
Supplementary Material 

In this document, we provide additional information related to the different steps of our model 

framework. First, we present the data used to construct the Bayesian Network (BN), the estimates of the 

parametric distribution fits and assess the serial dependence within the selected variables. Then, we 

describe the hydraulic model developed for this study and validate its performance. Finally, we provide 

additional information on the BN construction and compare alternative copulas through diagnostic 

tools. The validation of the BN structure is also presented.  

S1. Data Collection 

Hourly water levels and astronomical tide projections were downloaded from the National 

Oceanic and Atmospheric Administration (NOAA) website (https://tidesandcurrents.noaa.gov) for 

station IDs 8770733 (station HLL), 8771450 (station HGP), and 877077 (station HM). Mean daily 

discharges were downloaded from the U.S. Geological Survey 

website (https://waterdata.usgs.gov/nwis/) for station IDs 08074000 (station QBB), 08074500 (station 

QW), 08075000 (station QB), 08075500 (station QS), 08075730 (station QV), 08075770 (station QH), 

08076700 (station QG); and water levels for station IDs 08074000 (station HBB) and 08074710 (station 

HTB). 

S1.1. Mean Daily Discharge 

Figure S1 shows the complete record of the mean daily discharge at the stations of interest. In 

stations with records starting from the 1940s, a steady increase in discharge is observed. Land use 

changes, channelization and flow regulation have been documented to cause trends and abrupt changes 

in discharge time series [1,2]. We localize abrupt changes in the signal by minimizing the sum of the 

residual squared error from each local mean, as implemented in MATLAB (function findchangepts()). 

Most of these abrupt changes fall between 1970 and 1980 as indicated by the red lines in Figure S1, 

consistent with documented changes in the catchment [3,4]. In order to capture the most recent 

characteristic hydrologic response of the catchment and provide enough data overlap between the time 

series, we select observations starting from January 1, 1980 onwards to construct the model.  



 

Figure S1. Available records of mean daily discharge for the stations of interests. The most important 

change in the mean is shown in red. 

S1.2. Storm Surge 

The maximum hourly non-tidal residuals in a day is set to be the daily non-tidal residual which we 

refer to as the storm surge for simplicity. In order to correct for mean sea level rise, the linear trend in 

the storm surge data at Galveston Pier 21 is removed and adjusted for the last data point in the times 

series (September 15, 2016). The average rise in mean sea level was calculated to be 6.35 mm/year 

between 1908 and 2016, within the range of the value reported by NOAA of 6.39 mm/year ± 0.28 

mm/year (95% confidence interval) [5]. 

In order to translate the storm surge height from Galveston Pier 21, HGP, to the Lynchburg 

Landing site, HLL, the following linear regression model was used: 

HLL = 1.0621 ×  HGP − 9.3593 ×  10−4 (S.1) 

The linear regression was fitted based on the joint observations (R2 = 0.77) of the simultaneous 

maximum hourly residuals in a day, referred as storm surge above, the equivalent of 11 years.  

S2. Marginal Distributions Fit  

S2.1. Mean Daily Discharge 

We selected the threshold values presented in Table S1 partly based on trial and error but 

complemented by the stability criterion of the shape and scale parameter for various thresholds,  

varying from μ + 1σ  to μ + 7.5σ  where μ  is the mean of discharge distribution and σ  its standard 

deviation. 

Table S1. GEV distribution parameters for the discharge distributions. 



Variable 

Discharge 

Threshold 

value 

(m³.s-1) 

Nb. of observations 

above threshold 

Distribution Parameters 

Shape Scale Location 

QBB 124 46 0.14 22.23 0.0011 

QW 77 70 0.49 3.16 0.0028 

QB 107 107 0.35 8.40 0.0046 

QV 10 82 0.46 0.49 0.0010 

QH 15 87 0.42 0.87 0.0035 

QG 307 17 0.57 9.13 132.80 

QS 56 90 0.40 3.52 0.0011 

S2.2. Storm Surge 

Table S2. Gaussian mixture distribution parameters obtained for the storm surge distributions. 

