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Abstract: To date, floods have become one of the most severe natural disasters on Earth.
Flood forecasting with hydrological models is an important non-engineering measure for flood
control and disaster reduction. The Xin’anjiang (XAJ) model is the most widely used hydrological
model in China for flood forecasting, while the Soil and Water Assessment Tool (SWAT) model is
widely applied for daily and monthly simulation and has shown its potential for flood simulation.
The objective of this paper is to evaluate the performance of the SWAT model in simulating floods at
a sub-daily time-scale in a slightly larger basin and compare that with the XAJ model. Taking Qilijie
Basin (southeast of China) as a study area, this paper developed the XAJ model and SWAT model at
a sub-daily time-scale. The results showed that the XAJ model had a better performance than the
sub-daily SWAT model regarding relative runoff error (RRE) but the SWAT model performed well
according to relative peak discharge error (RPE) and error of occurrence time of peak flow (PTE).
The SWAT model performed unsatisfactorily in simulating low flows due to the daily calculation of
base flow but behaved quite well in simulating high flows. We also evaluated the effect of spatial scale
on the SWAT model. The results showed that the SWAT model had a good applicability at different
spatial scales. In conclusion, the sub-daily SWAT model is a promising tool for flood simulation
though more improvements remain to be studied further.
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1. Introduction

Flooding is one of the most common natural phenomena. With the economic and social
development, the global climate and the underlying surface have changed, causing changes in the
water circulation process of river basins and causing more serious and frequent floods. Severe flood
disasters have become one of the most serious water issues, which have brought incalculable losses
and caused serious threats to the safety of lives and properties.

Flood forecasting is an important non-engineering measure for flood control and disaster
reduction. Timely and accurate flood forecasting is the most effective way to control flooding and
reduce flooding damage. A hydrological model is a modern flood forecasting method developing
with the rapid development of electronic computer technology. By simulating historical floods,
we can evaluate the performance of these hydrological models and make full preparations for flood
forecasting. Since the first watershed hydrological model—the Stanford model—was applied in
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hydrology research [1], there have been numerous hydrological models available all over the world.
Xin’anjiang (XAJ) model [2] is the first developed watershed hydrological model in China and has been
widely used for flood forecasting in humid and semi-humid regions. Li et al. (2008) [3] combined the
XAJ model, the hydraulic method and the real-time error correction method to perform real-time flood
forecasting in a regulated Huai River Basin and achieved a high accuracy. Liu et al. (2009) [4] coupled
the XAJ model with a kinematic flow model based on digital drainage networks and applied it for flood
simulation in Huangnizhuang basin; it showed good performance. In addition, many hydrological
models have been developed abroad, including SWMM [5], HSPF [6], MIKE SHE [7], AGNPS [8],
ANSWERS [9], SWAT [10] and MARINE event-based model [11]. Among these models, the SWAT
model is a basin-scale model which can predict the impact of management on water, sediment and
agricultural chemical pollutant loads. It has a very strong physical mechanism that is able to simulate
in the basins without observed data. The SWAT model is good at simulating long periods of time at a
larger time-scale and has been extensively used for daily, monthly and yearly simulation of runoff and
discharge [12–14].

The ability to simulate event-based floods is significant for hydrological models to sufficiently
capture dynamic hydrological processes between short intervals. Therefore, more and more scholars
have studied the application of the SWAT model for discharge simulation in a shorter time-step.
Jeong et al. (2010) [15] modified the SWAT model to simulate floods with hourly precipitation input,
but they only tested it in a very small watershed (1.94 km2) and pointed out that there may be some
problems in intensely urbanized areas. Yu et al. (2017) [16] followed the same method and improved
the Unit Graph module. They simulated event-based floods in the upper Huai River Basin and
demonstrated that the modified SWAT model had a high accuracy in flood simulation in a larger and
urbanized area. Using the original SWAT model, Yang et al. (2016) [17] compared the SWAT model
with daily and sub-daily precipitation input for the simulation of daily discharge in the upper Huai
River Basin and showed that the model with sub-daily precipitation data performed better than the
model with daily precipitation data, especially when simulating peak flows during the flood seasons.
Boithias et al. (2017) [18] simulated flash floods at an hourly time-step in the Têt Mediterranean river
basin using the SWAT model and then compared it with the MARINE model. This is the first time
that the SWAT model has been performed at an hourly time-step at a catchment of about 1000 km2.
This research has shown great improvement in the SWAT model, but the applicability of the SWAT
model in simulating floods remains to be further studied in more and larger basins.

To date, the XAJ model has been the most widely used hydrological model in flood forecasting
in China, while the SWAT model has also proved its reasonable capability to simulate floods in
several basins. The objectives of this study were threefold. The first objective was to evaluate the
performance of the SWAT model in flood simulation at a sub-daily time-scale in a slightly larger basin
and explore how this simulation improves our understanding of hydrological processes during a
flood event. The second objective was to compare the results of sub-daily SWAT with the XAJ model
and demonstrate the event-based flood simulation capability of the SWAT model. The third objective
was to research the impact of spatial scale on the SWAT model and comprehensively estimate the
applicability of the SWAT model.

