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Abstract: The reservoir operation is a notable source of uncertainty in the natural streamflow and it
should be represented in hydrological modelling to quantify the reservoir impact for more effective
hydrological forecasting. While many researches focused on the effect of large reservoirs only,
this study developed an online reservoir module where the small reservoirs were aggregated into
one representative reservoir by employing a statistical approach. The module was then integrated
into the coupled Noah Land Surface Model and Hydrologic Model System (Noah LSM-HMS) for
a quantitative assessment of the impact of both large and small reservoirs on the streamflow in
the upper Gan river basin, China. The Noah LSM-HMS was driven by the China Meteorological
Assimilation Driving Datasets for the Soil and Water Assessment Tool (SWAT) model (CMADS)
with a very good performance and a Nash-Sutcliffe coefficient of efficiency (NSE) of 0.89, which
proved to be more effective than the reanalysis data from the National Centers for Environmental
Prediction (NCEP) over China. The simulation results of the integrated model indicate that the
proposed reservoir module can acceptably depict the temporal variation in the water storage of both
large and small reservoirs. Simulation results indicate that streamflow is increased in dry seasons
and decreased in wet seasons, and large and small reservoirs can have equally large effects on the
streamflow. With the integration of the reservoir module, the performance of the original model is
improved at a significant level of 5%.

Keywords: reservoirs; operation rule; Noah LSM-HMS; capacity distribution; aggregated reservoir;
CMADS

1. Introduction

Since decades ago, intensive human activities have brought about a growing challenge to a
sustainable watershed management [1–3]. In particular, the construction and the management of
numerous reservoirs are regarded as a major source of variability and uncertainty in the flow regime [4].
As compared to larger ones, small-scale reservoirs have recently become a preferred choice in the
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design of hydraulic projects given its cost-effectiveness and its less sociopolitical and environmental
consequence. [5,6]. While small reservoirs may be able to provide additional economic benefits, they,
together with larger reservoirs, also substantially divide the river basin into small segments, thereby
disrupting the natural hydrological processes to a point where conventional hydrologic models without
reservoirs are no longer desirable [7].

Hydrological modelling with the consideration of reservoirs have been reported by multiple
studies, especially with respect to relatively large-sized reservoirs [8,9]. Hanasaki et al. [10] proposed a
generalized reservoir scheme for global river routing models, where reservoirs are regulated using a
monthly operation rule for both non-irrigation and irrigation reservoirs. Mateo et al. [4] employed the
H08 Water Resources Model and the CaMa-Flood River Routing Model to assess the impact of reservoir
operation on the flood propagation. Deng et al. [5] integrated an offline single-reservoir module to
Xinanjiang model, a semi-distributed hydrologic model, and made an accurate prediction on the storage
and water level change of the studied reservoir. Zhao et al. [11] integrated a reservoir operation module
into the Distributed Hydrology-Soil-Vegetation Model (DHSVM) where they employed generalized
reservoir operation rules to determine the outflow of reservoir and achieved satisfactory results.
All of these studies emphasized the effect of large-scale reservoirs and disregarded the effect of
smaller reservoirs.

However, smaller reservoirs should not be excluded in the hydrological modelling in many basins.
A survey of Poyang Lake basin in China reveals that there are over 10,000 small reservoirs in the basin
accounting for over 1/5 of the combined capacity of all reservoirs. In smaller sub-basins, this value can
go up to over a half. Studies involving small reservoirs, however, are relatively scarce but they give
some directions. Güntner et al. [12] employed a process-oriented semi-distributed hydrological model
to quantify the effect of large and small reservoirs in a semi-arid area in Brazil by aggregating small
reservoirs into one large reservoir. However, it does not account for the heterogeneity of water storage
or runoff among reservoirs. Cao et al. [13] employed remote sensing techniques to detect the variation
in the water surface of small reservoirs before and after the floods to quantify the flood detention effect
of the small reservoirs. Deitch et al. [14] developed a Geographic Information System (GIS) based
watershed model in which the fine digital elevation model (DEM) and mass-balance equation are
employed to assess the cumulative effect of small reservoirs on the downstream flow. It is noted that
the function of reservoir to supply water is not considered in their study, which may not be a negligible
process in a medium- or long-term hydrological simulation [15]. Besides, most of these studies were
based on offline reservoir modules, which can hardly depict the interacting effect of reservoirs on the
water cycle.