Variable 

Surge 

First component (c=1) Second component (c=2) 
 𝑤1  𝜇1 (m) 𝜎1 (m)  𝑤2  𝜇2 (m) 𝜎2 (m) 

HGP 0.9988 -0.1222 0.2079 0.0012 0.9071 0.5918 

HLL 0.9951 0.1058 0.2255 0.0049 0.5865 0.6423 

 

S3. Autocorrelation function (ACF) 

The autocorrelation function is a diagnosis test often applied to detect serial correlation within time 

series [6,7]. The results are presented in Figure S2. In all cases, the autocorrelation drops very rapidly, 

indicating a short-term dependence only. However, for station QBB and the storm surge variable HGP, 

the autocorrelation remains higher than the 95% upper confidence bound, suggesting the presence of 

weak serial correlation. For the storm surge HGP, the presence of this correlation is probably an artefact 

of our method to extract the daily storm surge which relies on astronomical tide level predictions, 

known to have some cyclical bias. For station QBB, we note that the flows are influenced by the presence 

of a dam upstream in the river reach, which results in much longer and steady discharge hydrographs 

after a storm has passed.  

We note that this choice will only affect the characterization of extreme events and not joint daily 

events, which by definition rely on the joint daily multivariate distribution. Performing an extreme 

value analysis based on data which is not independent and identically distributed will affect the 

quantification of the exceedance probability and thus the flood hazard [6,7]. For example, incorrectly 

assuming daily observations from very long flood waves to be independent would result in an 

overestimation of the flood stage for a given return period.  



 

Figure S2. Autocorrelation function (ACF) at the stations of interests. The name of the subplot indicated 

for which node the data was used in the Bayesian Network model. The 95% confidence bounds are 

indicated with dashed black lines. 

S4. 1-D Hydraulic Model Performance 

S4.1. Description of the 1-D Steady-State Hydraulic Model 

Water surface profiles are calculated based on the assumption of steady gradually varied flow. We 

follow a similar approach described in the HEC-RAS Hydraulic Reference Manual [8] and commonly 

used for river hydraulics modeling of natural or constructed channels [9,10] but simplified as explained 

next. The water surface elevation upstream from section 𝑖 is calculated based on the assumption of 

conservation of energy: 

𝑍𝑖+1 + 𝑌𝑖+1 + 
𝛼𝑖+1𝑉𝑖+1

2

2𝑔
=  𝑍𝑖 + 𝑌𝑖 + 

𝛼𝑖𝑉𝑖
2

2𝑔
+ ℎ(𝑖)−(𝑖+1) (S.2) 

where 𝑍 is the elevation of the channel invert (thalweg), 𝑌 is the water depth, 𝑉 is the average velocity 

(total discharge/total flow area), 𝛼  is the velocity weighting coefficient (energy coefficient), 𝑔  is the 

gravitational acceleration, ℎ are the energy losses from section 𝑖 to 𝑖 + 1.  

We simplify the energy losses by neglecting head losses from structures, contractions and 

expansions, and considering only the head loss due to the boundary resistance (friction slope). The 

velocity weighting coefficient is calculated as a weighted average of the conveyance between the left 

overbank, main channel, and right overbank. 

Transverse cross-sections were extracted from the current riverine models, freely downloadable at 

http://www.m3models.org/, with an average of approximately one cross-section per kilometer. More cross-

http://www.m3models.org/


sections were extracted upstream – in areas where the bathymetry is rapidly changing – than 

downstream along the Houston Ship Channel. The HEC-RAS models have been developed by FEMA 

and the Harris County Flood Control District (HCFCD), in charge of developing the flood insurance 

rate map for the area, or flood hazard maps representing the 1% and 0.2% percent annual chance of 

inundation from riverine flooding [11].  

S4.2. Comparison with HEC-RAS Profiles 

In order to assess the impact of the assumptions in the development of the hydraulic model, we 

compare the water levels obtained between the developed hydraulic model here and the results from 

the HEC-RAS model. We force both models with similar boundary conditions (both discharges and 

downstream water level) as calculated by FEMA and HCFCD.  

Figure S3 shows the overall fit between both models for the different return period tested. The 

detailed longitudinal water profiles are shown in Figure S4. Overall, the hydraulic model performs well 

(R2 > 0.98). Most differences are observed between -30 and -35 km, an area with a rapid bathymetry 

change and frequent obstructions from bridge piers as shown in Figure S4. 

