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Abstract: Understanding the drivers and how they affect ecosystem metabolism is essential for
developing effective management policy and plans. In this study, net ecosystem production (NEP),
ecosystem respiration (R), and gross primary production (GPP) rates were estimated in relation to
physicochemical, hydrological, and meteorological variables in La Salada (LS) and Sauce Grande
(SG), two shallow lakes located in an important agricultural region with water management.
LS is a mesosaline, mesotrophic-eutrophic lake, whereas SG is a hyposaline and eutrophic lake.
GPP and R showed daily and seasonal variations, with R exceeding GPP during most of the
study period in both lakes. Net heterotrophic conditions prevailed during the study period (NEP
LS: −1.1 mmol O2 m−2 day−1 and NEP SG: −1.25 mmol O2 m−2 day−1). From data analysis,
the temperature, wind speed, and lake volume are the main drivers of ecosystem metabolism
for both lakes. Despite the significant differences between the two lakes, the NEP values were similar.
The different hydrological characteristics (endorheic vs. flushing lake) were crucial in explaining why
the two different systems presented similar ecosystem metabolic rates, emphasizing the importance
of water management.

Keywords: ecosystem metabolism; shallow lakes; Pampas; land use; water management

1. Introduction

The measurement of ecosystem metabolism with the diel oxygen technique is a reliable method
to provide a measure of the overall trophic processes of an ecosystem. Primary production and
respiration are the major metabolic pathways by which organic matter is produced and decomposed,
respectively. Gross primary production (GPP) entails the fixation of inorganic C by photosynthesis,
whereas community respiration (R) is the remineralization of the organic C to CO2 by the organisms
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within an ecosystem. Therefore, the net ecosystem production (NEP) is the balance between GPP
and R [1]. When NEP is greater than zero, the system is characterized as net autotrophic, supporting
and exporting organic material and/or accumulating it within the system. When NEP values are
below zero, it is characterized as net heterotrophic; therefore, R is subsidized by the allochthonous
material [2]. This method has been applied worldwide in different types of aquatic systems, from
shallow to deep lakes, most of them located in the Northern Hemisphere [3–9].

The metabolic rates varied across aquatic systems according to several factors. Those with
high total phosphorous (TP), high chlorophyll a (Chl a), and low dissolved organic carbon (DOC)
concentrations are typically characterized as autotrophic, whereas those with low TP, low Chl a,
and high DOC concentrations are characterized as heterotrophic [4,10]. Moreover, the concentrations
of these parameters can change in lakes according to the water management and catchment use
conditions. Those lakes located in agrarian landscapes are particularly affected by nutrient loading
from the catchment [11] leading to eutrophication [12]. Previous studies in La Salada (LS) found that
water input changes the nutrient and salinity concentrations, and produces substantial changes in the
composition and biomass of the planktonic community [13]. Also, an important source of additional
energy to R is the input of allochthonous organic matter via streams [14–16]. According to [5], a lake´s
morphometry and catchment conditions are crucial to determining the human impact on ecosystem
metabolism. They found that with greater lake area, water depth, and drainage, the ratio of GPP and R
decreased. Also, these authors found that small lakes with less incident light were characterized by
NEP < 0 conditions, and finally that daily variations in GPP decreased with the lake area and water
depth due to the effect of lower nutrient input per volume unit. On the other hand, the meteorological
conditions also regulate GPP and R rates within a lake. It was found that wind or precipitation events
(storms) produced changes in GPP and R rates, decoupling both variables temporarily which later
returned to the previous conditions [9].

Finally with respect to their morphology, shallow lakes, which represent the most abundant
lake type in the world [17] show different functional behavior with respect to deep ones [18,19].
Those located in the Pampean region (Argentina) are mostly shallow and polymictic, ranging from
eutrophic to highly hypertrophic [20]. The precipitation, evaporation cycles, and water management
have an important influence on water renewal time and salinity, which are highly variable [13,21,22].
In particular, the water level fluctuations coupled with salinity increments could change the trophic
structure as the species diversity declines when their osmotic tolerance is exceeded [23–26]. Moreover,
the structure of aquatic communities in saline lakes could change significantly with other factors,
such as habitat permanence, water management, inflows of fresh water, and trophic interactions [27–30].
The alternative stable states theory [31] proposes that lakes can be in two alternative stable states: clear
with abundant submerged macrophytes or turbid with few submerged plants, both well represented
on the Pampas plain [32].