Finally, meteorological forcing is a crucial impacting factor of the accuracy of hydrological
modelling [16]. While rain gauges and meteorological stations traditionally played a significant role in
providing forcing data for hydrological models, the recorded data of many stations is hardly accessible
for researchers. Additionally, they are often sparsely distributed, especially in mountainous and arid
areas [17], and thus are considered less desirable for a fine-scale modelling. The China Meteorological
Assimilation Driving Datasets for the SWAT model (CMADS), which was developed by Dr. Xianyong
Meng from China Agricultural University, integrates multi-satellite meteorological products with
ground observation gauges and has been proven more effective than many of the counterparts since
published [18–25]. For instance, Meng et al. [26] applied CMADS to Heihe basin for streamflow
simulation and achieved comparatively better performance than other datasets. Similar results were
also obtained by Gao et al. [27], who applied CMADS to Xiang River basin. However, the CMADS
were mostly applied in the SWAT model so far, whether or not it can desirably drive other land surface
models, such as Noah Land Surface Model (Noah LSM) or hydrological models, such as the Hydrologic
Model System (HMS), remains a question.

Hence, the first objective of this paper is to develop an online reservoir module in the consideration
of particularly small reservoirs and fully integrate this module into a coupled land surface-hydrological
model, Noah LSM-HMS. The proposed module aggregated a group of small reservoirs into one
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representative reservoir using a statistical approach to depict the heterogeneity of storage capacity.
Secondly, to have a better understanding of the reservoir impact for more efficient hydrological
forecasting for water agencies, the integrated model was applied to the upper Gan River basin,
China to depict in detail the effect of both large and small reservoirs on the streamflow. Meanwhile,
a comparative study was conducted between the CMADS and the reanalysis data from the National
Centers for Environmental Prediction (NCEP) to evaluate the reliability and effectiveness of CMADS,
which demonstrates that the CMADS can serve as a reliable dataset to drive hydrological models in
China. Simulation results quantitatively indicate that the streamflow is increased in dry seasons and
decreased in wet seasons, and large and small reservoirs have equally large effects on the streamflow.
With the reservoir module, the performance of the model is also improved.

2. Methods

2.1. The Coupled Land Surface-Hydrological Model System (Noah LSM-HMS)

Noah LSM-HMS is a two-way coupled land surface-hydrological model system developed by
Yuan et al. [28] as part of a joint Sino-German research program (hereinafter ‘LSM-HMS’), with its
structure being illustrated in Figure 1. Noah LSM is a land surface scheme of the Weather Research
and Forecasting Model (WRF) and it is characterized by four soil temperature and moisture layers
with canopy moisture and snow cover prediction [29]. It solves the Richards equation to obtain the
soil moisture content and the vertical flow, and it employs the water balance and energy balance
equations to derive streamflow, evapotranspiration, and recharge, which are then passed on to the
hydrological model (HMS). HMS is a spatially distributed hydrological model and it solves the surface
and subsurface flow using two-dimensional hydrodynamic equations [30]. HMS also calculates other
variables, such as groundwater discharge and vadose-zone soil moisture, and it returns these variables
to the LSM. The LSM-HMS is intended to provide a closed description of the water cycle between
the land surface and the subsurface and is able to produce reasonable simulations on a range of
hydrological variables in a mesoscale basin [29,31–33].
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2.2. Reservoir Modelling

A typical basin, depending on its area, can normally contain up to hundreds or thousands of
reservoirs with different capacities. These reservoirs connect each other to form a reservoir system
and segment the basin into pieces. To account for the difference of reservoirs in size and importance,
a reasonable classification of reservoirs in terms of their capacity is often necessary in the reservoir
modelling [12]. In this study, reservoirs with a storage capacity of more than 1 × 107 m3 are categorized
as large-sized reservoirs, those with a capacity between 1 ×107 m3 and 1 × 105 m3 are categorized as
small-sized. Those with a capacity less than 1 × 105 m3 are regarded as earth dams and pools instead
of reservoirs, therefore they are not included in this study.

In view of the scale and the considerable hydrological impact, large reservoirs are directly
integrated into grid cells of their actual locations. These reservoirs often function differently with
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respect to the amount of the incoming flow and the water volume they stored at a certain time.
In this study, a simplified operation rule that achieved good performance in Lake Whitney and Lake
Aquilla, Texas was employed to estimate the outflow of reservoirs in a daily or monthly scale—see
Zhao et al. [11] for more details.

