25–35◦), (5) steep (35–45◦), and (6) very steep (>45◦).

• Geology: a digital geological class map was derived from the Thue Thien Hue geological map,
on a scale 1:50,000, compiled by Văn et al. [51], indicating 13 geological formations (Table 1).
A description of the lithology of these formations is given by Long [50].

• Fault density: faults were digitized from the geological map and the fault density was derived as
total length of faults per 1 km2; a categorical fault density map was obtained by classifying the
fault density in intervals of 500 m/km2 (Table 1).

• Geomorphology: eight geomorphological units identified by Văn et al. [51] were transformed in a
digital map (Table 1).

• Weathering crust: a digital categorical map was derived from fieldwork in Thua Thien Hue
Province carried out by Văn et al. [51], indicating Quaternary deposits and four types of
weathering crusts: Sialite, Sialferrite, Ferrosialite, and mixtures of Silixite.

• Land use: a digital map was derived from a Landsat TM5 image of 20 February 1999 (Path/row:
125/48); four land uses were identified and verified in the field by Văn et al. [51], resulting in four
land use classes: agriculture, forest, shrub and bare hills, and build-up land.
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• Drainage distance: a digital map of the shortest distance to a watercourse was derived from the
topographic map and a drainage distance class map was obtained by subdividing the values into
classes <50 m, 50–200 m and >200 m (adapted from the literature, e.g., reference [20]).

• Precipitation: average annual precipitation was selected as rainfall causative factor for landslide
analysis, because precise information about the intensity of individual storms is not available
in the study area; the precipitation map was derived by spatial interpolation (inverse distance
weighting) of the average annual precipitation observed from 1976 to 2003 in three climate stations
in the A Luoi district [52]; the values range from about 2900 mm/year to 3500 mm/year and
because this is a rather small range the precipitation class map was derived by dividing the values
into just three classes: <3100 mm/year, 3100–3300 mm/year and >3300 mm/year.

2.3. Methods for Landslide Susceptibility Analysis

The statistical index (SI) method is based on a bivariate statistical comparison of a landslide
inventory map with a categorical causative factor map [17,29]. Weight values for each class of the
causative factor are determined as the natural logarithm of the landslide density in that class divided
by the landslide density in the entire map [17]

wij = ln
(

fij/ f
)
, (1)

where wij is the weight of class j of parameter i, fij the landslide density within class j of parameter i,
and f the landslide density within the entire map. Statistically, fij is the conditional probability of a
landslide event occurring in class j of parameter i and f is the prior probability of a landslide event
occurring in the entire study area. Thus, each causative factor map is overlaid with the landslide map
and the landslide frequency ratio fij/f and weight value in each class of the factor map is determined.
The weight value is calculated only for classes with landslide occurrences and a zero value is assigned
otherwise [17,20], which implies that the related parameter class has no impact on the landslide
susceptibility. By overlying all causative factor class maps and adding the weights, a landslide
susceptibility map is obtained that expresses the relative likelihood for landslide occurrence.

In logistic regression (LR), the quantitative relationship between the occurrence of landslides and
its dependence on a set of causative factors is expressed as a logistic function [31,42]

p = [1 + exp (−a0 −∑
i

aixi)]
−1, (2)

where p is the probability of a landslide event, xi are causative factors, and ai are regression coefficients.
The coefficients are estimated by non-linear regression, imposing p = 1 in known landslide areas
and p = 0 elsewhere. Then the probability for landslides in each mapping unit is predicted with
Equation (2) to obtain a landslide susceptibility map. One of the advantages of LR over other methods
is that the probabilities always fall between 0 and 1. Equation (2) implies that all causative factors
are numerical variables. Thus, in the case of categorical maps, the classes can be substituted by their
corresponding landslide frequency ratios fij/f. In this study, the SAS 9.1 software (SAS Institute Inc.,
Cary, NC, USA) [53] is used to process the data and estimate the regression coefficients.