In conclusion, there is a wide mixture of stressors affecting lakes, and understanding how these
drivers affect the ecological status through the study of the ecosystem metabolism resulted in a
valuable tool for the development of effective management policy and plans. La Salada (LS) is an
endorreic, mesosaline, mesotrophic to eutrophic lake that has been studied in recent years for its
ecosystem metabolism [7], plankton community [13], and ecosystem services [33]. Sauce Grande
(SG) is a flushing, hyposaline, and eutrophic lake that has been studied for its hydrology [34], water
quality [35], and plankton community [36,37]. Therefore, we hypothesized that (1) water management
will influence ecosystem metabolism with the increment of GPP and R rates through nutrients, DOC,
and organic matter loadings from the catchment in both lakes, and (2) that the different salinity, trophic
status, and hydrological functioning will result in contrasting metabolism conditions for both lakes.

2. Materials and Methods

This study includes the physicochemical and hydrological surveys over two years for two shallow
lakes: from January 2014 to December 2014 for the La Salada lake and from September 2016 to
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October 2017 for the Sauce Grande lake. The surveys included both low-frequency sampling and
high-frequency data obtained with an instrumented buoy located in the deepest part of each lake.

2.1. Study Sites

La Salada (39◦27′ S, 62◦42′ W) is a shallow saline lake situated in the south west of the Pampean
region (Argentina) (Figure 1a). It is a small polymictic lake (4 km2) with a mean depth of 2.5 m.
Its main affluent is a channel derived from the Colorado river, which is managed by the Development
Corporation of the Colorado River Valley ((Production Development Corporation) CORFO in Spanish),
which decides when and how much water enters the lake. The irrigation system gates are open each
year from 1 August to 1 May. It is a small circular lake, with the presence of some reeds in the margins
of the channels. It is an alkaline, mesotrophic-eutrophic lake, with a low average concentration of Chl a
(8.6 µg L−1), and the bottom presents a dense cover of charophytes in most of the central part [38].
The presence of the omnivorous fish Odonthestes sp. is common in this lake, considered of great
importance for sport fishing and consequently for tourism [39].

The SG lake (38◦57′ S, 61◦24′ W) is located in the south east of the Pampean region (Argentina)
(Figure 1b). It is a natural water body with a surface area of 15.87 km2 and a mean depth of 1.1 m [40].
It is a flushing lake with an affluent, the Sauce Grande River, and a connection with the Atlantic
Ocean. The water flow of its affluent is managed by the Paso de las Piedras Dam, which supplies
water to the cities of Bahía Blanca and Punta Alta. Water is released downstream only when the dam is
full [41]. The SG lake is polymictic, rich in dissolved oxygen, turbid, and eutrophic, with an average
concentration of Chl a of 171 µg L−1 [37,39]. It is a large and elongated depression, with low coasts
with smooth slopes (usually muddy and with reeds on the northern side), while a coastal dune system
controls the southern coast. The bottom is almost entirely mud. The presence of the fish Odontesthes sp.
is also frequent in this lake [42].
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Figure 1. Geographic location of the study sites with respect to their surroundings: (a) La Salada lake
location and land use; (b) Sauce Grande lake location and land use.

The climate in the area of LS is cold temperate and mostly dry, whereas in the SG area it is
temperate [43]. Annual air temperature values are between 14 and 20 ◦C, with pronounced summers
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and winters. Wet and dry cycles characterize the Pampean region. The highest precipitation occurs
typically in spring and summer, with an average annual rainfall of 692 mm for the SG area and 369 mm
for the LS area [43]. Prevailing winds in the region are from the north west, with a mean speed between
3.9 and 4.1 m s−1 [43].

2.2. Environmental Variables, Land Use, and Hydrological Conditions

For nutrient concentrations analysis, monthly samples of water were taken with a van Dorn
bottle at 0.5 m depth and filtered through Whatman GF/F filters (Merck KGaA, Darmstadt, Germany).
Total phosphorus was estimated with acid digestion with potassium persulfate (120 ◦C for 1 h)
following [44]. Total organic nitrogen (TNorg) was determined by the semi-micro Kjeldahl method [44].