2. Materials and Methods

2.1. Subsection

The Minjiang River Basin is located in the north of Fujian province, between 116◦23′ E and 119◦43′

E longitude, 25◦23′ N and 28◦19′ N latitude. The study area of this paper is Qilijie Basin, a subbasin in
the upper Minjiang River Basin and covers an area of 14,800 km2 (Figure 1). Qilijie Basin is located
within subtropical monsoon climate region. The precipitation in the basin is abundant, with an average
annual rainfall of 1851 mm. Most of the precipitation (about 60%) falls between April and June.
The average annual runoff is 1134 mm, and the annual average rainfall-runoff coefficient is about 0.53.
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Most of the floods in the study area were caused by plum rain in April to June and typhoons from
July to September. There is no large reservoir in this basin, so we did not need to consider reservoir
regulation. Majority of the soils in the basin are Haplic Acrisols (60.3%), Cumulic Anthrosols (15.6%)
and Humic Acrisols (12.2%). There are six kinds of land cover/land use, and the top three are forest
(65.17%), agriculture (19.26%) and pasture (14.45%). The details of soil and land use/land cover were
presented in Figure 2a,b, respectively.
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2.2. Models Description

2.2.1. XAJ Model

The XAJ model is the first watershed hydrological model in China. It is a semi-distributed,
rain-runoff model proposed by Zhao et al. (1980) [2] when compiling the flood prediction scheme for
the XAJ reservoir. To date, the XAJ model has been widely used for flood forecasting in humid and
semi-humid regions in China. Considering the spatial heterogeneity of the underlying surface and
rainfall distribution, the XAJ model divides the watershed into several subbasins. Each subbasin is an
independent computation unit and includes four major parts: evapotranspiration, runoff generation,
runoff separation and flow concentration.

XAJ model needs measured pan evaporation and precipitation inputs. Process of evapotranspiration
in each computation unit is simulated using triplex evaporation method [19]. XAJ model calculates total
runoff using the storage capacity curve [2]. After that, the total runoff is separated into surface runoff,
lateral flow and groundwater flow [19]. Runoff in each computation unit flow into the nearest river first
and then route to the outlet of the basin using Muskingum Method [20].

2.2.2. SWAT Model

The SWAT model is a basin-scale model which can predict the impact of management on water,
sediment, and agricultural chemical pollutant loads. It is based on a strong physical mechanism that
enables to simulate in the basins without observed data. In this model, the study area was first divided
into multiple subbasins and then further divided into hydrological response units (HRUs) based on the
unique combination of land use, soil and management measures. The SWAT model has been widely
used in many fields and basins [21–24].

SWAT model estimated potential evapotranspiration using the Penman-Monteith method [25–27],
so the observed evapotranspiration data was not needed. Surface runoff was usually calculated by
a Soil Conservation Service Curve Number (SCS-CN) method. Green & Ampt infiltration method
would be used when using sub-daily precipitation data. Lateral flow was calculated by a kinematic
method and the return flow was predicted by assuming a shallow aquifer [28]. In channel flow routing,
SWAT model applied the variable storage method [29] or the Muskingum method [30]. Muskingum
method was used in this paper.

This paper developed sub-daily SWAT model for Qilijie Basin. The latest version of SWAT 2012
was employed in this study. Traditional DEM-based watershed delineation method had low precision
in plain polders. In this research, “Burn-in” method [31] cooperated with manual edit based on river
network dataset was introduced to improve the streams and subbasin delineation. The study area
was divided into 62 subbasins based on a threshold value of 10,000 Ha and further divided into
317 hydrological response units (HRUs). The threshold values for land use, soil types and slope were
20%, 15% and 20%, respectively.

2.3. Data Collection

The data collected for SWAT model and XAJ model included geospatial input data, meteorological
data and hydrological data. The geospatial input data are as follows: (1) SRTM 90 M Digital Elevation
Model (DEM) data (The data set is provided by International Scientific & Technical Data Mirror Site,
Computer Network Information Center, Chinese Academy of Sciences (http://www.gscloud.cn));
(2) Soil map at a scale of 1:100,000 downloaded from Harmonized World Soil Database (HWSD)
(http://www.fao.org/nr/land/soils/harmonized-world-soil-database/en); (3) Land use/ land cover
map of 1995 at a scale of 1:100,000.

The meteorological data included precipitation, daily maximum and minimum air temperature,
wind speed, relative humidity and solar radiation from 1980 to 2008 of 7 meteorological stations
inside or near the study area. These data were prepared to generate weather parameters for
Weather Generator.

http://www.gscloud.cn
http://www.fao.org/nr/land/soils/harmonized-world-soil-database/en
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Hydrological data included precipitation, discharge and measured pan evaporation. Precipitation
data from 1988 to 1999 were collected from 43 rain gauges. Precipitation data were prepared in daily
and hourly time-scale. Hourly time-scale precipitation data were only available during flood seasons,
so hourly precipitation during non-flood seasons were estimated by assuming a uniform distribution in
daily precipitation. Discharge data between 1988 and 1999 were collected from 3 hydrological stations,
Qilijie (QLJ), Jianyang (JY) and Shuiji (SJ). They were also prepared in daily and hourly time-scale.
QLJ station was used for model calibration and validation, while JY and SJ were used to evaluate the
applicability of SWAT model on different spatial scales. All the data used in this paper were shown in
Table 1.