The certainty factor approach is an expert system similar to probabilistic reasoning but is less
formally. In certainty factor (CF) analysis, the relationship between the occurrence of landslides and a
categorical causative factor map is calculated as [43]

CFij =

{(
fij − f

)
/
[

fij(1− f )
]

fij ≥ f(
fij − f

)
/
[

f
(
1− fij

)]
fij < f

, (3)

where CFij is the certainty factor of class j of parameter i. The values range between −1 and +1,
whereby −1 means definitely false and +1 means definitely true. Positive values indicate an increasing
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certainty in causality, while negative values correspond to the opposite. A value equal to or close to
zero means that it is difficult to give any indication about causality. A combination of two CF values,
x and y, is a CF value, z, calculated as follows [40,43]

z =


x + y− xy x, y ≥ O

(x + y)/[1−min(|x|, |y|)] xy < O
x + y + xy x, y < O

. (4)

The combination rule expressed by Equation (4) enables to combine the CF values of all causative
factor class maps to obtain a landslide susceptibility map.

Table 1. Causative factors for landslide, classes in each factor, and associated area ratios, landslide
frequency ratios, SI weights and CF values (significant values are indicated in bold).

Factor Class Area (%) fij/f Wij CFij

Elevation <250 m 14.6 0.53 −0.63 −0.47
250–500 m 21.1 1.46 0.38 0.33
500–750 m 48.9 0.81 −0.21 −0.20
>750 m 15.4 1.42 0.35 0.30

Slope <5◦ 21.6 0.10 −2.30 −0.90
5–15◦ 19.5 0.57 −0.55 −0.43
15–25◦ 23.4 1.42 0.35 0.30
25–35◦ 21.1 1.52 0.42 0.35
35–45◦ 11.2 1.46 0.38 0.32
>45◦ 3.3 1.55 0.44 0.37

Geology Dai Loc Complex (igneous) 8.8 2.16 0.77 0.55
Lower A Lin (sedimentary) 11.6 0.97 −0.03 −0.03
Lower A Vuong (metamorphic) 5.8 2.19 0.78 0.56
Lower Ben Giang - Que Son (igneous) 13.9 1.00 0.00 0.00
Lower Long Dai (metamorphic) 8.4 1.12 0.11 0.11
Lower Nui Vu (metamorphic) 10.5 0.47 −0.76 −0.54
Middle A Vuong (metamorphic) 0.8 0 0 −1.00
Middle Long Dai (metamorphic) 17.6 1.26 0.23 0.21
Middle-upper Pleistocene 2.1 0 0 −1.00
Upper A Lin (sedimentary) 8.0 0.25 −1.37 −0.75
Upper Ben Giang - Que Son (igneous) 1.3 0 0 −1.00
Upper Long Dai (metamorphic) 9.3 0.52 −0.67 −0.49
Upper Nui Vu (metamorphic) 1.9 0 0 −1.00

Fault density <500 m/km2 5.1 1.20 0.17 0.16
500–1000 m/km2 60.0 0.96 −0.04 −0.04
1000–1500 m/km2 28.0 0.74 −0.30 −0.26
>1500 m/km2 6.8 2.28 0.83 0.58

Geomorphology Alluvium deposits 6.3 0.11 −2.27 −0.90
Erosional channels and riverbeds 10.7 0 0 −1.00
Early Quaternary valley pediment 22.5 0.54 −0.62 −0.47
Wash slope 5.5 0.53 −0.64 −0.48
Erosional-denudational slope 7.1 2.01 0.71 0.52
Quick gravity slope (debris flow) 11.8 1.23 0.21 0.19
Slow gravity slope (earth flow) 28.5 1.82 0.60 0.46
Planation surface 7.6 0.47 −0.73 −0.53

Weathering crust Quaternary deposit 2.1 0 0 −1.00
Ferrosialite 20.9 0.67 −0.39 −0.33
Mixtures of Silixite 28.5 0.90 −0.10 −0.10
Sialferrite 35.1 1.22 0.20 0.18
Sialite 13.3 1.32 0.27 0.24

Land use Agriculture 4.2 0 0 −1.00
Forest 27.2 1.20 0.18 0.17
Shrub and bare hill 67.1 1.01 0.01 0.01
Built-up area 1.5 0 0 −1.00

Distance to river ≤50 m 8.7 0.21 −1.59 −0.80
50–200 m 22.7 0.64 −0.44 −0.36
>200 m 68.6 1.22 0.20 0.18

Precipitation <3100 mm/y 32.8 0.92 −0.08 −0.08
3100–3300 mm/y 39.0 1.23 0.20 0.19
>3300 mm/y 28.1 0.78 −0.25 −0.23
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The areas of all factor classes, expressed as a percentage of the total study area, are shown
in Table 1.