While there are probably not too many of large reservoirs in a typically mesoscale basin, small
reservoirs can amount to several hundreds and even thousands, which are dotted everywhere, and
most of them do not have larger ones as detailed data. It is thus impractical to quantify the effect of
each of them in an analogous way to large reservoirs. A basic idea is to group them to one reservoir,
as in the study of Güntner et al. [12] and Malveira et al. [34]. This idea also applies to this study,
with the basin of interest divided into a few sub-basins and the small reservoirs in each sub-basin
aggregated to a representative reservoir (hereinafter ‘aggregated reservoir’), and the parameters of the
aggregated reservoir (e.g., storage capacity) are derived from the summation of all small reservoirs
combined. Based on the above idea, the information of heterogeneity in terms of the capacity of each
small reservoir is lost. To preliminarily overcome this problem, a capacity cumulative distribution
function for small reservoirs in a certain basin is introduced in the form of:

Vi = f (α) (1)

where Vi is the storage capacity of the ith small reservoir sorted in an ascending order and α is the
portion of small reservoirs that has a capacity less than Vi. It should be noted that the integral of this
function on its domain is equal to the mean capacity of the small reservoirs, or the capacity of the
aggregated reservoir divided by the number of small reservoirs, N, in the sub-basin. A preliminary
curve-fitting study on a few basins of Southeast China suggests that their cumulative distribution
function follows a similar pattern, i.e.,

Vi = k1ek2α + k3ek4α (2)

where ki, i = 1,2,3,4 are the regression coefficients related to basins. Whether or not this distribution
pattern suits all basins requires future investigation.

The capacity cumulative distribution function is employed to determine the release of the
aggregated reservoirs. To be specific, the mean water storage of all small reservoirs in a sub-basin,
Vmean (m3), is first calculated from the water storage of the aggregated reservoir divided by the number
of small reservoirs. Subsequently, as illustrated in Figure 2, the percentage of small reservoirs with a
water storage of Vmean smaller than and larger than their storage capacity Vi (i.e., unfilled and filled
reservoirs) can be respectively calculated with the mean water storage and the distribution function,
and is used to determine the outflow of the aggregated reservoir below.

Given that small reservoirs are mostly used for water supply instead of flood control because of a
small capacity, the operation rule is simplified such that, when a reservoir is ‘filled’, all of the water
above the capacity will be released immediately and that, when a reservoir is ‘unfilled’, the outflow is
determined as the human water demand. The operation rule is then arranged in the following form to
determine the reservoir outflow with the consideration of the heterogeneity of capacity:

Qt = α1 × U + α2
Vt − V

∆t
(3)

where Qt (m3/s) and Vt (m3) are the outflow and the water storage of the aggregated reservoir at time
t, respectively. U (m3/s) is the human water demand. α1 and α2 are the proportion of the combined
water storage of unfilled and filled reservoirs, respectively.
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Figure 2. A schematic illustration of the capacity cumulative distribution function (black curve). The
shaded area is the mean water storage of small reservoirs in a sub-basin and can be used to determine
the proportion of unfilled and filled reservoirs in this sub-basin.

After the release of reservoirs is determined, the water balance equation is then employed to
calculate Vt (m3), the reservoir water storage at time t:

Vt = Vt−1 + ∆t × (Qin − Qout + At × P − At × E − At × D) (4)

where Vt−1 (m3) is the water storage of the reservoir for the previous timestep. The initial water
storage of reservoir is based on the soil moisture of the local grid. ∆t (s) is the timestep. At (m2) is the
current surface area of the reservoir. Qin and Qout (m3/s) are the inflow and outflow of the reservoir,
respectively. P (m/s) and E (m/s) are the precipitation and evaporation on the reservoir surface. D
(m/s) is the two-way flux between the reservoir and the vadose zone or groundwater. It is calculated
as a part of the channel-groundwater interaction module in HMS, i.e.,

D = Kd ×
(
ht − hg

)
(5)

where Kd (s–1) is the hydraulic conductivity between channel and subsurface. ht and hg (m) are
respectively the water level of the reservoir and groundwater level.

2.3. Module Integration

By integrating the reservoir module, the model is able to depict the interaction between the
reservoir regulation and the subsequent hydrological processes. Firstly, the inflow and release
difference due to reservoirs will change the surface water height in the two-dimensional diffusive wave
equation and therefore alter the streamflow routing [35]. Secondly, the flux between reservoirs and
groundwater will also affect the groundwater depth and the groundwater routing, which is realized
by adding an additional source term to the two-dimensional Boussinesq equation. While the surface
and subsurface flow routing can directly adjust the streamflow, it can also result in the variation of the
hydrological conditions around the reservoirs, e.g., infiltration, river recharge, and groundwater table,
which in turn gives feedback to the reservoir operation.

2.4. Performance Indexes

Three indexes are employed for a quantitative evaluation of the downstream streamflow
simulation with or without the reservoir module, namely the water balance index (WBI), the Pearson
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product-moment correlation coefficient (R), and the Nash–Sutcliffe coefficient of efficiency (NSE), for
the evaluation of water balance, data correlation, and flood peak simulation, respectively [32,35]:

WBI = ∑ Si

∑ Oi
(6)

R =
∑
(
Si − S

)(
Oi − O

)
[∑

(
Si − S

)2
∑
(
Oi − O

)2
]
0.5 (7)

NSE = 1 − ∑(Si − Oi)
2

∑
(
Oi − O

)2 (8)

where Si and Oi are the simulated and observed streamflow for each timestep, respectively. The
overbar symbolizes average.

