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Abstract: Sediment runoff from dense highland field areas greatly affects the quality of downstream
lakes and drinking water sources. In this study, multiple linear regression (MLR) models were built
to predict diffuse pollutant discharge using the environmental parameters of a basin. Explanatory
variables that influence the sediment and pollutant discharge can be identified with the model, and
such research could play an important role in limiting sediment erosion in the dense highland field
area. Pollutant load per event, event mean concentration (EMC), and pollutant load per area were
estimated from stormwater survey data from the Lake Soyang basin. During the wet season, heavy
rains cause large amounts of suspended sediment and the occurrence of such rains is increasing due
to climate change. The explanatory variables used in the MLR models are the percentage of fields,
subbasin area, and mean slope of subbasin as topographic parameters, and the number of preceding
dry days, rainfall intensity, rainfall depth, and rainfall duration as rainfall parameters. In the MLR
modeling process, four types of regression equations with and without log transformation of the
explanatory and response variables were examined to identify the best performing regression model.
The performance of the MLR models was evaluated using the coefficient of determination (R2),
root mean square error (RMSE), coefficient of variation of the root mean square error (CV(RMSE)),
the ratio of the RMSE to the standard deviation of the observed data (RSR) and the Nash–Sutcliffe
model efficiency (NSE). The performance of the MLR models of pollutant load except total nitrogen
(TN) was good under the condition of RSR, and satisfactory for the NSE and R2. In the EMC and
load/area models, the performance for suspended solids (SS) and total phosphorus (TP) was good
for the RSR, and satisfactory for the NSE and R2. The standardized coefficients for the models were
analyzed to identify the influential explanatory variables in the models. In the final performance
evaluation, the results of jackknife validation indicate that the MLR models are robust.

Keywords: highland agricultural field area; diffuse pollutant discharge; multiple regression model;
climate change; jackknife validation

1. Introduction

In Lake Soyang basin of South Korea, large amounts of sediment are discharged from highland
agricultural field regions in the wet season. To develop environmental preservation measures that
protect water resources from the turbid water problem and diffuse pollution, prediction models are
necessary to estimate the amount of pollutants discharged from subbasins. In this study, a multiple linear
regression (MLR) model is established to predict the pollutant runoff discharge using environmental
parameters, such as land use, rainfall, and topography.
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In South Korea, rainfall events of 200 mm or more occurred only once annually, on average, until
the end of the 1970s, but increased to a frequency of two per year in the 1980s and thereafter occurred
five times in both 1984 and 1998. And, annual precipitation increased by 19% in the past decade,
compared to the first half of the 20th century [1]. Conditions in Lake Soyang, located in the upper
reaches of the Han River, greatly affect the water quality of the water supply of the capital region of
South Korea. Discharged sediments from the highland field area flow into Lake Soyang in the wet
season. Consequently, the turbidity of the lake increases to high levels and persists for a long time.
In July 2006, a heavy rain event occurred in the Lake Soyang watershed. Overall, 670 mm fell over
8 days, with a maximum intensity of 66 mm per hour. The suspended sediment stayed in Lake Soyang
for an extended period of time because of stratification; thus, the turbidity of the lake remained high
and was measured at over 20 nephelometric turbidity units (NTU) for 168 days [2,3].

Regression models have been developed to estimate the sediment discharge using the subbasin
environmental parameters in many areas. Valtanen et al. [4] applied stepwise multiple linear
regression (SMLR) analysis to identify the variables that best explained the variation in event mass
loads (EMLs) in each study catchment during cold and warm periods. Runoff duration, peak flow,
antecedent dry period, mean runoff intensity, total suspended solids (TSS), TN, TP and total organic
carbon (TOC) were used as explanatory variables. Another SMLR analysis was also carried out to
assess whether catchment variables explain the EML and EMC values during the cold and warm
periods [4]. The catchment variables included total impervious area and land use type. All data
were log10-transformed to obtain approximately normal distributions. Bian et al. [5] proposed
a procedure combining different statistical methods and a hydrological model to quantify the annual
runoff response to spatial and temporal variations in impervious surface areas in an urbanized basin.
A hydrological model relating annual runoff depth to precipitation, potential evapotranspiration
and spatial metrics of the impervious area for baseline periods and periods of change was built
using stepwise multiple regression analysis. Roman et al. [6] developed multivariate regression
models to enable the prediction of mean annual suspended sediment discharge on the basis of
basin characteristics, which is useful for many ungaged river locations in the eastern United States.
The models are based on long-term mean sediment discharge estimates and explanatory variables,
such as drainage area, mean elevation, and urban area, obtained from a combined dataset of 1201 US
Geological Survey (USGS) stations. Tuset et al. [7] analyzed rainfall, runoff and sediment transport
relationships in a meso-scale Mediterranean mountain catchment. The relationships among rainfall,
runoff and suspended sediment transport were analyzed with Pearson correlations and multivariate
regression analysis. The multivariate regression method was used to analyze the relationship between
the independent variables (pre-event conditions, rainfall and runoff) and suspended sediment transport
for all flood events. Seasonal relationships between total surface runoff and total sediment transport
indicate that the sediment transport magnitude shows a clear seasonality influenced by rainfall
intensity and sediment availability.