Suspended particulate matter (SPM) was determined by weighing the residue resulting from
the filtration through a GF/F filter according to [44]. Chl a concentration was estimated with a
fluorometer (SLM instruments, Urbana, IL, USA), using 90% acetone as the extraction solvent [45].
Water transparency was estimated with a Secchi disk. Trophic status was assessed with Carlson´s
trophic index from TP, Chl a, and Secchi disk values [46]. Historical precipitation values were obtained
from two meteorological stations, one located 10 km from LS, National Institute of Agricultural
Technology in Hilario Ascasubi (INTA in Spanish) [47], and the other located at 23 km from SG, INTA
Coronel Dorrego [47] to assess the effect of rainfall on physicochemical values and metabolism rates.
To classify the intensity of dry and wet conditions the standardized precipitation index (SPI) was
calculated, which quantifies the precipitation anomalies [48]. Finally, the water input for each lake
was obtained from CORFO in the case of LS and from measurements of the discharge in the Sauce
Grande River with a Sontek® Acoustic Doppler Profiler (ADP) (San Diego, CA, USA) based on the
River Surveyor system (SonTek, San Diego, CA, USA). The system is mounted on a vessel to collect
the data used to make an instantaneous measurement of river discharge. The ADP measures the
water current velocity simultaneously at multiple depth locations through the water column and over
most of the cross-section of the river. This velocity field then was combined with the bathymetry of
the section to measure instantaneous discharge, and then the River Surveyor program computed the
total discharge.

2.3. Bathymetry

The bathymetry was performed by an autonomous unmanned vehicle (drone for bathymetry)
based on Arduino, open electronic platform, developed at the Argentine Institute of Oceanography.
The vehicle is fitted out with an autopilot system and echo sounder using a Garmin Echo 150 transducer
that operates at 200 kHz and with water quality sensors. The route was followed using the Mission
Planner software [49]. The echo sounder system is integrated with Mission Planner to monitor the
echo sounder profile during the field work. All the data are saved on a memory card on board (GPS,
acoustic profile and navigation parameters). A GNU Octave script was written to process all the data
recorded from the drone. The coastline was determined using Landsat 8 images according to fieldwork
dates. The Landsat images were processed using the software ArcGIS® 10.2.2 software (Environmental
Systems Research Institute, Redlands, CA, USA). Finally, a linear triangulation interpolation method
was used to estimate the bathymetry from the depth values (from the GNU Octave script) and the
coastline points (zero level).

2.4. Estimation of Metabolism

Meteorological and water variables were measured at 10-min intervals from two buoys (Estación de
Monitoreo Ambiental Costero, EMAC) moored approximately in the deepest point of each lake (Figure 2).
The physicochemical variables were measured at a 0.5-m depth, including dissolved oxygen (DO),
water temperature, water level and electrical conductivity. Meteorological variables were measured
at 2.10 m in height on the buoy, including air temperature and wind speed and direction. Data is
available on the website www.emac.iado-conicet.gob.ar [50].

www.emac.iado-conicet.gob.ar
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(EMAC) buoy in the: (a) La Salada and (b) Sauce Grande lakes.

Estimation of the ecosystem metabolism was based on [1], with modifications for saline
environments for LS and high wind environments for both lakes [51]. Hourly NEP (NEPh)
(mmol O2 m−3 h−1) was calculated as the difference between the changes in DO concentration (∆DO)
and the fraction between the diffusive oxygen exchange of gas with the atmosphere (F) and the daily
mean water depth (z) (Table 1). Unlike stratified lakes, we employed the daily mean depth instead of
the mixing depth as both lakes are polymictic considering their shallow depth, the flat shape of the
basins, and freedom from obstacles and continuous wind action [21,22,52]. F (mmol O2 m−3 h−1) was
calculated as the difference between the DO measured and the concentration of oxygen in equilibrium
with the atmosphere (DOsat), where k is the coefficient of oxygen exchange at a given temperature
(Table 1). This was computed from the Schmidt number (Sc) and the gas piston velocity (k660), with a
correction for high wind environments, using a half coefficient instead of two-thirds [51]. In this study,
the Sc was calculated at each time step using the DO-specific equation of [53], but using the coefficients
for seawater for the LS lake (4) and freshwater for the SG lake (5) (Table 1). The k660 was estimated
with a correction for high wind environments based on the equation proposed by [54] as a function
of wind speed at 10 m above the lake surface (U10). As the wind speed at the buoy is measured at
2.10 m above the water (U2.1), U10 was calculated assuming a neutrally stable boundary layer from the
relationship given by [55] and a is a correction factor (Table 1).