According to the model evaluation guidelines [36], for a monthly timestep, the model simulation
can be considered very good if NSE > 0.75, R > 0.70, and WBI < 0.1.

3. Case Study and Data

3.1. Study Area

The upper Gan River basin, as part of the Yangtze River basin, has an area of around 18,000 km2

(Figure 3). The average annual precipitation is over 1300 mm and it exhibits an uneven distribution
within a year. The wet season normally lasts for seven months from March to September, whereas the
period from October to February is denoted as dry seasons. The reservoir amount and capacity were
stable during the study period of 2008–2015, where there were, in total, about 453 reservoirs in this
area, including eight large reservoirs with a combined capacity of 3.78 × 108 m3. The largest reservoir,
Tuanjie Reservoir, has a storage capacity of 1.46 × 108 m3. The other 445 small reservoirs have a total
storage capacity of 4.25 × 108 m3, with nearly no reservoir newly built or under construction. The
small reservoirs account for 98% of the reservoir amount and 53% of the reservoir storage in this
basin so that the small reservoirs are supposed to have a considerable cumulative effect on the local
hydrologic cycle.
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3.2. Model Setup

LSM-HMS: The computational timestep for LSM and HMS were determined to be half an hour
and one day, respectively, with a spatial resolution of 10 × 10 km. While the study period is 2008–2015,
the simulation period starts one year earlier such that the year 2007 is included as part of the model
spin-up process.

Reservoir module: The computational domain of LSM-HMS is fully discretized in the unit of grid
cell. For large reservoirs, they are directly integrated into the computational grids corresponding to
their actual location. However, the integration of aggregated reservoirs is more complicated because
they do not really have an actual location or actual amount. Two considerations for the location and
number of aggregated reservoirs in this study are presented, as follows:

1. The aggregated reservoir can be placed in the proximity of the convergence point between the
mainstream and the tributary or between two tributaries so that each tributary is a sub-basin and
most of the small reservoirs in the entire basin can be included.

2. The number and location of aggregated reservoirs or sub-basins should be in conformity to data
availability, so that the sum of the reservoir capacity for each sub-basin can be known.

With the two guidelines above, the detailed configuration of each aggregated reservoir is
determined and presented in Table 1. The aggregated reservoirs are generally located downstream
three largest tributaries and are around the demarcation of local administrative regions (i.e., counties),
such that the reservoir data for each county, e.g., the sum of storage capacity and the number of
reservoirs in each sub-basin, are well collected by the local administrations. The study area is therefore
divided into three sub-basins with one aggregated reservoir placed at the outlet of each sub-basin, as
illustrated in Figure 3.

Table 1. Configuration of aggregated reservoirs.

Aggregated Reservoir Storage Capacity (108 m3)
Average Water Demand

Non-Irrigation Period (m3/s) Irrigation Period (m3/s)

1 2.52 1.7 3.2
2 0.93 0.9 1.8
3 0.80 0.8 1.5

3.3. Data Input

The land surface scheme of the model is driven by a set of meteorological forcing. The
precipitation, surface air temperature, surface pressure, solar radiation, humidity, and wind speed
were obtained from the China Meteorological Assimilation Driving Datasets for the SWAT model
(CMADS) [37]. Downward longwave radiation is also needed for the calculation of evapotranspiration
and it is obtained from NCEP reanalysis data [38]. The land use and soil data were collected from the
Moderate Resolution Imaging Spectroradiometer (MODIS) 1km data and the Harmonized World Soil
Database (HWSD), which were both accessed from the Cold and Arid Regions Science Data Center
at Lanzhou. The terrain data were obtained from HYDRO1K DEM established by the United States
Geological Survey (USGS) [39]. Daily discharge data of Xiashan between 2008–2015 were available for
the model calibration and validation.

The yearly water use from reservoirs from 2008–2015 was collected from annual reports that were
published by the Department of Water Resources of Jiangxi Province. The irrigation water demand
generally accounted for 65% of the total water demand, and it is then evenly downscaled to monthly
values throughout the wet seasons. The monthly values are further partitioned to daily values for
reservoir input. While the irrigation use occurs during only the irrigation period or wet seasons, other
water uses are evenly partitioned from annual to daily values. The water demand of the basin is then
allocated to reservoirs in proportion to the storage capacity. Other human activities, including the
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consumptive use of water and groundwater/river extraction, are not included in this study, since the
study focuses on the reservoir effect.

The capacity cumulative distribution function for small reservoirs is fitted using 275 small
reservoirs with known capacity in the study area and in the larger Poyang Lake basin, in the form of
Vi = 185850e2.274α + 0.00031e23.82α, and it is assumed to be applicable to the entire basin in this study.