Buendia et al. [8] attempted to use empirical relationships to assess the relationship between
sediment yield and basin scale and to provide an update on the main drivers controlling sediment yield
in these particular river systems. Quantile regression analysis was used to assess the correlation between
basin area and sediment yield, while additional basin-scale descriptors were related to sediment yield by
means of multiple regression analysis. The performance of the model was tested through the jackknife
validation method [8–14]. Paule-Mercado et al. [15] used MLRs to identify the significant parameters
affecting fecal-indicator bacteria concentrations and to predict the response of bacteria concentrations
to changes in land use and land cover. Stormwater temperature, 5-day biochemical oxygen demand
(BOD5), turbidity, TSS, and antecedent dry days were the most influential independent variables for
the bacteria concentrations at the monitoring sites. Several studies have utilized linear regression
techniques to predict bacteria concentrations in rivers [16–19]. Furthermore, regression models have
been widely used to predict and characterize rainfall and runoff characteristics and to determine the
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relationship between these two variables [20–26]. Process-based erosion prediction models have also
been established to predict the intensity of soil erosion in a particular area [27–30].

In this study area, two types of environmental parameters affect the stormwater sediment runoff:
meteorological factors, such as rainfall depth, rainfall intensity, rainfall duration; and number of
preceding dry days and topographic factors, such as percentage of upland field area, subbasin
area, and subbasin slope. In this study, the Pearson correlation test was employed to identify the
linear relationship between the explanatory environmental parameters and the observed stormwater
discharge. SMLR analysis was applied to identify the best performing regression model. Four types of
regression equations were examined to determine the best MLR model. Explanatory and dependent
variables with and without log e-transformation were tested. Then, the MLR models were validated
via a jackknife validation procedure.

2. Materials and Methods

2.1. Study Area and Field Data

Lake Soyang formed following the construction of the Soyang River Dam. The dam was built
to provide irrigation water, flood control and hydroelectric power. The dam has a height of 123 m,
a length of 530 m, and a total storage capacity of 2900 million m3. The basin area is 2969.3 km2;
the forest occupies 86.4%; and the dry field, paddy field and residential areas occupy 4.4%, 1.58%, and
1.60% of the basin, respectively.

In Lake Soyang basin (Figure 1), sediment discharge occurred mainly from the upper part of the
basin. Land use in the tributary watersheds in the dense highland upland field area is shown in Table 1.
In the case of Mandaecheon, the percentage of agricultural area is 27.7%, and upland fields represent
75% of the agricultural land. The Jungjohangcheon, Johangcheon and Jauncheon subbasins contain
very small paddy field areas. In the highland area, to decrease the damage caused by the continuous
cultivation of economic crops, manage pests, maximize crop productivity and improve soil fertility,
30–50 cm of soil dressing has been applied to the top layer of soil. This soil dressing is a significant
contributor to the sediment discharge from the highland fields.

During rainfall, water sampling and flow measurements were performed at the same time. Field
surveys were conducted to perform flow measurements at most of the survey points. For the remaining
points, such as Inbukcheon, Bukcheon, and Soyang River, real-time water level and flow measurements
were obtained from the Ministry of Land Infrastructure and Transport and the Korea Water Resources
Corporation. The sampled water from the measurement sites was delivered to the laboratory as quickly
as possible, and BOD, chemical oxygen demand (COD), SS, TP, TN, and TOC were analyzed using
standard methods [2].

Table 1. Land use of the tributary watersheds in the dense highland fields area.

Stream
Subbasin
Area (ha)

Land Use

Forest
(ha)

Upland
Field (ha)

Paddy
Field (ha) Others (ha) Proportion of

Agricultural Land (%)

Jungjohangcheon 1022 860 150 0 12 14.6
Johangcheon 4161 3556 489 0.3 117 12.0

Jauncheon 13,641 11,703 1445 0.4 493 11.0
Mandaecheon 6079 1261 1261 420 3137 27.7

Gaahcheon 4732 1104 578 298 2752 18.5

In the statistical analysis of this study, the results of stormwater runoff surveys from 2013 to 2016
at nine points in the Jaun, Mandae and Gaha area [31] were used. Of the 79 rainfall events, nine data
were too high or too low for rainfall amount due to runoff load measurements and calculation errors;
those data were excluded. The discharge load survey was performed from the beginning of the rainfall
to the point where it returned to the normal water level after the end of the rainfall. Runoff discharge
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data of 70 storm events were used to build the MLR models to predict the pollutant load, EMC and
pollutant load per area. The range of the rainfall depth used in the MLR model construction was from
10 mm to 215 mm.
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Figure 1. Soyang River basin and stormwater survey sites.