To obtain GPP, R, and NEP values, NEP occurring during photosynthesis (NEPdaytime) was
estimated as the mean hourly NEP taking place between sunrise and sunset extrapolated over day
length [2]. The fraction of the day when there was daylight (day fraction) was calculated from latitude
and date of measurements in radians (Table 1). We assume that there is no photosynthesis at night
and GPP = 0 (therefore R = NEP during the nighttime), and that R during nighttime was equal to
R during the daytime. Hourly respiration rates derived from changes in DO concentration during
nighttime (Rhr) were extrapolated over a 24-h period to calculate the respiration during the day (Rday).
Respiration during the daytime (Rdaytime) was calculated from mean NEPhr during darkness (Rhr)
extrapolated over a day length. Finally, as NEP during daytime is the difference between GPP and
Rdaytime, GPP was calculated as the NEPdaytime added to Rdaytime (Table 1). All rates were integrated
daily (day−1).
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Table 1. Equations for the estimation of ecosystem metabolism in the La Salada (LS) and Sauce Grande
(SG) lakes during the study period. NEP: net ecosystem production; GPP: gross primary production;
R: ecosystem respiration.

Variable Equation

Hourly NEP NEPh = ∆DO− F
z

Diffusive oxygen exchange F = k(DO− DOsat)

Coefficient of oxygen exchange k = k660

(
Sc

660

) 1
2

Schmidt number for LS Sc = 1953.4 − 128.0 T + 3.9918 T2 − 0.046527 T3

Schmidt number for SG Sc = 1800.6− 120.1 T + 3.7818 T2 − 0.0476 T3

Gas piston velocity k660 =
(
2.07 + 0.215 U1.7

10
)
/100

Wind speed at 10 m U10 = a U2.1
Correction factor a = 1.4125h−0.15

NEP during daytime NEPdaytime = mean NEP during daylight× day f raction× 24 h
R during daytime Rdaytime = Rhr × 24 h× day f raction

R Rday = Rhr × 24 h
NEP NEP = GPP− Rday
GPP GPP = NEPdaytime + Rdaytime

2.5. Statistical Analysis

Relationships between weekly metabolic rates and environmental variables were analyzed using
correlation coefficients (Pearson) with appropriate software. Normality was examined through the
Kolmogorov–Smirnov test [56]. High-frequency data was analyzed spectrally using fast Fourier
transform to define any potential periodicity of the variables [57]. Furthermore, a multiple regression
analysis was performed with daily environmental and metabolic data to explain the variation in
metabolic rates with respect to the most significant environmental variables.

3. Results

3.1. Environmental Variables, Land Use, and Hydrological Conditions

LS was characterized by a mesotrophic to eutrophic condition with low Chl a values.
Suspended particular matter (SPM) and particulate organic matter (POM) values were also low,
showing high transparency conditions during the entire study period, with a Secchi disk mean value
of 1.6 m (Table 2) and a mean euphotic zone value of 4.3 ± 1.9 m. LS is a lake rich in DO with
alkaline conditions (Table 2). Nutrient concentrations were also high during the entire study period
(Table 2). With respect to land use, 74.8% of the lake’s area of influence (220 km2) was represented
by agricultural systems, 12.1% by forests, 8.2% by marshlands, and 1.4% by human settlements.
According to SPI values, 2014 was a year with wet conditions. The lake experienced great changes
during the study period associated with the water inflow and the consequent water level fluctuations
(Figure 3). The mean lake volume during the study period was 0.0117 ± 0.0075 km3 (Figure 3a).
During 2014, the total amount of water that entered the lake was 0.0025 km3, reaching a maximum
of 0.00005 km3 day−1 during October 2014. The water volume varied in response to the water input
(Figure 3a). The maximum water level values were recorded in October 2014 and the minimum during
February 2014 (Table 2). Conductivity was high, classifying LS as a mesosaline lake. Depending on the
water level fluctuations, the conductivity values presented minimum values during October 2014 and
maximum during March 2014. Precipitation values presented minimum values in January 2014 and
maximum in March 2014 (Table 1).
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Table 2. Mean, standard deviation (SD), minimum (Min), and maximum (Max) values of the
environmental parameters measured in La Salada and Sauce Grande Lakes during the study period.
Temp: water temperature; Cond: conductivity; Level: water level; Prec: precipitation; Vol: lake volume;
DO: dissolved oxygen; Chl a: chlorophyll a; SPM: suspended particulate matter; POM: particulate
organic matter; TP: total phosphorous; TNorg: total organic nitrogen.