The relationship between water level, surface area and water storage is available for all large
reservoirs. For small reservoirs, these correlations are estimated using a linear fitting of the data points
from the combination of the large reservoirs.

4. Results and Discussions

In this study, the model was mainly calibrated against the downstream streamflow data series of
Xiashan. The calibration and validation period are 2012–2015 and 2008–2011, respectively. The reservoir
module was calibrated against the water storage of Tuanjie reservoir from 2012–2015. For conciseness,
simulations without the reservoir module, with only large reservoirs and with all reservoirs are
hereinafter denoted as LSM-HMS, LH-L, and LH-A, respectively.

4.1. Calibration and Evaluation of the Model

4.1.1. Reservoir Module

To quantify the effect of large reservoirs, the water storage of Tuanjie Reservoir during 2012
and 2015 was employed for the calibration of the operation rule [11]. Subject to the data scarcity, the
calibration results were applied to all of the large reservoirs in this study. With respect to Tuanjie
Reservoir, the largest reservoir in the basin, the monthly simulation of its storage over the study period
and the observation data of its water storage during 2008 and 2015 are illustrated in Figure 4. Most
of the simulated water storage follows an increase and decrease alteration within a year, indicating
that the reservoir functions well according to the generalized operation rule. The simulation of water
storage from 2008 to 2015 generally matches the observation, and the monthly WBI, R, and NSE for
the study period are 1.03, 0.84, and 0.65, respectively. A major source of error can be the inaccuracy
of inflow computed in LSM-HMS, and the difference between the generalized regulation rule and
the reservoir operation in reality is also considered to have greatly contributed to the error. It is
especially noted that the water storage of Tuanjie Reservoir is much overestimated, especially in some
dry seasons, indicating that the operation rule in reality is very flexible such that the downstream
water demand can be satisfied in dryer years. However, this is not presented in the generalized
operation rule.

Water 2019, 11, x FOR PEER REVIEW  8 of 17 

 

In this study, the model was mainly calibrated against the downstream streamflow data series 
of Xiashan. The calibration and validation period are 2012–2015 and 2008–2011, respectively. The 
reservoir module was calibrated against the water storage of Tuanjie reservoir from 2012–2015. For 
conciseness, simulations without the reservoir module, with only large reservoirs and with all 
reservoirs are hereinafter denoted as LSM-HMS, LH-L, and LH-A, respectively. 

4.1. Calibration and Evaluation of the Model 

4.1.1. Reservoir Module 

To quantify the effect of large reservoirs, the water storage of Tuanjie Reservoir during 2012 and 
2015 was employed for the calibration of the operation rule [11]. Subject to the data scarcity, the 
calibration results were applied to all of the large reservoirs in this study. With respect to Tuanjie 
Reservoir, the largest reservoir in the basin, the monthly simulation of its storage over the study 
period and the observation data of its water storage during 2008 and 2015 are illustrated in Figure 4. 
Most of the simulated water storage follows an increase and decrease alteration within a year, 
indicating that the reservoir functions well according to the generalized operation rule. The 
simulation of water storage from 2008 to 2015 generally matches the observation, and the monthly 
WBI, R, and NSE for the study period are 1.03, 0.84, and 0.65, respectively. A major source of error 
can be the inaccuracy of inflow computed in LSM-HMS, and the difference between the generalized 
regulation rule and the reservoir operation in reality is also considered to have greatly contributed to 
the error. It is especially noted that the water storage of Tuanjie Reservoir is much overestimated, 
especially in some dry seasons, indicating that the operation rule in reality is very flexible such that 
the downstream water demand can be satisfied in dryer years. However, this is not presented in the 
generalized operation rule.  

 

Figure 4. Monthly simulated and observed water storage of Tuanjie Reservoir during 2008–2015. 

4.1.2. LSM-HMS and the Integrated Model 

To investigate the impact of the reservoir module on the downstream discharge, the LSM-HMS 
was calibrated against the monthly observed streamflow discharge in Xiashan for the period of 2012–
2015, and then validated in 2008–2011. In all, six parameters were included in the calibration, namely 
streambed conductivity, Manning’s roughness, saturated hydraulic conductivity, porosity, wilting 
point, and aquifer thickness. The last four parameters were initially collected from the HWSD 
database, but it can also be adjusted within a limited range (i.e., ±50%). The calibration results were 
presented in Table 2.  

Figure 4. Monthly simulated and observed water storage of Tuanjie Reservoir during 2008–2015.