2.2. Data Analysis

Using water quality and runoff flow data from 70 rainfall events in the Lake Soyang basin,
pollutant load per event, EMC, and pollutant load per area were estimated for each rainfall event.
The total pollutant load during a rainfall event was calculated using Equation (1). The EMC was
defined as the pollutant mass contained in the runoff event divided by the total flow volume of the
event. The total pollutant load was divided by the subbasin area to estimate the pollutant load per area.

Total pollution load/rain f all event =
n

∑
i=1

CiQi∆ti (1)

EMC =
∑ QiCi∆t

∑ Qi∆t
(2)

where n represents the number of total measurements, Qi is the runoff flow at n number of time steps
(∆t) and Ci is the concentration of a water quality measurement.

The distribution of the nonpoint pollutant discharge for the 70 rainfall events from 2013 to 2016 is
presented in Table 2. Figure 2 shows box plots of pollutant load per event, EMC, and pollutant load
per area at the survey points in the Lake Soyang basin. The maximum, minimum and median values
of the suspended sediment (SS) load/event were 46,125,100 kg, 613 kg and 263,083 kg, respectively.
The maximum, minimum and median values of the TP load/event were 32,406 kg, 1.83 kg and 480 kg,
respectively. As shown in Figure 2, all the mean values of the pollutant loads are larger than the
values of the third quartile, and the distributions are biased toward the high values. The maximum,
minimum and median values of the SS EMC were 1437 mg/L, 3.8 mg/L and 157 mg/L, respectively.
The maximum, minimum and median values of the TP EMC were 1.96 mg/L, 0.011 mg/L and
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0.27 mg/L, respectively. All the mean values of the EMCs lie between the 50th percentile and the 75th
percentile, and the distributions are relatively uniform.

The explanatory variables that are considered to explain the nonpoint pollutant discharge in the
MLR models are the percentage of fields (% field), subbasin area (SA), and mean slope of subbasin
(slope) as topographic parameters, and the number of preceding dry days (Ndry), rainfall intensity
(Rint), rainfall depth (Rain), and rainfall duration (Dur) as rainfall parameters (Table 3).
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Figure 2. Box plots of nonpoint pollutant discharge in the Lake Soyang basin. The top (a) and bottom
(c) of each box represent the third and first quartiles, the solid line inside the box is the second quartile
(b), and the dotted line inside the box is the mean. One whisker stretches from the third quartile to the
maximum, and the other whisker stretches from the first quartile to the minimum.
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Table 2. Distribution of the nonpoint pollutant discharge for the 70 rainfall events in the Lake
Soyang basin.

Pollutant Min. 25th
Percentile

50th
Percentile

75th
Percentile Max. Mean

SS load (kg) 613 44,839 263,083 1,802,409 46,125,100 1,843,969
COD load (kg) 186 4410 13,192 44,608 1,686,594 83,565
BOD load (kg) 31 689 3477 15,982 456,773 20,233
TN load (kg) 187 1852 6563 20,745 541,563 28,277
TP load (kg) 1.8 111 480 1685 32,406 2010

SS (EMC) (mg/L) 3.8 75.6 157 338 1437 266
COD (EMC) (mg/L) 1.5 5.13 7.21 12.2 43.6 9.16
BOD (EMC) (mg/L) 0.20 1.1 1.85 3.47 9.0 2.49
TN (EMC) (mg/L) 0.67 1.89 3.48 7.63 11.4 4.75
TP (EMC) (mg/L) 0.011 0.13 0.27 0.54 1.96 0.37

SS (load/area) (kg/ha) 0.129 5.81 22.6 95.37 2118 130
COD (load/area) (kg/ha) 0.0139 0.57 1.38 3.54 44.0 3.12
BOD (load/area) (kg/ha) 0.0078 0.10 0.34 1.18 9.5 0.87
TN (load/area) (kg/ha) 0.0164 0.21 0.69 1.93 20.4 1.54
TP (load/area) (kg/ha) 0.00038 0.012 0.047 0.12 5.19 0.16

Table 3. Explanatory variables considered in the regression models to predict pollutant discharge.

Variables Description Units

% field Percentage of fields %
SA Subbasin area km2

Ndry Number of preceding dry days day
Rint Rainfall intensity mm/h

Slope Mean slope of the subbasin ◦

Rain Rainfall depth mm
Dur Rainfall duration h

A Pearson correlation coefficient matrix was used to identify the correlations among the
surveyed pollutant discharge estimates and the explanatory variables. The correlations among natural
log-transformed variables were also tested using Pearson correlation.