 

Figure S3. Scatter plot of the water levels obtained from the simplified hydraulic model developed in 

this study versus the results from HEC-RAS for the 10-year (blue), 50-year (red), 100-year (green), 500-

year (black) return period as derived by FEMA and HCFCD.  



 

Figure S4. Comparison of the simplified hydraulic model developed in this study with the results from 

HEC-RAS for riverine boundary conditions for the 10-year (a), 50-year (b), 100-year (c), 500-year (d) 

return period as derived by FEMA and HCFCD. 

a. 

b. 

c. 

d. 



S4.3. Comparison with Tropical Cyclones Records 

Validation from historical events is more challenging due to the lack of data, differences in datum 

and differences in temporal resolution between stations. For the same location, different water surface 

elevations were recorded with a difference of 2 meters (not reported here). This is mainly due to the 

different time step considered: instantaneous water level versus daily mean water level. All the markers 

shown in Figure S5 are therefore based on daily mean data except for location -34.6 km which reported 

quasi-instantaneous values. An extra shift could also be due to the different datum used but this error 

is expected to be minimal (i.e. less than 10 cm). Given all the aforementioned uncertainties, we conclude 

that the hydraulic model shows acceptable results.  

 

Figure S5. Comparison of the maximum water levels observed for Tropical Storm Allison and Frances 

with the results from the 1-D hydraulic model. 

S5. Bayesian Network Construction and Validation 

In this section, we provide additional information about the construction of the Bayesian Network 

(BN). We then introduce the two diagnostic tools mentioned in section 2.1 of this paper along with their 

results for selected variables of the BN. Finally, we present the validation of the selected graphical 

structure.  

S5.1. BN Construction 

In order to maximize the joint temporal overlap between all discharges, stations QG and QBB were 

inserted as continuous user-defined random variables . They contain limited discharge data during the 

selected period (January 1, 1980 to September 15, 2016), with a temporal coverage of 9.7% and 21%, 

respectively. The conditional rank correlations with the other stations were quantified based on the 

temporal overlap with the other stations. The record of station QS stops after September 30, 1995. In 

order to use the station as a variable within the model, we reconstructed the missing data using a 

Gumbel copula (equation S.5) conditionalized on station QB since both stations are well correlated 

(Spearman rank correlation 𝑟 = 0.69). 

S5.2. Diagnostic Tools for Copula Fit 

The Gaussian copula represents the underlying dependence structure for the bivariate joint 

distribution between the nodes of the BN. While this selection provides advantages for the inference of 

complex network with a large number of variables [12], it may not properly characterize the dependence 

observed in the data. More particularly, the Gaussian copula does not exhibit tail dependence, a 

statistical property of importance for the quantification of risk [13,14], yet extremely challenging to 

detect [15]. The upper tail dependence coefficient 𝜆𝑈 for random variables 𝑋𝑖 and 𝑋𝑗 is defined as [16]: 



𝜆𝑈  =  lim
u →1

𝑃 (𝑋𝑖 > 𝐹𝑋𝑖

−1(u)|𝑋𝑗 > 𝐹𝑋𝑗

−1(u)) =  lim
u →1

𝑃(𝑈 > u|𝑉 > u) (S.3) 

As expressed in equation S.3, the presence of upper tail dependence (i.e., 𝜆𝑈 exists and is positive) 

indicates a higher chance than normal to observe both extreme realizations of variable 𝑈 and 𝑉 for u 

arbitrarily close to 1. Similarly, a lower tail dependence coefficient is defined as following equation S.3 

but for the lower quadrant of the joint distribution. To cover a wide range of dependencies, we compare 

the Gaussian copula, which exhibits no tail dependence, with the Gumbel copula and the Clayton 

copula, which exhibit upper tail and lower tail dependence, respectively. As a reminder, the Gaussian 

copula, presented in section 2.1, is as follows: 

Cρ(u, v) =  Φρ(Φ−1(u), Φ−1(v)),      (u,v) ∈  [0,1]2 (S.4) 

where Φ−1  is the inverse of the univariate standard normal distribution, and Φρ  is the bivariate 

Gaussian cumulative distribution function with the Pearson’s product moment correlation 𝜌 . The 

Gumbel copula is parametrized by 𝛼, is as follows: 

Cα=exp {-[(- ln u)α+(- ln v)α]
1

α⁄ } , 𝛼 ≥ 1 (S.5) 

The Clayton copula, parametrized by 𝛿, is as follows: 

Cδ=(u−𝛿 + v−𝛿 − 1)
−𝛿

,        𝛿 ∈  [−1, ∞] (S.6) 

The first diagnostic tool applied is to compute the Cramér-von-Mises (𝐶𝑀𝑛 ) statistics, the sum of 

the squared differences between the empirical copula and the selected parametric copula (here, 

Gaussian, Gumbel and Clayton) for a sample of length 𝑛 [17].  