Water 2019, 11, 178 9 of 17

4.1.2. LSM-HMS and the Integrated Model

To investigate the impact of the reservoir module on the downstream discharge, the LSM-HMS
was calibrated against the monthly observed streamflow discharge in Xiashan for the period of
2012–2015, and then validated in 2008–2011. In all, six parameters were included in the calibration,
namely streambed conductivity, Manning’s roughness, saturated hydraulic conductivity, porosity,
wilting point, and aquifer thickness. The last four parameters were initially collected from the HWSD
database, but it can also be adjusted within a limited range (i.e., ±50%). The calibration results were
presented in Table 2.

Table 2. Calibration results of land surface-hydrological model (LSM-HMS).

Parameters Input Value Parameters Input Value

Streambed conductivity 0.90 s−1 Porosity ×1.0
Manning’s roughness 0.07 Wilting point ×1.0

Saturated hydraulic conductivity ×1.0 Aquifer thickness ×1.0

In terms of the LSM-HMS, the monthly WBI, R, and NSE are, respectively, 1.03, 0.97, and 0.91
over the calibration period, 1.15, 0.92, and 0.86 over the validation period, and 1.08, 0.95, and 0.89 over
the entire study period (see Figure 5). According to the model evaluation guidelines [36], it can be
generally regarded as a very good simulation result, indicating that the CMADS-driven LSM-HMS
can serve as a reasonable tool to investigate basin-scale hydrological variations and that the CMADS
can successfully drive the coupled land surface-hydrological model for an accurate simulation. The
error can be attributed to the size of grid cell in this study, as a 10 km grid cell can be too large
for a better simulation result in view of the size of the basin. Besides, the spatial heterogeneity
of some hydrogeological parameters, such as the wilting point and the Manning coefficient, were
not considered, i.e., the entire basin employs a same value because of the data scarcity and model
complexity. In addition, the accuracy of CMADS forcing data, after all, is subject to its own spatial
resolution and it cannot fully reveal the fine-scale spatial distribution of each meteorological variable.
Also, the lack of human activities can also be a source of error in this case.
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Figure 5. Monthly observed discharge and simulated discharge of China Meteorological Assimilation
Driving Datasets for the SWAT model (CMADS)-driven LSM-HMS and all-reservoir condition (LH-A)
in Xiashan during 2008–2015.

By incorporating the effect of large reservoirs, LH-L considers the effect of relatively large
reservoirs, thus improving the NSE to 0.90 (1.1%) as compared to LSM-HMS. With the WBI of LH-L
decreasing by 2.8% to 1.05, the loss of water is presumably a result of reservoir evaporation and
infiltration. With small reservoirs included, it can be seen in Figure 5 that LH-A further improves
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the simulation. The WBI of LH-A reduces to 1.04 (1.90%) as compared to LH-L for similar reasons.
The R and NSE also improve to 0.96 (1.0%) and 0.91 (1.1%) as compared to LH-L, respectively. It is
noted that the improvement of LH-A is basically in a same order of magnitude as that of LH-L by
comparing the change in WBI, R, and NSE, indicating a large group of small reservoirs can have an
effect as considerable as large reservoirs on the streamflow discharge simulation. This effect can be
enlarged, especially in this case study where the large reservoirs are all located very upstream with a
relatively small capacity than in other typical basins, whereas the small reservoirs are mostly dotted
downstream with a larger combined capacity.

A paired Student’s t-Test was also performed to evaluate the magnitude of improvement. The
result demonstrates that, for all three sets of comparison, the simulation of downstream streamflow
sees a significant improvement at a significant level of 5%, indicating that the proposed reservoir
module can effectively reduce the error of the original simulation. The p-values of the t-Test and the
performance of each simulation are summarized in Table 3.

Table 3. Comparison of monthly streamflow simulations.

Index LSM-HMS LH-L LH-A
Difference (%)

LH-L/LSM-HMS LH-A/LH-L LH-A/LSM-HMS

WBI 1.08 1.05 1.03 −2.8 −1.9 −4.6
R 0.95 0.95 0.96 0 1.0 1.0

NSE 0.89 0.90 0.91 1.1 1.1 2.2
Probability of the paired t-Test <0.01 * <0.01 * <0.01 *

* Indicates t-Test is significant at the 0.05 significance level.