Variables Sauce Grande La Salada

Mean SD Min Max Mean SD Min Max

Temp (◦C) 17.1 6.5 12.1 24.5 16.0 5.7 7.5 25.2
Cond (mS cm−1) 2.5 0.2 2.3 2.8 49.9 4.7 41.6 58.0

Level (m) 1.7 0.2 1.3 2.1 2.3 0.3 2.1 3.20
Caudal (m3 s−1) 2.8 1.1 1.7 7.0 0.28 0.16 0.03 0.64

Wind (m s−1) 3.3 2.6 0.0 13.2 6.6 4.3 0.0 27.6
Prec (mm) 33.8 12.0 18.9 49.2 52.2 29.5 8.0 92.5
Vol (km3) 0.013 0.009 0.003 0.030 0.012 0.008 0.003 0.028

pH 10.0 0.4 9.7 10.4 8.1 0.4 7.1 8.6
DO (mg L−1) 5.9 1.3 4.9 7.4 9.8 2.0 6.5 12.2
Chl a (µg L−1) 59.6 36.6 20.9 93.7 9.0 5.0 3.1 15.6
SPM (mg L−1) 64.8 14.6 50.8 80.0 40.9 25.2 6.4 100.4
POM (mg L−1) 33.4 16.9 20.0 52.5 12.3 21.5 2.4 76.9
Secchi disk (m) 0.28 0.7 0.20 0.33 1.6 0.7 0.0 2.7

TP (mg L−1) 0.1 0.09 0.04 0.21 0.05 0.02 0.03 0.09
TNorg (mg L−1) 12.8 4.7 9.4 18.2 3.5 0.2 3.3 3.8
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The SG Lake presented eutrophic conditions during the entire study period. In contrast with
LS, it presented higher Chl a, nutrient, MPS, and MOP values (Table 2). Transparency was low with
a Secchi disk mean value of 0.28 m and a mean euphotic zone value of 0.7 ± 0.2 m. Thus, it was
classified as an alkaline lake, rich in DO. With respect to the nutrient concentrations, TP was twice that
in LS, and TNorg was three times the concentration value. With respect to the land use in the area of
influence of the lake (780 km2), 62% of the area is devoted to agricultural systems, 22.9% to dunes, 9.8%
to marshlands, 1.7% to forests, and only 0.5% to human settlements. SPI values characterized the study
period as normal conditions. In contrast with LS, volume fluctuations during the study period were not
clearly associated with the water inputs (Figure 3b). The mean lake volume was 0.013 ± 0.0095 km3,
with maximum values during the spring of 2017. During the study period, the total amount of water
that entered the lake was 0.095 km3 (Figure 3b), reaching a maximum of 0.00061 km3 day−1 during
October 2016. Conductivity was low, classifying SG as a hyposaline lake (Table 2). Minimum values
were recorded in March 2017 and maximum in April 2017. Precipitation values presented minimum
values in July 2017 and maximum values in February 2017 (Table 2).