Table 1. Information on data collected for this research.

Category Data Type Data Series and Time Scale Usage

Geospatial DEM 90 M (V4.1) Hydrological simulation
1:1,000,000 Soil map 2009

1:1,000,000 Landuse map 1995

Meteorological Air temperature 1980–2008/daily Weather Generator
Precipitation 1980–2008/daily

Humidity 1980–2008/daily
Solar radiation 1980–2008/daily

Wind speed 1980–2008/daily

Hydrological Precipitation 1988–1999/daily&hourly Basic Hydrologic data
Discharge 1988–1999/daily&hourly

Pan evaporation 1988–1999/daily

2.4. Model Calibration and Validation and Sensitivity Analysis

2.4.1. Parameter Sensitivity Analysis for SWAT Model

There are many parameters in SWAT model, but only some of them are very sensitive to the
operation of the model. Authors needed to perform sensitivity analysis and select the most sensitive
parameters, and this could help us reduce time spent on model calibration. A global sensitivity analysis
was conducted to identify the most sensitive parameters. The t-statistic and p-value were used to
determine the sensitivity of the parameters. If the absolute value of t-statistic is large and p-value is
small, then the parameter is classified to be sensitive. Table 2 listed the 16 parameters included in the
calibration of sub-daily SWAT model and their detailed information.

Table 2. Parameters for daily and sub-daily SWAT models. “V” means the existing parameter will be
replaced by a given value; “R” means that the existing parameter is multiplied by (1 ± a given value).

Parameter Input File Definition Type of Change

CH_N2 .rte Manning’s “n” value of the main channel (m−1/3s) V
CH_K2 .rte Effective hydraulic conductivity in main channel alluvium (mm/h) V

ALPHA_BNK .rte Baseflow alpha factor for bank storage V
SOL_AWC .sol Available water capacity of soil (mm H2O/mm soil) R

SOL_K .sol Saturated hydraulic conductivity (mm/h) R
SOL_BD .sol Moist bulk density (g/cm3) R

CN2 .mgt Initial SCS runoff curve number for moisture condition II R
ALPHA_BF .gw Baseflow alpha factor V
GW_DELAY .gw Groundwater delay time (days) V
GW_REVAP .gw Groundwater “revap” coefficient V

GWQMN .gw Threshold depth of water in the shallow aquifer required for return
flow to occur (mm H2O) V

SURLAG .bsn Surface runoff lag time V
SFTMP .bsn Snowfall temperature (◦C) V

HRU_SLP .hru Average slope stepness (m/m) V
SLSUBBSN .hru Average slope length (m) V

ESCO .hru Soil evaporation compensation factor. V
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2.4.2. Calibration and Validation for Daily Simulation

Calibration and validation of SWAT model were based on Calibration and Uncertainty Procedures
(SWAT-CUP) [32]. There are many algorithms in SWAT-CUP and the SUFI-2 [33] is the chosen
algorithm. In SUFI-2, uncertainties are expressed as uniform distribution. Propagation of uncertainties
in these parameters led to uncertainties of output variables in model which are expressed as the 95%
probability distributions, we call them 95PPU. They are calculated at the 2.5% and 97.5% levels of the
cumulative distribution of an output variable using Latin hypercube sampling. We have two factors to
determine whether the calibration is achieved or not: P-factor and R-factor. P-factor is the percentage
of observed data falling into 95PPU and it ranges from 0 to 1. R-factor is the average thickness of the
95PPU band and ranges between 0 and infinity. The calibration is considered satisfactory when the
P-factor is close to 1 and the R-factor is close to 1 as well. These two requirements cannot always be
implemented simultaneously, so a compromise is required. Usually, a value of 0.6–0.8 for the p-factor
and a value of about 1 for the R-factor is suggested [34].

The goodness-of-fit of the model is assessed by Coefficient of determination(R2), Nash-Sutcliffe
efficiency (NSE) and percent bias (PBIAS). R2 is calculated by the following formula:

R2 =

[
n
∑
1
(Qm,i −Qm)(Qs,i −Qs)

]2

n
∑
1
(Qm,i −Qm)

2
(Qs,i −Qs)

2
, (1)

where Qm,i is the i-th measured discharge, Qs,i is the i-th model simulated discharge. Qm is mean
measured discharge for the entire time period, Qs is mean simulated discharge for the entire time
period. R2 ranges from 0 to 1 and a larger value means a better simulation.

NSE is calculated as:

NSE = 1−

n
∑
1
(Qm,i −Qs,i)

2

n
∑
1

(
Qm,i −Qm

)2
, (2)

NSE ranges between −∞ and 1 [35]. NSE values with higher magnitude are preferred.
The formula for calculating percent bias PBIAS is as follows:

PBIAS = 100×

n
∑
1
(Qm,i −Qs,i)

n
∑
1

Qm,i

, (3)

PBIAS compares the average tendency of simulated output to observed data, and the optimal value
is 0. Positive values mean that the simulated outputs are larger than observed data, while negative
values are on the contrary [36]. In general, when NSE > 0.5 and PBIAS < ±25%, the performance of the
model is considered to be satisfactory [37].