2.4. Model Verification

The prediction accuracy of the models is evaluated by means of a receiver operating characteristic
(ROC) curve, obtained by plotting the true positive rate (TPR) against the false positive rate (FPR)
e.g., [13,23,25,26,40]. The first is the fraction of observed landslides in the zone with landslide
susceptibility values (i.e., SI weight, LR probability or CF value) greater than a certain threshold
and the latter is the fraction of areas free from landslides in the zone with scores larger than the
threshold. The threshold varies from the minimum to the maximum landslide susceptibility value,
so that TPR and FPR values vary between zero and one. The overall quality of a model is determined
by the area under the ROC curve (AUC) and the model with the highest AUC value is considered
the best e.g., references [13,23,26,40]. An AUC value of one indicates a perfect model, while a model
that randomly predicts occurrences of landslides gives a value of 0.5. In practice, the AUC values are
somewhere between these two extremes.

A good model has a high TPR value and a low FPR value. The optimal threshold of a model
can thus be obtained by maximising TPR and minimising FPR. There are different ways to achieve
this. One possibility used in this study is to maximise the difference TPR − FPR (i.e., Youden’s
index [44]), which corresponds to the point on the ROC curve furthest from a random guess ROC
curve, given by TPR = FPR, i.e., the diagonal line of the ROC graph. Finally, the reliability of the
optimal model for predicting the landslide susceptibility in the study area is verified by means of a
validation test, where the observed landslides are randomly divided into a 75% training set used for
model calibration, while the remaining 25% are used for validation of the model prediction efficiency
e.g., references [39,47].

3. Results

Landslide frequency ratios and the resulting SI weights obtained with Equation (1) for each class
of the nine causative factors are shown in Table 1. These weights are added by overlapping the factor
maps resulting in a landslide susceptibility map depicted in Figure 2.Water 2019, 11 FOR PEER REVIEW  7 
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For application of the LR model, numerical maps are used for elevation, slope, fault density,
drainage distance and precipitation, and the classes of geology, geomorphology, land use and
weathering crust are substituted by their corresponding landslide frequency ratio. Thus, all factor data
become numerical. The estimated regression coefficients and their standard error, Student’s t-statistic
and corresponding p-value are shown in Table 2. With these coefficients and Equation (2), a landslide
susceptibility map is derived, as shown in Figure 3.

Table 2. Estimated coefficients of the logistic regression model, with standard error and corresponding
Student’s t-statistic and p-value.

Parameter Coefficient Standard Error t-Score p-Value

Intercept −6.88 0.366 −18.8 <10−4

Elevation 4.29 × 10−4 0.44 × 10−4 9.75 <10−4

Slope 0.018 0.001 18.0 <10−4

Geology 0.660 0.021 31.3 <10−4

Fault density 7.90 × 10−5 3.30 × 10−5 2.39 0.008
Geomorphology 0.774 0.021 37.8 <10−4

Land use −0.134 0.061 −2.21 0.014
Weathering crust −0.141 0.057 −2.47 0.007
Distance to river 3.06 × 10−4 0.30 × 10−4 10.2 <10−4

Precipitation −1.87 × 10−3 0.03 × 10−3 −69.3 <10−4
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The CF values determined with Equation (3) for all classes of each causative factor are given in the
last column of Table 1. The combination of these CF values using Equation (4) results in the landslide
susceptibility map shown in Figure 4.
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Figure 4. Landslide susceptibility map based on the certainty factor model.

ROC curves of all models are presented in Figure 5 together with their AUC values, from which
it can be concluded that the CF model perform best, although differences with the other models are
small. The optimum point on the ROC curve of the CF model corresponds to an optimal CF threshold
value of 0.15, resulting in TPR and FPR values of 0.84 and 0.42, respectively.
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Figure 5. Receiver operating characteristic (ROC) curves and area under the curve (AUC) values
showing the accuracy of the models for predicting landslide susceptibility (SI: statistical index model,
LR: logistic regression model, CF: certainty factor model) and the optimum threshold point for the
CF model.