3.2. Lake Metabolism

In the LS Lake, GPP and R showed daily and seasonal variations, with R exceeding GPP
during most of the study period (Figure 4). The mean monthly R value (17.21 mmol O2 m−3 day−1)
slightly exceeded the mean monthly GPP value (16.61 mmol O2 m−3 day−1) (Figure 4d)
presenting a GPP/R ratio of 0.91. Monthly GPP ranged between 6.32 mmol O2 m−3 in June 2014,
and 29.1 mmol O2 m−3 day−1 in January 2014. GPP presented a seasonal pattern increasing during
summer and spring and decreasing during autumn and winter (Figure 4a,d). Temporal variation in R
presented a similar pattern and was positively correlated with GPP (Figure 5). The minimum monthly
R value was 8.35 O2 m−3 day−1 during June 2014 and the maximum value was 30.8 O2 m−3 day−1 in
January 2014 (Figure 4b,d). NEP monthly values varied between −7.0 O2 m−3 day−1 during April 2014
and 3.5 O2 m−3 day−1 during December 2014. NEP < 0 occurred during most of the study period except
during spring of 2014 (Figure 4c,d). Mean monthly NEP value was−1.1 O2 m−3 day−1 classifying LS as
a heterotrophic lake during the study period. Fourier analysis showed maximum densities on monthly,
11-day and weekly scales, and minor scales at 3 days for the three metabolic variables. With regard to
the environmental variables, the water input, water temperature, wind speed, and conductivity coincide
with these scales, whereas the water volume only showed maximum densities on the monthly scale.

In SG lake GPP and R also showed daily, and seasonal variations, with R showing greater
or similar values with respect to GPP (Figure 4). The mean R value was 13.9 O2 m−3 day−1,
and the mean GPP value was 12.6 O2 m−3 day−1 presenting a GPP/R ratio of 0.93. Monthly GPP
ranged between 8.1 O2 m−3 day−1 during October 2016 and 21.2 O2 m−3 day−1 during March 2017
(Figure 4h). GPP showed a seasonal pattern with maximum values during summer of 2017, decreasing
towards colder months. R presented a similar seasonal pattern (Figure 4f,h) with minimum values
during October 2016 (7.2 O2 m−3 day−1) and maximum during March 2017 (25.8 O2 m−3 day−1).
Both variables were positively correlated (Figure 5). The NEP mean value during the study period was
−1.25 O2 m−3 day−1, with NEP < 0 during most of the study period, classifying SG as a heterotrophic
lake (Figure 4g,h). Minimum NEP values were recorded during March 2017 (−4.1 O2 m−3 day−1) and
maximum during October 2017 (0.9 O2 m−3 day−1) (Figure 4h). Fourier analysis showed maximum
densities on monthly, 11-day and weekly scales and minor scales at 3 days for the three metabolic
variables. These coincide with the maximum densities found in the water input, DO, wind speed,
and water temperature, whereas the lake volume only presented maximum values on the monthly
scale and conductivity on the monthly and 10-day scales.



Water 2018, 10, 1136 9 of 16

Water 2018, 10, x FOR PEER REVIEW  10 of 18 

 

 

Figure 4. Calculated daily and monthly GPP: Gross primary production, R: community respiration, 

and NEP: net ecosystem production values for the (a–d) La Salada and (e–h) Sauce Grande lakes. 

Gaps correspond to periods of replacement or cleaning and calibration of the sensors. 

3.3. Regulation of Lake Metabolism 

With respect to the average weekly metabolism rates, in LS lake GPP, R, and NEP were 

positively correlated with water temperature and wind speed during the study period. Moreover, R 

and GPP were also positively correlated with the conductivity. Finally, R was negatively correlated 

with lake volume, and NEP was positively correlated (Figure 5). In the case of SG lake, GPP and R 

Figure 4. Calculated daily and monthly GPP: Gross primary production, R: community respiration,
and NEP: net ecosystem production values for the (a–d) La Salada and (e–h) Sauce Grande lakes.
Gaps correspond to periods of replacement or cleaning and calibration of the sensors.

3.3. Regulation of Lake Metabolism

With respect to the average weekly metabolism rates, in LS lake GPP, R, and NEP were positively
correlated with water temperature and wind speed during the study period. Moreover, R and GPP
were also positively correlated with the conductivity. Finally, R was negatively correlated with lake
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volume, and NEP was positively correlated (Figure 5). In the case of SG lake, GPP and R were positively
correlated with water temperature and negatively correlated with lake volume, whereas NEP was
positively correlated (Figure 6). The environmental variables measured monthly (e.g., TP, TNorg,
Chl a, etc.) were not included in the statistical analysis because of the small number of measurements.
From multiple regression analyses the variables that best described the metabolism rates from the daily
measurements were the water temperature, wind speed, and lake volume for both lakes (Table 3).