4.2. Evaluation of CMADS against NCEP Database

Although the model performs well with the CMADS database, it is necessary to compare the
accuracy and the efficiency of CMADS with other meteorological databases in driving LSM-HMS.
As the existing literature has reported the superiority of CMADS over multiple meteorological data
sources, such as the Precipitation Estimation from Remotely Sensed Information using Artificial
Neural Networks–Climate Data Record (PERSIANN-CDR) in driving SWAT [25,27], the meteorological
reanalysis dataset from NCEP was employed in this section to further evaluate the efficiency of
CMADS in LSM-HMS. The NCEP reanalysis data covers the globe in T62 grids and it is widely used
in macroscale and mesoscale hydrological modelling. Therefore, the precipitation, air temperature,
air pressure, relative humidity, longwave radiation, downward solar radiation, and wind speed were
processed and employed in this study to drive LSM-HMS for a comparative study. In general, the
NCEP precipitation is 12% larger than the CMADS precipitation for the period of 2008–2015. This is in
accordance with the finding of Yang [31] that NCEP tends to overestimate the precipitation in China.
The NCEP-driven simulated discharge of Xiashan for 2008–2015 was therefore overestimated by 17%
(see Figure 6b), and the WBI, R, and NSE over the study period are 1.17, 0.81, and 0.56, respectively.
As also indicated in Figure 6a, the simulation result of NCEP-driven LSM-HMS is much less accurate
than that of CMADS-driven LSM-HMS. It suggests that LSM-HMS is sensitive to the input forcing and,
when compared to NCEP data, CMADS can serve as a much more reliable source of meteorological
forcing for the hydrological modelling in China.
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Figure 6. (a) Monthly observed discharge and simulated discharge of National Centers for
Environmental Prediction (NCEP)-driven and China Meteorological Assimilation Driving Datasets
for the SWAT model (CMADS)-driven LSM-HMS in Xiashan during 2008–2015, with the NCEP
precipitation shown at the top, (b) the scatter plot of observed discharge against NCEP-driven
simulation (left) and CMADS-driven simulation (right).

4.3. Effects of Reservoirs on Streamflow

In the previous section, it was found that the introduction of reservoirs can improve the
performance of Noah LSM-HMS at a significant level of 5%. The temporal distribution of the difference
between all-reservoir condition (LH-A) and no-reservoir condition (LSM-HMS) was presented in
Figure 7. It can be seen that the improvement in LH-A as compared to LSM-HMS can be mostly
attributed to the increase of streamflow in dry seasons and the decrease of streamflow in wet seasons,
since reservoirs can be regulated to mitigate the flood in wet seasons and to supply water in dry
seasons. To be specific, the streamflow sees a 5.1 m3/s (2.0%) increase in dry seasons and a 45.4 m3/s
decrease (7.8%) in wet seasons. In light of the different modelling methods between large and small
reservoirs, their effects are separately discussed, as follows.
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Figure 7. Temporal distribution of reservoir effect on the downstream discharge at Xiashan for
2008–2015. Yellow indicates the streamflow is increased with the consideration of reservoirs whereas
blue indicates otherwise (see the color bar).

Large reservoirs: Large reservoirs are generally intended to mitigate floods in wet seasons and
supply more water in dry seasons. To quantitatively explain the simulated effects of the large reservoirs
on extreme climate conditions, the averaged maximum monthly inflow (high flow) and minimum
monthly inflow (low flow), and the release of each reservoir were selected and presented in Table 4.
It is noted that, for all large reservoirs, the maximum monthly inflow is reduced, with the largest
reduction of 53.5% for the Shibikeng Reservoir. On the other hand, the monthly low flow is maintained
or increased for all of the reservoirs except Ridong Reservoir. These results indicate that, with the
generalized operation rule, the large reservoirs effectively mitigate floods and, in most cases, supply
more water in dry seasons.

Table 4. Effects of reservoirs on the monthly maximum and minimum flow.

Reservoir
Averaged Monthly Maximum Averaged Monthly Minimum

Inflow (m3/s) Outflow (m3/s) Difference (%) Inflow (m3/s) Outflow (m3/s) Difference (%)

Tuanjie 100.0 87.4 −12.6 1.6 2.5 56.3
Yanling 47.0 45.0 −4.3 1.2 1.3 8.3
Ridong 33.8 27.9 −17.5 1.2 0.7 −41.7

Longshan 13.9 11.5 −17.3 0.1 0.1 0.0
Shibikeng 25.4 11.8 −53.5 0.3 0.3 0.0
Zhukeng 15.4 12.7 −17.5 0.2 0.3 50.0

Laobu 15.9 14.1 −11.3 0.1 0.2 100.0
Dongfeng 24.6 22.7 −7.7 0.4 0.7 75.0

AR† 1 1323.2 1289.6 −2.5 20.3 20.4 0.0
AR† 2 402.8 390.7 −3.0 6.2 7.0 12.9
AR† 3 210.1 208.8 −0.7 2.3 2.8 21.7

AR† indicates aggregated reservoir.