For the validation test performed with the CF model and the 75% training set of observed
landslides, results are obtained that closely resemble those in Table 1 and Figure 5 (even slightly better
because AUC = 0.780) and the resulting landslide susceptibility map is almost identical as shown in
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Figure 4. However, the optimal CF threshold value is 0.20, which is slightly larger than before, and the
corresponding TPR and FPR values are 0.81 and 0.37 respectively, which are slightly smaller than
before. The 75% training set consists of 136 landslides of which the model correctly identifies 110
landslides (81%), while for the remaining 25% validation set consisting of 45 landslides the model
correctly identifies 33 landslides (73%).

4. Discussion

4.1. Statistical Index Model

The importance of each causative factor class can be inferred from its landslide frequency ratio
fij/f. Factor classes that contribute strongly to landslides can be identified by frequency ratios larger
than 2, which means that the landslide susceptibility is more than double the overall average. There are
only four classes that strongly promote landslides: geology classes Dai Loc Complex (magmatic
rock) and Lower A Vuong Formation (schist), both fairly soft rock types, and the highest fault
density class and the geomorphology erosional-denudational slope class, both for obvious reasons.
Factor classes that strongly avert landslides have frequency ratios of less than 0.5, which means that
the landslide susceptibility is less than halve of the overall average. There are six classes that fall into
this category: the smallest slope class, geomorphology classes Alluvial deposits and Planation surface
and the smallest drainage distance class (river banks), which all relate directly to nearly flat areas,
and the geological classes Lower Nui Vu Formation and Upper A Lin formation, which also occur
predominantly in flat areas.

Factor classes with a frequency ratio around one have little influence on the occurrence of
landslides because the observed landslide density in these classes is close to the overall average
landslide density in the study area. Some classes have a zero-frequency ratio, meaning that no
landslides have been observed in these areas. Most of these areas are very small, except for the
geomorphology class Erosional channels and riverbeds. Zero-frequency ratios pose a problem for the
SI model because weights cannot be determined by taking the logarithm. The standard remedy for this
is to set the weight equal to zero, meaning one cannot decide whether the class affects the occurrence
of landslides. This might be a correct interpretation in case of small areas where no landslides have
occurred, but not for large areas without landslides. In the present case, a zero value for the frequency
ratio for the geomorphology class Erosional channel and riverbeds probably indicates that landslides
in such areas are very unlikely and therefore it is incorrect to set the weight to zero.

In the SI model, landslide frequency ratios of the causative factor classes are transformed into
weights and accumulated to represent landslide susceptibility. The resulting landslide susceptibility
values range from around minus eight to four (Figure 2). The high values indicate areas with a higher
susceptibility for landslide occurrence, which are indicated in Figure 2 by red and orange colors.
These areas form a large part of the study area and cover most of the observed landslides, except for
some landslides in the southwest around Tan Hoc (Figure 1). Because the weights are accumulated
without distinction or grading, each causative factor has the same impact and relationships or
correlations between factors are ignored. This can lead to overestimation or underestimation of
the landslide susceptibility. For example, a combination of high elevation and steep slope leads to high
landslide susceptibility, although these causative factors might be strongly correlated and indicate the
same tendency for occurrence of landslides. Therefore, extreme SI values are probably exaggerated.
For future studies, this can be avoided by using principal components analysis or similar techniques to
reduce redundant information and to produce a smaller set of uncorrelated variables.

The AUC value of 0.748 for the SI model is approximately half way through the feasible range of
0.5–1, indicating that the prediction accuracy is reasonable. However, values reported in the literature
for SI models are usually slightly larger, for example in the range 0.79–0.86 [23–28], indicating that the
data in the current study are insufficient to provide better prediction accuracy. The causative landslide
factors used in this study were based on consideration of relevance, but especially on availability on
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a regional scale. That is why the selection was relative and subjective and should be improved in
future research.

4.2. Logistic Regression Model

In the LR model, causative factors are weighted by means of the regression coefficients (Table 2),
which enables to give less weight to correlated factors and to rank the causative factor according
to their impact on landslides. A disadvantage is that there are no classes within a causative factor
that can be graded individually and so the relative importance within a factor is fixed. For example,
an elevation of 500 m will be ten times more susceptible for landslides than an elevation of 50 m,
and so on.