2.3. MLR Model Building

MLR modeling was performed to predict the pollutant discharge from the subbasins in the Soyang
River. The models were built to explain the pollutant discharge using the subbasin topographic and
rainfall data. In the MLR modeling, four types of regression equations are examined:

Type1 : Y = a0 + ∑n
i=1 aiXi (3)

Type2 : Ln(Y) = a0 + ∑n
i=1 aiXi (4)

Type3 : Y = ea0 Xa1
1 Xa2

2 · · · Xan
n or Ln(Y) = a0 + ∑n

i=1(aiLn(Xi)) (5)

Type4 : Y = ea0 Xa1
1 Xa2

2 · · · Xam
m eam+1Xm+1 · · · eanXn or Ln(Y) = a0+∑m

i=1(aiLn(Xi)) + ∑n
i=m+1(aiXi) (6)

where a0 is the regression constant and ai is the regression coefficient of the explanatory variable Xi.
In type 1, the original variables are used to build the MLR model. In type 2, dependent variables,
such as pollutant load, EMC and load/area, are log e-transformed to reduce skewness. In type 3,
all the explanatory and dependent variables are log e-transformed. In type 4, the dependent variables
and some of the explanatory variables are log e-transformed. The fitness of the four regression
equations was evaluated by the coefficients of determination of the MLR models. The MLR models
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were examined in terms of their ability to predict the runoff pollutant discharge for each water quality
variable (SS, COD, BOD, TN, and TP).

Collinearity may introduce serious stability problems, such as high mean square errors, in a
regression model. Therefore, the collinearity of the predictor variables in the created MLR model
were tested by calculating the variance inflation factor (VIF) [32]. Collinearity is present when the
largest VIF is greater than 10 or the average VIF value is substantially greater than 1 [32,33]. VIFs were
calculated to analyze the multicollinearity in this MLR model.

The MLR model performance was evaluated using the R2, RMSE, CV(RMSE), RSR and the NSE.

R2 =

[
∑n

i=1
(

Pi − P
)(

Oi − O
)]2

∑n
i=1 (Pi − P)2

∑n
i=1
(
Oi − O

)2 (7)

RMSE = [
1
N

n

∑
i=1

(Pi − Oi)
2]

1/2

(8)

CV(RMSE ) =
[∑n

j=1 (Pij − Oij)
2/n]

1/2

(∑n
i=1 Oij/n)

(9)

RSR =

[√
∑n

i=1 (Oi − Pi)
2
]

[√
∑n

i=1 (Oi − O)
2
] (10)

NSE = 1 − ∑n
i=1 (Oi − Pi)

2

∑n
i=1
(
Oi − O

)2 (11)

where Oi is the observed daily load, O is the mean of the observed daily load, pi is the calculated
daily load, and n is the number of data values. The R2 index describes the ability of the model to
explain variability among the data. RSR incorporates the benefits of error index statistics and includes
a scaling/normalization factor; the lower the RSR is, the better the model simulation performance.
The performance ratings for stream flow proposed by Moriasi et al. [33] were ‘very good’ (0.00 ≤
RSR ≤ 0.50), ‘good’ (0.50 < RSR ≤ 0.60), or ‘satisfactory’ (0.60 < RSR ≤ 0.70). NSE is a normalized
statistic that reflects the relative magnitude of the residual variance compared with the variance in the
observed data (good (NSE > 0.7), satisfactory (0.4 < NSE ≤ 0.7) and unsatisfactory (NSE ≤ 0.4)) [30,34].

Finally, the performance of the MLR model was tested using the jackknife validation
method [8,11,14]. This method consists of deleting one site and carrying out the multiple regression
analysis with the same dependent variables and the remaining sites. The pollutant discharge of the
deleted site is calculated with the equation resulting from the multiple regression associated with the
remaining sites. This process is repeated, deleting one site each time.

3. Results and Discussion

3.1. Correlation Analysis between Nonpoint Pollutant Discharge and Explanatory Variables

Table 4 shows the Pearson correlation between runoff discharge and subbasin characteristics,
without log transformation of the variables. In Table 5, the Pearson correlation matrix between
log-transformed variables is introduced. As the values of the correlation coefficients between
log-transformed variables were slightly higher (r < 0.69; Table 5) than those of the non-log-transformed
variables (r < 0.65; Table 4), we used log-transformed variables as explanatory variables in the MLR
models. Compared to other environmental parameters, the rainfall depth and subbasin area showed
a relatively significant correlation with most response discharge variables. The rainfall intensity had
a relatively significant positive correlation with the response variables of EMC and load/area because
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the rainfall intensity directly affects the EMC and load/area of each storm event. On the other hand,
the subbasin slope had a negative correlation with the response variables of EMC and load/area.

Table 4. Pearson correlation matrix between stormwater runoff discharge and subbasin characteristics.