QLJ station was selected as the calibration station. For daily simulation, the period from 1988
to 1996 was selected as the calibration period and the first three years served as a warm up period.
After that the model was validated using observed data between 1997 and 1999.

2.4.3. Calibration and Validation for Flood Simulation

In this paper, calibration and validation of SWAT model for flood simulation were also based on
SWAT-CUP. SWAT-CUP is often used to calibrate for daily, monthly and yearly time steps, so we need
to modify it for hourly time step.

Besides R2, NSE and PBIAS, authors also introduced relative runoff error (RRE), relative peak
discharge error (RPE) and error of occurrence time of peak flow (PTE) to evaluate the performance
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of flood simulation. A simulation is considered qualified when these indicators reach Standard for
Hydrological Information and Hydrological Forecasting in China (GB/T 22482-2008) which requires
the absolute values of RRE and RPE less than 20% and 20%, respectively. The formulas for calculating
RRE and RPE are as follows:

RRE =
Rs − Rm

Rm
× 100%, (4)

RPE =
QMs −QMm

QMm
× 100%, (5)

where Rm is the measured runoff and Rs is the simulated runoff; QMm the measured peak flow and
QMs is the simulated peak flow.

PTE is calculated as:
PTE = PTs − PTm (6)

where PTs(h) represents the simulated occurrence time of peak flow and PTm(h) represents the
measured occurrence time of peak flow. The positive value indicates that the simulated peak flow
occurs later than the measured peak flow and the negative value indicates that the simulated peak
flow occurs earlier than the measured peak flow.

In XAJ model, there are 15 important parameters, so authors calibrated the model automatically by
matching simulated and observed values using an optimization algorithm and then manually adjusted
them according to personal experience. The same indices as SWAT model for the goodness-of-fit of
XAJ model were used.

Calibration for flood simulation was based on the calibration for daily simulation.
Authors brought the decisive parameters calibrated in daily simulation back to the model to prepare
the initial information for flood simulation. For flood simulation, the model was calibrated over
flood periods only, so only discharge data during flood seasons were required. Twenty-two floods
between 1991 and 1996 were used for calibration and 14 floods between 1997 and 1999 were chosen
for validation.

3. Results and Discussion

3.1. Parameters’ Sensitivity for SWAT Model

The ranking of the most sensitive parameters obtained in daily simulation and flood simulation
was listed in Table 3. In this paper, the parameter was considered to be significantly sensitive when the
p-value was less than 0.03.

The significantly sensitive parameters of the SWAT model in daily simulation were baseflow
alpha factor for bank storage (ALPHA_BNK), Manning’s “n” value of the main channel (CH_N2),
effective hydraulic conductivity in main channel alluvium (CH_K2), saturated hydraulic conductivity
(SOL_K), threshold depth of water in the shallow aquifer required for return flow to occur (GWQMN),
groundwater “revap” coefficient (GW_REVAP) and initial SCS runoff curve number for moisture
condition II (CN2). These parameters were related to flow routing and runoff generation. While in flood
simulation, significantly sensitive parameters were ALPHA_BNK, CH_N2 and CH_K2. They were all
connected with flow routing. In both daily and flood simulation, ALPHA_BNK, CH_N2 and CH_K2
were significantly sensitive which means that flow routing was very important for the simulation of
the SWAT model in this study area, while their values were all larger in flood simulation. The larger
ALPHA_BNK value meant flat recessions for bank flow and the larger CH_K2 value would cause more
water loss to the groundwater within the stream bed. The fitted value of CH_N2 in flood simulation
was 0.0847 (m−1/3s) and was larger than 0.0447 (m−1/3s) in daily simulation. The larger CH_N2 value
led to smaller flow velocity. Other differences were GWQMN, average slope length (SLSUBBSN) and
groundwater delay time (GW_DELAY). Their values were all smaller in flood simulation.

It is worth noting that the calibration and sensitivity analysis results were based on the data and
model performance for this paper. The final result was influenced by all the parameters included.
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Many other factors, such as types of changes for parameters and the selection of objective function [38],
may affect the results as well.

Table 3. Parameter sensitivities for SWAT model in daily and flood simulation.

Parameter
Daily Flood

t-Test p-Value Fitted Value t-test p-Value Fitted Value

ALPHA_BNK 10.81 0.000 0.113 3.39 0.001 0.518
CH_N2 −9.62 0.000 0.045 −3.19 0.002 0.085
CH_K2 −6.62 0.000 2.500 −2.57 0.011 23.250
SOL_K −4.37 0.000 −0.438 −1.36 0.174 −0.567