The relative contribution of each causative factor to the logistic function can be obtained by
comparing the significance of the corresponding regression coefficient. The p-values obtained for
the estimated regression coefficients show that all coefficients are significant (Table 2). The relative
importance of the causative factors in the LR model can be evaluated by comparing their Student’s
t-statistic value. As such, precipitation, geomorphology and geology are important causative factors,
whereas slope, elevation and drainage distance are of intermediate importance, and weathering crust,
fault density and land use are less important. In similar studies conducted in Vietnam, Bui et al. [13]
concluded that slope and lithology are important factors for landslides and land-use, rainfall, distance
to faults and distance to rivers are of medium importance, while Hung et al. [16] concluded that slope
and weathering crust are of great importance. It is clear that the type of data and the way in which
it is collected and analyzed has a strong influence on the results. That is why it remains difficult to
decide in advance which factors are more important than others. Presumably, all factors that may
affect a particular case should be considered and the ranking can only be achieved after the analysis
is completed.

Some regression coefficients are negative, which needs to be explained or interpreted in a correct
way. The negative coefficients for land use and weathering crust are abnormal because the values of
these factors are landslide frequency ratios, which should contribute in a positive way to landslide
susceptibility. The only explanation is that these factors are of little importance in the regression
equation, as indicated by their low Student’s t-statistic. The negative regression coefficient for
precipitation can be explained by the fact that fewer landslides have been observed in areas with more
rainfall, as indicated by the low landslide frequency ratio of the highest precipitation class (Table 1).

The resulting landslide susceptibility, obtained as probabilities estimated with Equation (2),
range from zero to 0.5 (Figure 3). The high values, represented by red and orange colors in the
landslide susceptibility map, constitute a much smaller portion of the study area than obtained with
the SI method (Figure 2) and cover much less of the observed landslides. However, since the overall
observed density of the observed landslides is very small, about 0.027, all probabilities above that
value are significant, which also includes the areas colored in green in Figure 3. Therefore, most of
the observed landslides are also well predicted by the LR landslide susceptibility map, except for
landslides observed in the southwest around Tan Hoc. However, the ROC curve of LR is mostly below
the curve of SI and the AUC value obtained for LR is lower than for SI (Figure 5), which indicates
that the landslide susceptibility map obtained with the SI model predicts landslides better and is to
be preferred over the map of the LR model. In similar studies, the LR model was preferred over the
SI model [13,22], while in other studies it was the other way around [25]. The AUC value of 0.735
obtained for the LR model in the current study is on the low side compared to values reported in the
literature, for example 0.74–0.89 [25,39,40], which indicates a shortcoming of the current data.

4.3. Certainty Factor Model

The CF values derived from the landslide frequency ratios yield results that at first sight are
comparable to those of the SI model. Causative factor classes that strongly promote landslides
have CF values larger than 0.5, more specifically the highest fault density class, the geomorphology
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erosional-denudational slope class and the geomorphology classes Dai Loc Complex and Lower A
Vuong Formation, while classes that avert landslides have CF values lower than −0.5, in particular
the smallest slope class, geomorphology classes Alluvial deposits and Planation surface, the smallest
drainage distance class and geological classes Lower Nui Vu Formation and Upper A Lin formation
(Table 1). However, a difference with the SI model is that these values are not accumulated, but instead
are combined using Equation (4), which can reduce the problem of overestimation or underestimation
due to correlated factors. Another advantage is that the classes with no occurrence of landslides are
not treated as missing data, but get a CF value of −1, which means strongly preventing landslide
occurrences. This is the case for the geology classes Middle A Vuong, Middle-upper Pleistocene,
Upper Ben Giang–Que Son and Upper Nui Vu, geomorphology class Erosional channels and
riverbeds, weathering class Quaternary deposits, and land use classes Agriculture and Built-up
area. This interpretation is more realistic, especially for a class like Erosional channels and riverbeds
that covers more than 10% of the study area.