𝐶𝑀𝑛(𝒖) =  ∑ {𝐶�̂�𝑛
(𝒖) − 𝐵(𝒖)}

2

|𝑢|
, 𝒖 ∈  [0,1]2 (S.7) 

where 𝐵(𝒖) =  ∑ 1(𝑈𝑖 ≤ 𝒖) is the empirical copula and 𝐶�̂�𝑛
(𝒖) is a parametric copula with parameter �̂�𝑛 

estimated from the samples. From equation S.7, it follows that the lower the 𝐶𝑀𝑛 statistic value, the 

closer the parametric copula is to the empirical copula, and a perfect fit resulting in a value of 0. 

The second tool is based on semi-correlations, an approach suggested by Joe [16]. In this test, the 

original pairs of variables (𝑋, 𝑌) are transformed to standard normal variables (𝑍𝑖 , 𝑍𝑗) and split into four 

categories corresponding to the four quadrants in standard normal space. For each of these quadrant, 

the Pearson’s product moment correlation coefficient is calculated as follows: 

𝜌𝑁𝐸 =  𝜌(𝑍𝑖 , 𝑍𝑗|𝑍𝑖 > 0, 𝑍𝑗 > 0) (S.8) 

 

𝜌𝑆𝑊 =  𝜌(𝑍𝑖 , 𝑍𝑗|𝑍𝑖 < 0, 𝑍𝑗 < 0) 
(S.9) 

 

𝜌𝑁𝑊 =  𝜌(𝑍𝑖 , 𝑍𝑗|𝑍𝑖 < 0, 𝑍𝑗 > 0) 
(S.10) 

 

𝜌𝑆𝐸 =  𝜌(𝑍𝑖 , 𝑍𝑗|𝑍𝑖 > 0, 𝑍𝑗 < 0) 

 

(S.11) 

In general, for positively correlated variables, semi-correlation values in the upper right (NE) or 

lower left (SW) quadrants higher than the overall correlation 𝜌 are a preliminary indication that the data 

deviates from the Gaussian copula model. The same applies for negatively correlated variables, except 

that the comparison is with the upper left (NW) and lower right quadrant (SE).  

The results for both diagnostic tools are shown in Table S3. The analysis of the results points 

towards a difference in dependence behavior between the pairs of (discharge – discharge) variables and 

(storm surge – discharge) variables, which is also visually diagnosed in Figure S6 where two 

representative cases are shown. A similar behavior is observed for the rest of the pairs of variables. Note 

that we excluded from the analysis stations QG and QBB due to the limited amount of data but observed 

a similar dependence behavior as what is presented here.  

We performed a formal 𝐶𝑀𝑛 goodness-of-fit test [18] for the two representative cases considered in 

Figure S6. We observed similar result on the other pairs of variables. We randomized the data by adding 

noise to the observations since the presence of ties in the data can affect the performance of the statistical 

test [19]. The analysis was performed with the gofCopula() function from the R package. All p-values 

were found to be lower than 0.001 (by bootstrapping 1000 times) which indicate that all 3 tested models 

could be rejected for representing the bivariate data. This highlights the challenge of selecting an 



appropriate copula model to capture the complexity of the observed joint behavior and the need for 

further research. A more detailed assessments considering more copula models might provide some 

answer to the latter. For now, the comparison of the 𝐶𝑀𝑛statistic values presented in Table S3, provide 

a preliminary  assessment to guide future research, following a similar approach as in Wang and Wells 

[20].  