Small reservoirs: While most small reservoirs are not primarily intended for flood mitigation
because of the limited capacity, a large group of small reservoirs can indirectly reduce the local floods
because there is always a portion of small reservoirs that are not filled enough to release all of the
incoming flood. For example, the simulated inflow and outflow of small reservoirs represented by
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aggregated reservoir 3 for the first half of 2010 are illustrated in Figure 8b, where the flood peaks are
mitigated by different minor values. As the wet season arrives, the proportion of unfilled and filled
small reservoirs in the sub-basin is constantly changing in terms of the magnitude of the incoming
flow (see Figure 8a). An increasing number of small reservoirs become dry towards the end of dry
season because of the human water demand. When the flood season comes, these reservoirs start
to fill up as the flood peaks are somewhat reduced. It is also noted that, due to the limited capacity,
most of the small reservoirs are filled during a significant flood where almost all of the flood is
released immediately.
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Figure 8. For small reservoirs represented by aggregated reservoir 3, (a) the daily simulated percentage
of unfilled and filled small reservoirs, and (b) the corresponding simulated inflow and release of the
aggregated reservoir 3 during January and May 2010.

The averaged maximum and minimum monthly inflow and outflow of each aggregated reservoir
are presented in Table 4. It can be seen the relative flood mitigation effect of aggregated reservoirs
is minor (0.7%–2.5%) as compared to large reservoirs, but the absolute value of mitigation is not
necessarily smaller than large reservoirs. In a monthly level, the small reservoirs can increase the local
runoff by 0%–21% in dry seasons, indicating that small reservoirs can serve as an effective source of
human water use in dry seasons.

For a more direct view of the effect of reservoirs, three flood events are selected for comparison
between LSM-HMS and LH-A. It can be seen from Figure 9 that the flood peaks are mitigated by
different values. For instance, with respect to the floods on January 2008, May 2009, and April 2013,
the peak discharges simulated by LH-A are, respectively, 95 m3/s, 120 m3/s, and 108 m3/s lower
than those simulated by LSM-HMS alone, making the simulated values closer to the observed ones.
Similarly, a flood detention effect can be observed in some flood events, i.e., the flood tends to rise
and fall less drastically in the simulation of LH-A (see also Figure 9). This effect is more conspicuous,
especially for the first flood after a long relatively dry period, presumably because the reservoir group
needs to fill themselves first before releasing the flood.
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5. Conclusions

Reservoir operation can result in notable uncertainty in terms of hydrological modelling and it
is an important aspect that should be handled to gain better knowledge of the reservoir impact and
to support a more effective hydrological forecasting for water agencies. While carrying out detailed
investigations on the regulation scheme of each reservoir is time-consuming and impractical, especially
for small reservoirs, this paper aggregated small reservoirs into one representative reservoir with the
use of the capacity cumulative distribution function, which was then integrated into a coupled land
surface-hydrological model, Noah LSM-HMS. Large important reservoirs were also represented in the
model using a set of generalized operation rules. With the application of the integrated model to a
case study in the upper Gan river basin, the following conclusions are made:

• CMADS can serve as a high-quality meteorological database for the coupled land surface-
hydrological model. CMADS-driven LSM-HMS generally have a much better performance
than NCEP-driven LSM-HMS.

• The reservoir module can depict the annual and interannual variation in the water storage well
for both large and small reservoirs. The integrated model yields improved simulation results at a
significant level with the incorporation of reservoirs.

• Both large reservoirs and small reservoirs have a similar effect in reducing the floods in wet
seasons and increasing the flow in dry seasons. Although small reservoirs are not primarily
intended for flood mitigation, a large group of small reservoirs can indirectly reduce the local
floods by up to 2.5% in a monthly level.

• The error of LSM-HMS is related to the input data and grid resolution as well as input parameter
error. With a finer modelling resolution, the error is expected to be reduced. The simplification of
the reservoir representation and the operation rule is also considered to be a source of error.

The idea using a statistical distribution and an aggregated reservoir to represent small reservoirs
in this study serves as a compromise between the convenience and model accuracy. It saves time from
investigating and integrating each of the small reservoirs, especially in a basin where there are too
many small reservoirs to consider one by one. However, this idea of introducing aggregated reservoirs,
after all, is based on a lumped hydrologic concept rather than a distributed concept to be used in a
distributed hydrological model. While one can employ a more distributed method by, for example,
distributing one or more reservoirs into each of the grid, their interconnection in the model needs to be
considered with care to be an appropriate representation of the reality, and further work is expected
on this aspect.

The idea using a statistical distribution and an aggregated reservoir to represent small reservoirs
in this study serves as a compromise between the convenience and model accuracy. It saves time from
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investigating and integrating each of the small reservoirs, especially in a basin where there are too
many small reservoirs to consider one by one. However, this idea of introducing aggregated reservoirs,
after all, is based on a lumped hydrologic concept rather than a distributed concept to be used in a
distributed hydrological model. While one can employ a more distributed method by, for example,
distributing one or more reservoirs into each of the grid, their interconnection in the model needs to be
considered with care to be an appropriate representation of the reality, and further work is expected
on this aspect.
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