Table 3. Multiple regression analysis for GPP: Gross primary production, R: community respiration,
and NEP: net ecosystem production as a function of Temp: water temperature (◦C), Wind: wind
speed (m s−1) and Vol: lake volume (m3 seg−1) in the La Salada and Sauce Grande lakes during the
study periods.

Lake Dependent Variable Parameter R2 Standarized
Regression Coefficient t P

La Salada

GPP
Temp

0.392
0.51 1.32 <0.0001

Wind 0.50 −0.12 <0.0001
Vol −1.50 −294.61 <0.0001

R
Temp

0.299
0.50 1.09 <0.0001

Wind 0.49 −0.19 <0.0001
Vol −1.50 −507.73 <0.0001

NEP
Temp

0.362
0.50 2.42 <0.0001

Wind 0.50 −0.29 <0.0001
Vol −1.50 −831.22 <0.0001

Sauce Grande

GPP
Temp

0.255
0.4 0.91 <0.0001

Wind −0.09 −0.68 <0.0001
Vol −1.34 −4.80 <0.0001

R
Temp

0.302
1.1 1.29 <0.0001

Wind −0.72 −0.57 <0.0001
Vol 0.57 0.74 <0.0001

NEP
Temp

0.314
−0.35 2.30 <0.0001

Wind −0.57 −1.14 <0.0001
Vol 1.49 31.14 <0.0001
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production, R: community respiration, and NEP: net ecosystem production (mmol m−3 day−1) with the
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production, R: community respiration, and NEP: net ecosystem production (mmol m−3 day−1) with the
environmental variables Temp: water temperature (◦C), Vol: lake volume (m3 seg−1), Cond: electrical
conductivity (mS cm−1), and wind speed (m s−1) for the Sauce Grande lake during the study period.

4. Discussion

Rates of ecosystem metabolism obtained in both lakes showed large variations on a daily basis
and across seasons during the study period. The general annual balance characterized both shallow
lakes as heterotrophic. With respect to other studies that have dealt with ecosystem metabolism, only a
few were carried out in shallow saline systems and at low frequency [7,58,59]. Moreover, most of them
were in the Northern Hemisphere and only for the few months when they were iceless (e.g., [6]) and
not over the entire year as in this study. If LS and SG NEP rates are compared with other shallow lakes,
most of them showed higher negative [2,10,59–61] or positive NEP values [6,10,59,62]. However, most
of the other data referred to periods of only a few months, usually over the summer, when productivity
was greatest. In this study the net heterotrophic conditions found contradict the expected NEP > 0
values according to their nutrient and Chl a concentrations [4,10], but again, these studies are based
on the analysis of a short period and may differ in comparison with the estimations of ecosystem
metabolism based on an entire year.

Daily GPP and R were closely linked during the entire study period. This is consistent with the
positive correlation founded between GPP and R, and the monthly NEP values near zero during most
of the study period. According to [1] this could be explained by the relatively rapid respiration by
bacteria and zooplankton of the newly produced organic matter within the lakes. This could be the
case in both lakes as high abundances of zooplankton for LS (up to 1300 ind L−1), bacteria (up to
log10 3.89 colony formation units (CFU)), and mesozooplankton (up to 100 ind L−1) for SG are cited in
previous studies [13,35,37]. In other studies, GPP and R were are also coupled and positively correlated
as in this case [6,8,16]. Nevertheless, it was documented that the presence of high winds or unusual
precipitation events could temporarily produce decoupling between these two variables [9,63,64].
However, although LS and SG are characterized by the presence of high winds [43], neither of the
lakes showed this kind of disruption.
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According to the temporal pattern for metabolic rates in both lakes, maximum values for GPP and
R were found during warmer months and minimum values towards colder months. This was reflected
in the positive correlations of the metabolic rates with water temperature. This is in agreement with
the results cited for other shallow lakes where seasonal patterns are the result of variations in light and
temperature [2,6,7,16,61]. As well as the water temperature, most of the processes were influenced
by lake volume for both lakes, and wind speed and conductivity for LS. In other studies, wind speed
presented a negative relationship with GPP and NEP values associated with turbidity conditions [6].
Nevertheless, in LS, it was positively related to the metabolic rates because, unlike other shallow lakes,
LS has charophytes on the bottom that prevent the resuspension of sediments with major wind speed.
Finally, the use of lake volume instead of water level, as in other studies [6,61], resulted in better
comparisons between the morphologically different lakes as in this case. SG presented a greater area
than LS, but the lake volume was similar and so they were comparable. In this study, the lake volume
was negatively correlated with GPP and R, as in other studies, and could be attributed to the dilution
of organisms and nutrients within the lake [61].