Variables % field SA Rain Dur Ndry Rint Slope

SS (load) −0.187 0.102 0.524 0.236 −0.135 0.260 0.088
COD (load) −0.211 0.563 0.317 0.297 0.015 0.022 0.239
BOD (load) −0.217 0.458 0.352 0.353 −0.080 0.011 0.213
TN (load) −0.214 0.488 0.374 0.316 −0.053 0.057 0.220
TP (load) −0.205 0.417 0.514 0.356 −0.150 0.160 0.178
SS (EMC) 0.498 −0.293 0.387 0.181 −0.115 0.251 −0.585

COD (EMC) 0.125 −0.199 0.166 −0.098 −0.099 0.397 −0.150
BOD (EMC) 0.120 −0.317 0.187 0.095 −0.049 0.147 −0.227
TN (EMC) 0.196 −0.065 0.157 −0.022 0.227 0.195 −0.207
TP (EMC) 0.355 −0.366 0.223 −0.115 −0.216 0.404 −0.391

SS (load/area) 0.198 −0.166 0.632 0.313 −0.185 0.283 −0.240
COD (load/area) 0.102 −0.095 0.599 0.367 −0.175 0.224 −0.108
BOD (load/area) 0.077 −0.147 0.652 0.476 −0.212 0.172 −0.124
TN (load/area) 0.132 −0.180 0.583 0.348 −0.172 0.210 −0.137
TP (load/area) 0.108 −0.114 0.441 0.190 −0.148 0.212 −0.106

Note: Bold marked correlations are significant at p < 0.01.

Table 5. Pearson correlation matrix between natural log-transformed stormwater runoff discharge and
subbasin characteristics.

Variables ln(% field) ln(SA) ln(Rain) ln(Dur) ln(Ndry) ln(Rint) Slope

ln(SS(load)) −0.12 0.42 0.58 0.44 −0.12 0.29 −0.16
ln(COD(load)) −0.38 0.69 0.43 0.49 −0.12 0.08 0.25
ln(BOD(load)) −0.34 0.60 0.51 0.49 −0.11 0.18 0.14
ln(TN(load)) −0.32 0.61 0.47 0.48 −0.12 0.14 0.17
ln(TP(load)) −0.16 0.48 0.59 0.43 −0.16 0.30 −0.06
ln(SS(EMC)) 0.40 −0.37 0.47 0.03 −0.11 0.48 −0.63

ln(COD(EMC)) 0.19 −0.40 0.23 −0.12 −0.06 0.33 −0.14
ln(BOD(EMC)) 0.20 −0.44 0.37 −0.06 −0.02 0.44 −0.36
ln(TN(EMC)) 0.33 −0.49 0.23 −0.13 0.09 0.35 −0.38
ln(TP(EMC)) 0.45 −0.56 0.36 −0.17 −0.08 0.52 −0.59

ln(SS(load/area)) 0.34 −0.30 0.64 0.28 −0.16 0.47 −0.54
ln(COD (load/area)) 0.17 −0.18 0.62 0.39 −0.22 0.37 −0.23
ln(BOD (load/area)) 0.18 −0.24 0.65 0.35 −0.18 0.43 −0.33
ln(TN(load/area)) 0.30 −0.37 0.59 0.29 −0.19 0.41 −0.36
ln(TP(load/area)) 0.37 −0.37 0.65 0.24 −0.21 0.52 −0.52

Note: Bold marked correlations are significant at p < 0.01.

3.2. MLR Analysis

Four types of MLR models corresponding to Equations (3)–(6) were tested to identify the most
suitable models (Table 6). The R2 values for SS, COD, BOD, TN, and TP in the type 1 MLR of pollutant
load ranged from 0.275 to 0.447. The R2 values for SS, COD, BOD, TN, and TP in the type 1 MLR of
EMC and load/area were also low, indicating poor performance of the regression models. The R2

values for SS, COD, BOD, TN, and TP in the type 2 MLR of pollutant load were 0.76, 0.67, 0.64, 0.65,
and 0.80, respectively. The R2 values of the type 2 MLR were quite high, but most of the VIF values
were larger than 5, with a few values greater than 10. Thus, the VIF showed that multicollinearity was
observed in the established models and that the type 2 MLR was not adapted. Although the R2 values
of the type 2 MLR for load/area were acceptable, the VIF values were high, indicating multicolinearity.
VIF values and other statistics of MLRs were presented only for the selected model. The results of the
MLR model employing the type 4 equation are listed in Tables 7–9.



Water 2018, 10, 1156 9 of 17

Table 6. Coefficients of determination from four types of MLR analysis.

Runoff Discharge Type MLR Type SS COD BOD TN TP

Load Type 1 0.275 0.425 0.340 0.386 0.447
Type 2 0.764 0.672 0.641 0.654 0.801
Type 3 0.720 0.687 0.688 0.614 0.689
Type 4 0.736 0.687 0.694 0.614 0.741

EMC Type 1 0.477 0.157 0.100 0.254 0.33
Type 2 0.646 0.123 0.273 0.321 0.584
Type 3 0.536 0.226 0.324 0.539 0.592
Type 4 0.655 0.226 0.324 0.539 0.662

Load/Area Type 1 0.448 0.359 0.460 0.340 0.195
Type 2 0.734 0.503 0.526 0.497 0.686
Type 3 0.640 0.424 0.496 0.471 0.651
Type 4 0.695 0.427 0.509 0.471 0.675

The R2 values for SS, COD, BOD, TN, and TP in the type 3 MLR of the pollutant load were also
fairly high, but all VIF values were less than 5. Among the type 3 MLR models, the SS, TN, and TP in
the MLR of EMC and the SS and TP in the MLR of load/area showed acceptable R2 values. The values
of R2 for SS, COD, BOD, TN, and TP in the type 4 MLR of pollutant load were 0.74, 0.69, 0.69, 0.61,
and 0.74 respectively. The R2 values of the type 4 MLR were a little better than those of the type 3
MLR, and all VIF values were less than 5. Thus, we selected the type 4 equation as the MLR model
to predict the runoff pollutant discharge in the study area. However, the COD and BOD in the MLR
of EMC and COD and TN in the MLR of load/area could not explain the variance in the pollutant
discharge properly.