GWQMN −3.77 0.000 1604.000 −1.88 0.061 370.000
GW_REVAP −2.49 0.014 0.049 0.17 0.862 0.087

CN2 2.25 0.026 −0.195 0.50 0.615 −0.029
SOL_AWC −2.03 0.045 −0.119 −1.18 0.241 −0.097

ESCO 1.60 0.112 0.819 1.13 0.262 0.859
SURLAG 1.23 0.221 8.935 −0.34 0.734 13.823

ALPHA_BF −1.01 0.312 0.635 −1.27 0.207 0.686
SOL_BD −0.82 0.413 −0.235 −0.36 0.721 −0.032

SLSUBBSN −0.73 0.468 114.300 −0.76 0.447 25.750
SFTMP 0.61 0.543 −0.200 1.11 0.269 0.945

HRU_SLP −0.47 0.641 0.489 1.15 0.254 0.383
GW_DELAY −0.44 0.662 227.500 −1.45 0.150 111.000

3.2. Comparison of Sub-daily SWAT and XAJ Model in Daily Simulation

The team developed a sub-daily SWAT model for daily discharge simulation and then compared
it with the XAJ model. The results of calibration and validation for the XAJ and SWAT models were
presented in Table 4, which shows separately the performances for the calibration and validation
periods. After three iterations, a best iteration for sub-daily SWAT model was chosen. The p-factor and
r-factor were 0.86 and 0.63 for the sub-daily SWAT model, respectively. So, the calibration of the SWAT
model was considered to be satisfactory according to the criteria.

During the calibration period, the R2, NSE and PBIAS obtained by the SWAT model was 0.81,
0.76 and 14.61, respectively, while the R2, NSE and PBIAS for the XAJ model was 0.75, 0.70 and −0.75,
respectively. The simulations were classified as satisfactory for both models. The XAJ model simulated
more reasonably than the SWAT model according to the PBIAS. While the R2 and NSE obtained by
the SWAT model improved a lot compared to that obtained by the XAJ model. During the validation
period, the R2 and NSE of the XAJ model were almost the same as those during the calibration period,
but the PBIAS changed from −0.75 to 2.22. For the SWAT model, the R2, NSE and PBIAS were 0.84,
0.80 and 8.62, respectively. All of them improved a lot. After analyzing these results, it was concluded
that both the XAJ and SWAT models were suitable for daily simulation. The SWAT model was better
according to R2 and NSE. The higher R2 and NSE values for the SWAT model indicated that the
simulated discharge was in better agreement with the observed data.

The performance of the SWAT model was nearly positively correlated with precipitation.
The annual precipitation for 1992, 1995, 1997 and 1998 were all above 2000 mm. Simulation of
daily discharge of these years was better in terms of R2 and NSE. The annual precipitation for 1991
and 1996 was smaller and the simulation of these two years was much worse. Figure 3a, b show the
time series of observed data and simulation results of the XAJ model and the SWAT model during
the calibration and validation periods. During both the calibration and validation periods, the SWAT
model simulated better than the XAJ model during flood season. This is very important because about
60% of the precipitation fell in flood season. Generally, the daily simulation results obtained from
the XAJ and SWAT models demonstrated decent applicability and could consequently represent a
preliminary basis for further event-based floods simulation.
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Table 4. Results of calibration and validation for XAJ and SWAT models in daily simulation.

Period Year
Precipitation R2 NSE PBIAS

(mm) XAJ SWAT XAJ SWAT XAJ SWAT

1991 1289 0.74 0.63 0.65 0.53 −2.58 25.81
1992 2102 0.80 0.86 0.76 0.84 −3.12 18.48
1993 1721 0.74 0.91 0.70 0.83 −2.62 18.18

Calibration 1994 1826 0.72 0.84 0.68 0.83 3.40 −11.29
1995 2067 0.72 0.86 0.7 0.83 3.54 14.46
1996 1357 0.78 0.76 0.69 0.72 −3.10 22.02

average 1727 0.75 0.81 0.70 0.76 −0.75 14.61

1997 2165 0.75 0.84 0.69 0.77 −4.62 19.68
Validation 1998 2450 0.82 0.88 0.80 0.87 8.93 −14.4

1999 1920 0.69 0.81 0.65 0.77 2.34 20.59
average 2178 0.75 0.84 0.71 0.80 2.22 8.62Water 2018, 10, 1263  11 of 20 
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Figure 3. (a) Comparisons between the observed and simulated daily discharge for the calibration
period and (b) comparisons between the observed and simulated daily discharge for the validation
period. For better readability, the maximal of Y axes in (b) was limited to 20,000 m3/s. So, some of the
maximum discharge, i.e., 20,290 m3/s, were not shown in the figure.
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3.3. Analysis of Model Performance in Flood Simulation

3.3.1. Simulation Results

Calibration and validation of the sub-daily SWAT model in flood simulation were conducted
using SWAT-CUP and a few modifications were made to it to accommodate the hourly time-scale
input. The results of calibration and validation for XAJ and the sub-daily SWAT model are listed in
Table 5. During the calibration period, the sub-daily SWAT model performed better than the XAJ
model with R2 ranging from 0.5 to 0.89 and NSE ranging from 0.33 to 0.85, compared with 0.07 to 0.92
and 0.2 to 0.92 of R2 and NSE for the XAJ model, respectively. During the validation period, both of
these models improved. The average R2, NSE and PBIAS for the SWAT model was 0.73, 0.56 and
−6.76, respectively, and the average R2, NSE and PBIAS for the XAJ model was 0.65, 0.50 and −2.88,
respectively. Generally, the SWAT model did better than the XAJ model according to R2 and NSE.
The results of NSE values were better than a previous study [18], as the model had been calibrated and
validated over flood periods only.