The annual GPP/R ratio in both lakes was near one, indicating that the main substrate for R is the
GPP within the lake; nevertheless, the fact that NEP < 0 determines that this would be insufficient.
Possibly, the origin of organic resources respired during heterotrophy conditions might arise either
from the excess of GPP generated when the system is under autotrophic conditions or from the
allochthonous material. The allochthonous input of organic matter via streams is an important source
of supplementary energy for the community R [14,16]. Besides, both lakes are located in important
agricultural areas where fertilization of crops with nitrogen is a common practice applied from June to
July (seedtime) and from September to October (tillering) [65]. In a previous study in LS an increment
in GPP and R values was observed after water input [7], and an increase in nutrient concentrations
and a decrease in conductivity, leading to changes in plankton composition and biomass [13]. In this
study, an increase in GPP and R values was also observed in LS, accompanied with the maximum
increase in its volume. Considering that the water comes from the irrigation of crops, this finding
suggests that the supply of nutrients, new organic material, and/or plankton organisms from the river
would promote GPP and R, respectively. According to [5], the input of DOC and nutrients increases
with a high drainage ratio (catchment area to lake surface area). Also, small lakes possess a long
shoreline relative to lake volume and receive significant inputs of organic matter [66], increasing R
and leading to NEP < 0 conditions [1,10]. In the same manner, in SG, GPP, and R showed a stronger
negative relation with lake volume, but NEP was positively correlated. Nevertheless, SG has a different
hydrological function from LS, where greater water input was recorded, but the lake volume did not
respond immediately to these variations as in LS. The explanation for this is that SG is a flushing lake
and part of the input and production within the lake of DOC, nutrient and organisms are delivered to
the sea. Nevertheless, the increases in nutrient concentrations coinciding with the increments in water
input and lake volume could explain the positive correlation with NEP values for both lakes.

Finally, according to Scheffer’s stable states theory [31], LS is in a clear state during the whole
study period and dominated by the presence of charophytes which prevent the resuspension of
sediments [13], whereas SG is in a turbid state during the whole study period and dominated by
phytoplankton [36,37,67]. It is well known that solar light promotes primary production (GPP) and the
later the respiration processes (R) that occur within a lake ecosystem [68]. The fact that the euphotic
zone is reduced in SG, unlike LS, could explain the lower GPP rates and explain why it presented a
stronger negative relation with lake volume. Meanwhile in LS, GPP was weakly related to lake volume
because charophytes (and phytoplankton as well) receive light during the whole year, independently
of the significant water level fluctuations. In a study of 25 Danish lakes with alkaline and nutrient-rich
catchments and relatively low transparency conditions [5], it was found that the benthic zone was
dominated by sediments rich in carbon, with a high demand of oxygen. This suggests the dominance
of heterotrophic processes, which is in accordance with the case of SG. Furthermore, according to
a study performed in two eutrophic lakes with similar nutrient concentrations, they found that the
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one with submerged plants presented substantially higher GPP rates than the one that only had
phytoplankton and periphyton [69]. In this study, LS presents submerged charophytes, and the GPP
rates were greater than in SG. Furthermore, if salinity conditions are considered, LS is a mesosaline
lake. Increased salinity could result in ion toxicity and osmotic stress accompanied by high mortality
or lower reproduction and growth rates for salt-sensitive taxa [70,71]. Therefore, it would be expected
that these conditions are limiting GPP in comparison with SG.

In conclusion, temperature resulted the main driver of ecosystem metabolism for both lakes, but
the NEP values resulted similar during this study, in contrast to what was expected from the different
salinity, trophic status, and hydrology conditions. The high transparency conditions of LS allowed
the presence of macrophytes. This was in conjunction with the endorreic condition and the fact that
water input promoted increases in GPP and R. In contrast, the flushing and turbid conditions in SG
promoted decreases in GPP and R rates under lower volume conditions. These findings emphasize the
importance of water management in lakes found in agricultural systems.
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