Using the stepwise variable selection method, two to five variables were retained in the pollutant
load model, as shown in Table 7. In the case of the SS model, given the R2 value, 73.6% of the variability
of the dependent variable ln(SS load) is explained by the four explanatory variables. The MLR models
indicated in Tables 7–9 are statistically significant at p < 0.0001 except for the ln(COD EMC) model
(p = 0.00019). The R2 values for SS, COD, BOD, TN, and TP in the type 4 MLR of pollutant load were
fairly high (0.614 < R2 < 0.741), as indicated in Table 7. The performance evaluation by CV(RMSE) [35]
shows that the SS model was the best and that the other models of the water quality variables were
also acceptable. The range of RSR for SS, COD, BOD, and TP in the MLR models of pollutant load
(Table 7) was from 0.509 to 0.559, and the performance of the MLR for these variables was good [34].
The RSR for TN was 0.622, and the performance of the TN model was satisfactory. The NSE values for
the MLR models of pollutant load ranged from 0.61 to 0.74, and the MLR models of the pollutant load
had good performance. As a special case, in linear regression forecasting models like this study, NSE is
equal to the coefficient of determination, R2 [36]. Overall, all the MLR models of the pollutant load
had good prediction performance.

All VIF values in Table 7 are lower than 5, and the mean VIF values are not large. These results
suggest that the coefficient of regression for the explanatory variables could be statistically acceptable
and that multicollinearity was not present in the established models.

Standardized coefficients refer to how many standard deviations a dependent variable will change
in response to an increase of one standard deviation in the predictor variable. This statistic allows us
to compare the relative contribution of each independent variable in the prediction of the dependent
variable. The higher the absolute value of a coefficient is, the more important the weight of the
corresponding variable. Standardized coefficients are useful for comparing effects across different
measures. The standardized regression coefficients of Table 7 indicate that subbasin area (0.576 < βi
< 0.709) and rainfall depth (0.453 < βi < 0.563) are important influential parameters for all the load
predictions. In addition, % field has relatively small effects on the SS, BOD and TP models.
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Table 7. MLR models for pollutant load discharge during stormwater events.

Response Variable Explanatory Variables a0 ai βi VIF DW R2 RMSE CV(RMSE) RSR NSE

ln(SS load) Intercept 12.50 1.773 0.736 1.230 0.099 0.514 0.736
ln(% field) −2.31 −0.40 4.017

ln(SA) 0.81 0.58 1.610
ln(Rain) 1.78 0.56 1.008

Slope −0.25 −0.75 3.377

ln(COD load) Intercept 0.44 1.746 0.687 1.135 0.119 0.559 0.687
ln(SA) 0.86 0.71 1.001

ln(Rain) 1.24 0.45 1.001

ln(BOD load) Intercept 4.92 1.938 0.694 1.172 0.145 0.553 0.694
ln(% field) −1.53 −0.30 4.017

ln(SA) 0.80 0.64 1.610
ln(Rain) 1.44 0.51 1.008

Slope −0.12 −0.41 3.377

ln(TN load) Intercept 0.72 1.873 0.614 1.121 0.127 0.622 0.614
ln(SA) 0.67 0.63 1.001

ln(Rain) 1.19 0.49 1.001

ln(TP load) Intercept 3.44 1.539 0.741 1.047 0.174 0.509 0.741
ln(% field) −1.36 −0.28 4.025

ln(SA) 0.77 0.64 1.620
ln(Rain) 1.50 0.56 1.039
ln(Ndry) −0.24 −0.14 1.049
Slope (◦) −0.17 −0.60 3.423

Notes: a0 is the regression constant; ai is the regression coefficient of the explanatory variable Xi; βi is the standardized regression coefficient.
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Table 8. MLR models for EMCs of stormwater events.