The ROC curve of the CF model is mostly above the curves of the SI and the CF models and the
AUC value obtained for CF is the largest (Figure 5), indicating that the landslide susceptibility map
obtained with the CF model best matches the observed landslides and is to be preferred over the other
maps. However, other studies have reported otherwise, for example the SI model with a larger AUC
value than the CF model [26] or the LR model with a larger AUC value than the CF model [39], so there
can be no general conclusion. Also, AUC values reported in the literature for other CF models are
generally larger, for example 0.78 [26] and 0.89 [39].

4.4. Optimal Model

The prediction accuracy of the models evaluated by means of the ROC curve and the
corresponding AUC value indicates that differences between the model results are rather small.
Nevertheless, the CF model can be considered the best because its AUC value is slightly larger than
for the other models, but also because of the clear handling of inconclusive data as causative factor
classes where no landslides have been observed. The AUC value of 0.759 obtained for the CF model is
approximately in the middle of the value one for a perfect model and 0.5 for a random guess model,
which implies that the predictive accuracy of the CF model is reasonable, but clearly could use some
improvement. The reason for this is more than likely the lesser quality and incompleteness of the data
and the lack of detailed information about the origin and causes of the landslides. Important factors
that were not considered in this study could significantly affect the landslide susceptibility of a given
site, such as geotechnical properties of the involved soils (e.g., strength parameters and hydraulic
conductivity) or water pressure and saturation degree regimes initially existing in the slope.

The optimum point on the ROC curve of the CF model is obtained for a CF cut-off value of 0.15.
The area with CF values larger than or equal to 0.15 corresponds to the orange and red zones indicated
in Figure 4, covering about 43% of the study area. Long and De Smedt [14] found 37% of the study area
highly susceptible to landslides using a hierarchical process approach, while Long and De Smedt [15]
predicted with a physically based model that 29% of the area consists of very unstable slopes. All these
results are more or less comparable, which indicates that irrespective of the research technique used,
a large part of the area is susceptible to landslides. The optimal CF model correctly identifies 152 of the
181 observed landslides, i.e., 84%. Long and De Smedt [14] used the hierarchical process approach and
predicted only 55% of the observed landslides, but Long and De Smedt [15] correctly predicted 87% of
the landslides with a physically based slope stability model. The former negative result is probably
due to the fact that the hierarchical process approach method is based on a subjective judgment on the
relevance of the causative factors.

The 16% unidentified landslides are mainly located in the southwest of the study area around Tan
Hoc and Hong Quang (Figure 1). These are areas with an average topographic height and with fair
to moderate slopes (5–25%). Specific differences with other areas involve the Ferrosialite weathering
crust and the higher precipitation rate. However, this does not explain the occurrence of landslides
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observed in this region. Therefore, the causative factors of these landslides remain unanswered.
Presumably, specific local circumstances that promote landslides were not considered in the current
research, or perhaps not recognized as a result of errors or misinterpretations of field data and derived
factor maps.

The validation test leads to comparable results. The optimal model correctly predicts 81% of
the observed landslides in the training set and 73% of the observed landslides in the validation set,
which is slightly less than previously obtained. The difference is clearly due to fact that fewer observed
landslides were used for the model calibration, resulting in a slightly larger CF threshold value and
a slightly smaller area with CF values larger than the threshold, which accounts for only 37% of the
study area. However, the differences between model results for the training and validation data are
not so important as to undermine the reliability of the model.

5. Conclusions

In this study, the statistical index, logistic regression and certainty factor models have been
applied to derive landslide susceptibility maps for the mountainous district of A Luoi in Thua Thien
Hue Province, Vietnam. The prediction accuracy of the models evaluated by means of a receiver
operating characteristic indicates that the CF model can be considered the best, although differences
between the model results are small. Comparison with the observed landslides indicates that 84%
of the observed landslides are correctly predicted, and that 43% of the study area is very susceptible
to landslides. A validation test leads to comparable results. The landslide susceptibility mapping
provides an estimated spatial distribution of the sensitivity to landslides and can help to understand the
relationship with causative factors and allows us to delineate zones where mitigating measures can be
implemented. In particular, this study shows that the Dai Loc complex and Lower A Vuong Formation
are clearly more favorable for landslides and the Lower Nu Vui and Upper A Lin Formations are clearly
unfavorable; also, large faults density and erosional-denudational slopes appear to promote landsides,
while alluvial deposits, planation surfaces and small drainage distances have an opposite effect.
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