We also plotted flow duration curves (FDCs) in Figure 4 to evaluate the agreement between
observations and simulations. Both the XAJ and SWAT models overestimated extreme high flows (<1%
exceedance) during calibration and validation periods, and it was further obvious in the SWAT model.
While the SWAT model could capture high flows (~2% exceedance) perfectly. During the calibration
period, the SWAT model predicted better in terms of medium flows (~50% exceedance) but had a poor
performance in terms of low flows. During the validation period, it was the opposite. The XAJ model
performed satisfactorily in estimating medium flows while the SWAT model had better agreement in
low flows. Both of the two models overestimated high flows and underestimated low flows as a whole.
The models responded differently to extremely high and extremely low flows. Therefore, the responses
of the models to different conditions [39–41] need further study.
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Figure 4. Observed and simulated flow duration curves: (a) flow duration curves (FDCs) for high flows
during calibration period; (b) flow duration curves (FDCs) for medium and low flows during calibration
period; (c) flow duration curves (FDCs) for high flows during validation period; (d) flow duration
curves (FDCs) for medium and low flows during validation period.
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Table 5. Parameter sensitivities for SWAT model in daily and flood simulation.

Period Flood Code
Runoff (mm) Peak(m3/s) RRE (%) RPE (%) PTE(h)

Observed XAJ SWAT Observed XAJ SWAT XAJ SWAT XAJ SWAT XAJ SWAT

910326 78.9 76.2 69.8 3180 3530 2950 3.42 11.53 −11.01 7.23 42 39
910426 49.7 46.3 20.8 1730 1757 883 6.84 58.15 −1.58 48.96 148 −3
910617 12.7 12.0 12.9 958 1132 1080 5.51 −1.57 −18.19 −12.73 −22 −24
920321 130.7 85.9 116.1 4330 4351 3580 34.28 11.17 −0.48 17.32 −6 −5
920501 37.0 35.4 38.0 2210 2553 2620 4.32 −2.70 −15.50 −18.55 134 −13
920514 81.1 69.5 74.3 6920 7933 5680 14.30 8.38 −14.64 17.92 −5 −4
920616 80.3 77.1 68.3 6300 6811 5440 3.99 14.94 −8.10 13.65 −4 −1
920704 182.3 162.9 203.5 10,700 12,157 15,700 10.64 −11.63 −13.62 −46.73 −8 −9
920831 24.3 24.6 19.5 2080 2444 1810 −1.23 19.75 −17.50 12.98 7 −6
930502 76.5 44.7 64.8 3730 3629 3140 41.57 15.29 2.71 15.82 −8 −9

Calibration 930523 96.1 94.3 81.0 2740 3254 2250 1.87 15.71 −18.77 17.88 −23 −160
930615 198.3 190.4 145.6 9710 9509 8900 3.98 26.58 2.07 8.34 −7 −11
940425 95.3 85.5 118.2 7250 7668 10,900 10.28 −24.03 −5.77 −50.34 −4 −6
940521 62.4 62.8 54.1 4000 4727 2540 −0.64 13.30 −18.16 36.50 −4 8
940614 131.1 89.3 114.6 9240 11,787 9560 31.88 12.59 −27.57 −3.46 −6 −6
950424 168.2 147.6 138 4560 5248 3660 12.25 17.95 −15.09 19.74 −5 71
950603 96.5 91.2 87.2 6650 6989 5530 5.49 9.64 −5.09 16.84 93 −2
950614 187.9 146.3 165 7650 9934 7570 22.14 12.19 −29.86 1.05 50 −7
950625 137.3 133.1 120.3 11,100 12,795 12,500 3.06 12.38 −15.27 −12.61 −7 −7
950813 40.7 47.3 26.7 4310 4912 2330 −16.22 34.40 −13.98 45.94 −2 4
960317 82.0 85.1 86.1 4140 4281 3680 −3.78 −5.00 −3.40 11.11 −3 −4
960530 81.2 81.8 50.1 4620 4910 3460 −0.74 38.30 −6.27 25.11 32 30
average 96.8 85.9 85.2 5369 6014 5262 8.78 13.06 −11.59 7.82 18 −6

970605 63.8 68.2 66.0 5760 5247 5630 −6.90 −3.45 8.91 2.26 −7 −3
970620 59.5 45.1 64.0 3820 4463 3120 24.20 −7.56 −16.83 18.32 −3 −6
970702 134.5 130.9 108.9 7770 9081 7070 2.68 19.03 −16.87 9.01 −8 −6
970808 35.9 32.6 35.4 1490 1734 2090 9.19 1.39 −16.34 −40.27 −7 −9
980215 34.9 36.5 37.5 3790 3651 3860 −4.58 −7.45 3.68 −1.85 −7 −9
980301 137.6 133.8 115.1 5810 6943 5430 2.76 16.35 −19.49 6.54 −25 −9
980509 99.3 94.1 91.5 10,400 12,358 11400 5.24 7.85 −18.83 −9.62 −7 −4