Response Variables Explanatory Variables a0 ai βi VIF DW R2 RMSE CV(RMSE) RSR NSE

ln(SSEMC) Intercept 10.94 1.654 0.655 0.875 0.180 0.587 0.655
ln(% field) −1.79 −0.50 4.017

ln(SA) −0.17 −0.19 1.610
ln(Rain) 0.83 0.42 1.008

Slope −0.19 −0.93 3.377

ln(CODEMC) Intercept 2.46 1.338 0.226 0.515 0.252 0.880 0.226
ln(SA) −0.12 −0.35 1.054

ln(Rint) 0.22 0.26 1.054

ln(BODEMC) Intercept −0.07 1.129 0.324 0.723 1.223 0.822 0.324
ln(SA) −0.23 −0.43 1.001

ln(Rain) 0.42 0.36 1.001

ln(TNEMC) Intercept 2.47 0.843 0.539 0.504 0.384 0.679 0.539
ln(SA) −0.29 −0.65 1.054

ln(Rint) 0.25 0.23 1.054

ln(TPEMC) Intercept 4.62 0.919 0.662 0.723 −0.481 0.581 0.662
ln(% field) −1.14 −0.38 4.017

ln(SA) −0.25 −0.34 1.693
ln(Ndry) −0.19 −0.19 1.057
ln(Rint) 0.75 0.43 1.100
Slope −0.12 −0.69 3.396
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Table 9. MLR models for pollutant load per area during stormwater events.

Response Variables Explanatory Variables a0 ai βi VIF DW R2 RMSE CV(RMSE) RSR NSE

ln(SS load/area) Intercept 5.70 1.728 0.695 1.246 0.408 0.552 0.695
ln(% field) −1.81 −0.33 3.365

ln(Rain) 1.79 0.60 1.007
Slope −0.25 −0.79 3.376

ln(COD load/area) Intercept −3.88 1.779 0.427 1.123 4.710 0.757 0.427
ln(Rain) 1.22 0.61 1.003

Slope −0.04 −0.19 1.003

ln(BOD load/area) Intercept −5.65 1.927 0.509 1.206 −0.995 0.701 0.509
ln(Rain) 1.47 0.63 1.003

Slope −0.07 −0.29 1.003

ln(TN load/area) Intercept −3.88 1.873 0.471 1.121 −2.108 0.727 0.471
ln(SA) −0.33 −0.36 1.001

ln(Rain) 1.19 0.58 1.001

ln(TP load/area) Intercept −6.57 1.519 0.675 1.090 −0.328 0.570 0.675
ln(Rain) 1.53 0.60 1.033
ln(Ndry) −0.25 −0.15 1.036

Slope −0.13 −0.49 1.011
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The area with the high density of highland fields in Lake Soyang basin has steeper slopes than
the other areas. However, Lake Soyang basin also contains highly mountainous terrain; thus, the mean
slopes of the dense highland field subbasins are lower than the average slope of the entire Lake Soyang
basin. Therefore, the standardized regression coefficients of mean slope for the SS and TP load models
have (−) signs, and the mean slope has a negative influence on the SS and TP loads.

The explanatory variables for the SS and TP models explained 65.5% and 66.2% of variation in
the response variables of EMC. The R2 values were fairly high, as indicated in Table 8. The R2 value
for the TN model of EMC was 0.539, and the TN model was acceptable [34]. The CV(RMSE) value of
the BOD model was quite high, and the model was not acceptable. The RSR values for SS and TP in
the MLR models of EMC (Table 8) were 0.587 and 0.581, respectively, and the performances of these
models were good. The RSR for the TN model was 0.679, and the performance of the TN model was
satisfactory. However, the RSR values for the COD and BOD models were high, and these models
were unsatisfactory. The NSE values for the MLR models of the EMC show that the SS, TP, and TN
models were satisfactory but that the COD and BOD models were not satisfactory. The VIF values for
the EMC models were lower than 5, and the mean VIF values were not large. Overall, the MLR models
for SS and TP have good prediction performance, and the TN model has acceptable performance.

The standardized regression coefficients in Table 8 indicate that rainfall intensity and rainfall
depth are influential explanatory variables for the EMC response variables. Rainfall intensity (0.234 <
βi < 0.426) is an important factor for the TP, TN, and COD models, and rainfall depth is important for
the SS and BOD models. In the pollutant load model, rainfall depth is a very important parameter,
whereas rainfall intensity is not an important explanatory variable. However, rainfall intensity is an
influential parameter for the EMC of a storm event. From the Pearson correlation matrix between
natural log-transformed stormwater runoff discharge and subbasin characteristics in Table 5, we also
can see that EMCs are better correlated to rainfall intensity than rainfall depth, and pollutant loads are
much better correlated to rainfall depth than rainfall intensity. In agricultural areas such as the study
area, the larger the rainfall intensity, the more nutrients are released from fertilizer and vegetation roots.
The standardized regression coefficients of the mean slope for the SS and TP load models have (−)
sign, and the mean slope has a large negative influence on the SS and TP EMC. Additionally, % field
also has a negative impact on the SS and TP EMC.

The explanatory variables for the SS and TP models explained 69.5% and 67.5% of the variation in
the load/area response variables, and the R2 values were fairly high, as indicated in Table 9. The R2

value for the BOD model of load/area was 0.51; thus, the BOD model was acceptable. The RSR values
for SS and TP in the MLR models of load/area (Table 9) were 0.55 and 0.57, respectively, and the
performances of these models were good. The RSR for the BOD model was 0.70, and the performance
of the TN model was satisfactory. The NSE values in the MLR models of the load/area show that the
SS, TP, and BOD models were satisfactory. The VIF values for the load/area models were less than 5,
and the mean VIF values were not large. Overall, the MLR models of load/area for SS and TP have
good performance, and the BOD model has acceptable performance.