The results presented here point towards the fact that the dependence structure deviates from the 

Gaussian copula used in the BN model. The comparison with the return period of water surface 

elevation with observed annual maxima (Figure 5) shows a more complex behavior, indicating that 

other sources of uncertainty affect the flood hazard. Therefore, we acknowledge this limitation and 

further assess the impact of the Gaussian dependence structure by comparing it to the case of complete 

dependence (see section 3). Future work should refine this approach by considering a more extensive 

statistical testing on more copula models, as well as document their effect on flood risk by using models 

such as Vine copula constructions as applied for example  in Bevacqua et al. [14]. 

  



Table S3. Semi-correlation and Cramér-von-Mises (𝐶𝑀𝑛 ) statistic for all variables used in the BN except 

for station QG, QS and QBB. Lowest 𝐶𝑀𝑛 values relevant semi-correlations are bolded. Cl, Ga and Gu 

refers to the Clayton, Gaussian and Gumbel copula, respectively. Bolded pairs of variables are further 

analyzed in Figure S6. 

Variable name Variable name 𝜌 𝜌𝑁𝑊 𝜌𝑁𝐸 𝜌𝑆𝐸 𝜌𝑆𝑊 
𝐶𝑀𝑛 
(Cl) 

𝐶𝑀𝑛 
(Ga) 

𝐶𝑀𝑛 
(Gu) 

Surge HGP Discharge QB 0.33 0.15 0.32 0.06 0.05 0.23 0.03 0.01 

Surge HGP Discharge QV 0.32 0.16 0.33 0.06 0.07 0.23 0.06 0.02 

Surge HGP Discharge QW 0.33 0.16 0.32 0.01 0.03 0.24 0.04 0.02 

Surge HGP Discharge QH 0.32 0.09 0.32 0.00 0.03 0.26 0.04 0.01 

Discharge QB Discharge QV 0.64 -0.01 0.75 0.08 0.22 0.86 0.16 0.07 

Discharge QB Discharge QW 0.80 -0.06 0.84 0.03 0.41 0.89 0.08 0.03 

Discharge QB Discharge QH 0.71 0.12 0.78 -0.08 0.19 0.96 0.10 0.03 

Discharge QV Discharge QW 0.62 0.00 0.71 0.04 0.15 0.85 0.16 0.07 

Discharge QV Discharge QH 0.61 0.02 0.73 0.08 0.12 0.83 0.17 0.08 

Discharge QW Discharge QH 0.72 0.02 0.81 -0.06 0.27 1.00 0.13 0.04 

 

 

 

  
(a) (b) 

Figure S6. Selected examples of semi-correlation for discharge – surge (a) and discharge - discharge (b) pair 

variables. 

  



S5.3. Statistical Validation of the BN Network 

The statistical validation of the selected graphical structure is tested following the method 

developed in Hanea et al. [12] which uses the determinant of the rank correlation matrix between all 

variable as an overall measure for the multivariate dependence. For the normal copula, there exists the 

following relationship between the rank correlation 𝑟 and the Pearson product moment correlation 𝜌 

for the pair of variables (𝑋𝑖 , 𝑋𝑗): 

𝑟𝑋𝑖𝑋𝑗
=  

6

𝜋
 arcsin (

𝜌(𝑋𝑖 , 𝑋𝑗)

2
) (S.12) 

We compute and compare the determinant of the empirical rank correlation matrix (DER) with the 

one of the empirical normal rank correlation (DNR). The DER is obtained by transforming the empirical 

marginal distribution to uniforms while the DNR transforms marginal distribution to standard normal 

distributions. If the DER is within the 90% central confidence band of the DNR, the joint normal copula 

is a reasonable assumption. Similarly, the same procedure is repeated to compare the DNR with the 

determinant obtained from the BN using normal copulas (DBN).  

Based on this test, the DER remained within the 90% confidence bound of the DNR for up to 600 

samples drawn and the DNR was within the 90% confidence bound of the DBN for a sample size of 

about 1000 samples. It is expected here since Hanea et al. [12] discusses that this test is particularly 

severe for large datasets and the BN contains more than 12,000 samples for each variable. These results 

are in line with other similar studies (see for example Paprotny and Morales-Nápoles [21]) and therefore 

does not preclude the rejection of the selected BN structure. However, as discussed in the previous 

section, better characterizing the dependence structure, especially for the pairs of variable discharge-

discharge, would improve the multivariate dependence representation. 
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