Validation 980608 253.2 220 237.7 12,100 14,675 13400 13.11 6.12 −21.28 −10.74 62 59
980619 419.1 407 368.7 21,600 23,217 29600 2.89 12.03 −7.49 −37.04 −8 −10
990415 61.9 71.3 65.7 6360 6726 6570 −15.19 −6.14 −5.75 −3.30 −3 −3
990515 63.3 67.1 58.0 3950 4240 3300 -6.00 8.37 −7.34 16.46 −13 −16
990523 94.9 95.8 85.6 7910 9018 7780 -0.95 9.80 −14.01 1.64 −10 −7
990715 80.9 62.5 64.7 4420 5239 3070 22.74 20.02 −18.54 30.54 −6 −8
990825 83.9 91.3 68.6 3990 4600 2880 -8.82 18.24 −15.28 27.82 1 −1
average 115.9 111.2 104.8 7084 7942 7514 2.88 6.76 −11.82 0.70 −3 −2
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3.3.2. Performance of SWAT and XAJ Model in Event-Based Floods

Table 5 summarizes the statistical performance measures for runoff, peak flow and occurrence
time of peak flow. During the calibration period, the average RRE and RPE of the XAJ model
were −8.78% and 11.59%, respectively, while the two values of the SWAT model were −13.06% and
−7.82%, respectively. The SWAT model simulated better in terms of RPE. During the validation
period, it showed the same conclusion. The distributed model consistently performed better than
the lumped model in simulating peak flow [42]. However, we need to consider the simulation of
each single event-based flood to evaluate the event-based flood simulation capability of the SWAT
model. Depending on the standard, the XAJ model simulated better than SWAT. There were four floods
unqualified during the calibration period and three floods unqualified during the validation period.
Meanwhile, there were six floods and four floods unqualified during the calibration and validation
periods of the SWAT model, respectively. Both the XAJ and SWAT model reproduced the event-based
floods fairly well. The error of occurrence time of peak flow (PTE) for each flood was also calculated.
The SWAT model performed better than the XAJ model. The average values of PTE of the SWAT model
during calibration and validation period were −6 h and −2 h, respectively, while the average values
of the XAJ model were 18 h and −3 h, respectively. Both the XAJ and SWAT models could simulate the
occurrence time of peak flow well during the validation period. However, the XAJ model predicted
unsatisfactorily during the calibration period with the average PTE of 18 h, which indicated that the
peak flow simulated by the XAJ model occurred later than the measured peak flow overall. The SWAT
model can capture the occurrence time of peak flow perfectly and this is crucial for flood forecasting.

Figure 5 compared observed and simulated discharges by XAJ and SWAT models for eight
event-based floods. The SWAT model had a poor performance in the beginning of most floods and
it was particularly evident in the first flood of the year (Flood 910306, 920321 and 970605). It tended
to underestimate the low flows. It is implied that antecedent conditions are very important for the
model simulation [16]. In the XAJ model, initial hydrological information of event-based floods, such
as soil moisture content, was captured through daily simulation. Even though we used the same
method in the SWAT model, the results were still limited by precipitation data. As mentioned above,
hourly precipitation data were only available during floods and the data during non-flood periods were
obtained from daily precipitation. This may bring some error to the calculation of initial hydrological
information of floods, especially the first flood of the year. The rain gauges resolution and accuracy of
measurements were very important and may affect the model outputs [43]. During extreme events,
precipitation measurements may not be accurate [44]. Therefore, in extreme flood (Flood 980619),
the SWAT model vastly overestimated the peak flow. The same conclusions could also be found in
the FDCs. Recession flows were also badly simulated. This might be ascribed to the calculation of
base flow. Base flow was calculated at daily time-scale and had an equal distribution of the daily
estimates to each time step. Though the SWAT model had a poor performance in low flows, it had an
improvement in simulating high and medium flows [15,18]. As mentioned above, the SWAT model
performed better in terms of RPE, and this is particularly evident in the picture (Flood 940614, 950614,
970605 and 980608). It is worth noting that all of these floods had multiple peak flows. This showed
that the SWAT model was capable of capturing multiple flood peaks accurately.

3.4. Effect of Spatial Scale on SWAT Model

Due to the spatial heterogeneity of hydrological conditions of a river basin, such as topography,
land use and soil type, hydrological phenomena also change accordingly. Research on the spatial scale
is very important for the application of hydrological models. It is of great practical significance to utilize
the hydrological data of a larger basin to deduce the hydrological characteristics of a smaller watershed.
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To evaluate the effect of spatial scale on the SWAT model, the team took JY and SJ station as an
example. Their locations are marked in Figure 1 and the basic information of these three stations is
presented in Table 6. The catchment areas of JY and SJ station were much smaller than the area of QLJ
station. There were also some differences in their land use and soil types. We simulated floods in JY
and SJ stations using the parameters calibrated by QLJ station and calculated R2, NSE and PBIAS for
each flood. Figure 6 shows the boxplots of R2, NSE and PBIAS for these three stations. During the
calibration period, R2 and NSE of these stations did not change much. However, they had a different
reaction according to PBIAS. The PBIAS values of QLJ and JY station were 13.06 and 18.42, respectively,
while the PBIAS value of SJ station was −6.28. It is implied that the SWAT model underestimated
flow regimes in QLJ and JY stations but overestimated flow regimes in SJ station. On the whole,
SJ station behaved the best during the calibration period. During the validation period, the SWAT
model performed better in QLJ station. JY station showed good consistency with QLJ station while SJ
station had the worst performance.