The standardized regression coefficients in Table 9 indicate that rainfall depth (0.576 < βi < 0.634) is
a highly influential parameter for all response variables in the load/area prediction. The β coefficients
of the mean slope for the SS and TP load/area models are −0.79 and −0.49, respectively, and the
absolute values of the coefficients are comparable to the coefficients of rainfall depth, indicating that
the mean slope is a remarkable negative parameter on the SS and TP load/area results.

3.3. Jackknife Validation of the MLR Model

The performance of the jackknife validation was evaluated using R2, RSR and NSE (Table 10).
The R2 values were calculated by the linear regression between observed and jackknife validation
values, and RSR and NSE were also calculated. The R2 (Figure 3) and NSE values associated with the
jackknife procedure were slightly lower than the results of the MLR models, whereas the RSR values
were slightly higher than the MLR models. Therefore, the performance of the jackknife validation was
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slightly worse than that of the MLR models. The results of jackknife validation indicate that the MLR
models are robust.
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Table 10. Three performance indicators for the stormwater runoff discharge values based on
jackknife validation.

Response Variable (Jackknife) R2 RSR NSE

ln(SS load) 0.694 0.554 0.693
ln(COD load) 0.630 0.611 0.627
ln(BOD load) 0.607 0.630 0.603
ln(TN load) 0.550 0.674 0.545
ln(TP load) 0.609 0.629 0.605
ln(SS EMC) 0.537 0.684 0.533

ln(COD EMC) 0.155 0.924 0.147
ln(BOD EMC) 0.211 0.894 0.202
ln(TN EMC) 0.503 0.730 0.468
ln(TP EMC) 0.601 0.633 0.599

ln(SS load/area) 0.655 0.588 0.654
ln(COD load/area) 0.305 0.845 0.287
ln(BOD load/area) 0.478 0.723 0.477
ln(TN load/area) 0.413 0.768 0.410
ln(TP load/area) 0.602 0.632 0.600

4. Conclusions

MLR models were built to predict the nonpoint-source pollutant discharge in the highland field
area in the wet season using environmental parameters as explanatory variables. Runoff discharge
data from 70 storm events were used to build the MLR models to predict the pollutant load, EMC and
pollutant load per area. Pearson correlation tests were employed to identify the linear relationships
between subbasin environmental parameters and the observed stormwater discharge. As the values of
correlation coefficients between log-transformed variables were slightly higher than those of variables
that had not been log transformed, the log-transformed variables were selected as explanatory variables
in the MLR models.

The R2 values for SS, COD, BOD, TN, and TP in the type 4 MLR of pollutant load were quite high
(the best among the four examined MLR types), and all VIF values were less than 5. Thus, the type 4
equation was chosen as the MLR model to predict the runoff pollutant discharge.

The R2 values for the five water quality variables in the MLR of pollutant load were fairly high
(0.614 < R2 < 0.741), and the RSR values for SS, COD, BOD, and TP in the MLR models of pollutant
load ranged from 0.509 to 0.559. Hence, the performance of the MLR for these variables was good [34].
The RSR for TN was 0.622, and the performance of the TN model was satisfactory. The NSE values for
the MLR models of the pollutant load indicated good performance. Hence, most of the MLR models of
the pollutant load have good prediction performance.

The MLR models of EMC for SS and TP also have good prediction performance, and TN model
has acceptable performance. The MLR models of load/area for SS and TP have relatively good
performance, and the BOD model has acceptable performance. Based on the R2, RSR and NSE values,
the performance of the jackknife validation was slightly worse than that of the MLR models. Thus,
the results of jackknife validation indicate that the MLR models are robust.

The results of the standardized coefficients for the MLR models indicate that subbasin area and
rainfall depth are important influential parameters for all the load predictions. The mean slope exerts
a negative influence on the SS and TP loads on account of topographic characteristics, as previously
explained. For the pollutant load model, rainfall depth is a very important parameter, whereas rainfall
intensity was not chosen as an explanatory variable. However, rainfall intensity has an influence on
the EMC of the storm event. The mean slope has a large negative influence on the SS and TP EMC,
and % field has a negative impact on the SS and TP EMC. Additionally, the rainfall depth is a highly
influential parameter for all response variables of the load/area predictions, similar to the pollutant
load models. The mean slope has a large negative influence on the SS and TP load/area.
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The average slope of fields, rather than the average slope of the whole sub-basin, can be
an important explanatory variable for the pollutant discharge load of each subbasin. Similar or
even better MLR results for EMC could have been obtained using peak rainfall intensity as explanatory
variables. Therefore, future studies on MLR need to consider this.
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