The qualification ratios of these three stations were also summarized according to the standard
mentioned above. In QLJ station, there were 25 floods qualified among 36 floods, the qualified ratio
was 69.4%. While there were 20 floods qualified among 33 floods in JY station and 20 floods qualified
among 30 floods in SJ station. The qualified ratio was 60.6% and 66.7%, respectively. Among 25 floods
qualified in QLJ station, 16 floods were likewise qualified in JY station and 14 floods were qualified
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in SJ station. About half of the floods qualified in QLJ station were qualified in JY and SJ station
simultaneously. The results showed that the SWAT model had a good applicability at different
spatial scales.

Table 6. Basic information of QLJ, JY and SJ stations.

Category Data Type QLJ JY SJ

Topography
Catchment Area (km2) 14800 4846 3390

Slop (%) 28.4 28.6 27.6
Elevation (m) 423 397 460

Land use
Forest (%) 65.17 70.53 64.65

Pasture (%) 14.45 10.04 10.39
Agriculture (%) 19.26 18.7 23.97

Soil
Haplic Acrisols (%) 60.3 55.67 67.3
Cumulic Anthrosols

(%) 15.6 16.7 15.5

Humic Acrisols (%) 12.2 12.99 9.8

Water 2018, 10, x FOR PEER REVIEW  17 of 20 

 

The qualification ratios of these three stations were also summarized according to the standard 

mentioned above. In QLJ station, there were 25 floods qualified among 36 floods, the qualified ratio 

was 69.4%. While there were 20 floods qualified among 33 floods in JY station and 20 floods qualified 

among 30 floods in SJ station. The qualified ratio was 60.6% and 66.7%, respectively. Among 25 floods 

qualified in QLJ station, 16 floods were likewise qualified in JY station and 14 floods were qualified 

in SJ station. About half of the floods qualified in QLJ station were qualified in JY and SJ station 

simultaneously. The results showed that the SWAT model had a good applicability at different spatial 

scales. 

Table 6. Basic information of QLJ, JY and SJ stations. 

Category Data Type QLJ JY SJ 

Topography 

Catchment Area (km2) 14800 4846 3390 

Slop (%) 28.4 28.6 27.6 

Elevation (m) 423 397 460 

Land use 

Forest (%) 65.17 70.53 64.65 

Pasture (%) 14.45 10.04 10.39 

Agriculture (%) 19.26 18.7 23.97 

Soil 

Haplic Acrisols (%) 60.3 55.67 67.3 

Cumulic Anthrosols (%) 15.6 16.7 15.5 

Humic Acrisols (%) 12.2 12.99 9.8 

 

Figure 6. Boxplots of R2, NSE and PBIAS. In each boxplot, the whisker ranges from the minimum to 

maximum, while the box ranges from the first quartile to the third quartile. The symbol cross 

represents the mean value and the symbol circle dot represents the outlier. 

4. Conclusions 

The SWAT model has been extensively used for long-term simulations with daily, monthly or 

yearly time-scales. This paper developed the sub-daily SWAT model for Qilijie basin. We evaluated 

the sub-daily SWAT model in flood simulation and compared it with the XAJ model.  

Both the XAJ and SWAT models behaved satisfactorily in the simulation of event-based floods 

and had a similar qualified ratio. The XAJ model performed better than the sub-daily SWAT model 

in terms of RRE, but sub-daily SWAT had a better performance in reproducing peak flow and was 

good at capturing the occurrence time of peak flow. The sub-daily SWAT model had an improvement 

in simulating high and medium flows and had showed its capacity of simulating floods with multiple 

peaks accurately. Hence, the SWAT model has great potential for flood simulation. 

Figure 6. Boxplots of R2, NSE and PBIAS. In each boxplot, the whisker ranges from the minimum to
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4. Conclusions

The SWAT model has been extensively used for long-term simulations with daily, monthly or
yearly time-scales. This paper developed the sub-daily SWAT model for Qilijie basin. We evaluated
the sub-daily SWAT model in flood simulation and compared it with the XAJ model.

Both the XAJ and SWAT models behaved satisfactorily in the simulation of event-based floods
and had a similar qualified ratio. The XAJ model performed better than the sub-daily SWAT model in
terms of RRE, but sub-daily SWAT had a better performance in reproducing peak flow and was good
at capturing the occurrence time of peak flow. The sub-daily SWAT model had an improvement in
simulating high and medium flows and had showed its capacity of simulating floods with multiple
peaks accurately. Hence, the SWAT model has great potential for flood simulation.

The effect of spatial scale on the SWAT model was also evaluated in this research. The results
showed that the SWAT model had a good applicability at different spatial scales and could deduce



Water 2018, 10, 1263 15 of 17

the hydrological characteristics of a smaller watershed using parameters from a larger basin. This is a
valuable reference to research the effect of spatial scale on hydrological models.

However, the performance of the SWAT model in flood simulation was affected by precipitation
data. Hourly time-scale precipitation data were only available during flood seasons in China and
we estimated hourly precipitation during non-flood periods by assuming a uniform distribution in
daily precipitation. Hence, the SWAT model simulated badly in the beginning of floods and it would
perform better with accurate precipitation input. The SWAT model also performed poorly in estimating
low flows and this might be attributed to the daily calculation of base flow. The feasibility of using the
sub-daily SWAT model for flood simulation in large regulated regions remains to be further studied.
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