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Abstract: Grouting is widely used for mitigating the seepage of underground water and enhancing
the stability of fractured rock mass. After injection, the viscosity of the grout gradually increases until
solidification. Conventional multifield analysis models ignoring such effects greatly overestimate the
penetration region of the grout and the stability of the grouted rock structures. Based on the 3D unified
pipe-network method (UPM), we propose a novel numerical model considering the time-dependent
viscosity of the grout, therein being a quasi-implicit approach of high efficiency. The proposed
model is verified by comparing with analytical results and a time-wise method. Several large-scale
3D examples of fractured rock mass are considered in the numerical studies, demonstrating the
effectiveness and robustness of the proposed method. The influence of the time-dependent viscosity,
fracture properties, and grouting operation methods are discussed for the grout penetration process.

Keywords: grout penetration; transient analysis; time-dependent viscosity; unified pipe-network
method

1. Introduction

The existence of discontinuous fractures provides paths for underground water, which reduce
the mechanical strength and increase the permeability of the rock mass. In engineering practices,
sealing the fractured rock mass is a critical issue in large-scale rock engineering projects such as mining,
civil, and hydrogeology engineering for avoiding potential water and mud inrush [1,2]. As one of the
most effective methods, grouting is a widely used strategy for improving the mechanical properties of
rock mass and mitigating groundwater leakages [3–7]. One of the biggest challenges in grouting flow
in fractured rock masses is computing the penetration regions of the grout. Because of the complexity
of the fracture networks, bare experimental and analytical investigations [8–12] are not sufficient
for evaluating their grouting qualities [13–16]. The results achieved by these approaches are mainly
suitable for rock masses with a single fracture or regular fracture systems, which cannot reproduce the
grouting flow in masses with multiple irregular fractures [17].

For predicting the grouting regions in fracture rock masses, numerical methods are much more
flexible and are commonly implemented under the frameworks of extended [18–22]/embedded
[23–32]/phase-field [33–42] finite element methods; rigid body based methods [43–49]; and even
some sophisticated particle methods and peridynamic-based methods [50–55]. Nevertheless, most
of these methods are developed for continuous media such as plain concrete [56–58], which are not
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suitable for highly fractured rock masses when the significant geological features of the fractures
are not considered explicitly. Discrete fracture networks (DFNs) are widely used for simulating
liquid flows in fractured rock mass. DFN methods can directly model the geometry and hydraulic
properties of discrete fractures, being advantageous compared to conventional continuum-oriented
models. Two-dimensional DFN methods for simulating the grouting flow in fractured rock mass have
been developed. For example, Yang et al. [59] simulated the grout propagation in a vertical section
of a DFN in which equivalent permeability tensors for the heterogeneous and anisotropic media
are used. Hässler et al. [60], Rahmani [61] and Fidelibus [62] studied the grouting in a two-dimensional
structured network of fractures. They assumed a pipe network as an equivalence to a DFN. Pipes are
one-dimensional conductors aligned along the fracture planes, and connect the mid-points of two
traces [63–65].

The 3D unified pipe-network method (3D UPM) [66–69] is an efficient numerical approach for
capturing the energy/mass transport processes in 3D fracture networks. UPM transforms the 3D
discontinuous fracture network into a 3D system with intersected artificial 1D pipe segments. From this
point of view, UPM is similar to lattice elements approaches (LEM) [70–72], both of which simulate
complicate 3D processes in an equivalent lower-dimensional system. On the other hand, UPM is
different from LEM as

• UPM uses pipes for capturing transport processes but ignores mechanical behaviors, while LEM
uses trusses for capturing the mechanical behaviors;

• UPM introduces pipes parallel to the fracture planes to capture the transport processes in fractures.
On the other hand, in LEM the breakages of trusses represent damage/fractures which originally
intersect with the fracture planes, but are not parallel to;

• Unlike LEM, UPM cannot simulate fracture propagations and nucleations, which is suitable for
simulating transport processes in naturally highly fractured rock mass.

Most numerical models assumes Darcy’s flow and uses heat equation [56–58] for simulating
grouting penetration, which is different from models based on computational fluid dynamics and
does not trace the grout flow. Hence, only the distributions of pressure are obtained as results. It is
impossible to directly account for the time-dependent viscosity. Most methods assume constant
viscosity and ignore the solidification processes of the grout after injection. However, the grouting
materials for quickly sealing water-bearing fractures in rock masses possess time-dependent viscosities
that increase rapidly after injection due to chemical reactions (solidification), such as with silica sol and
cement-silicate sodium grout [73–75], which have been proven by experimental investigations [76,77].
To the best of our knowledge, there is limited research on simulating the time-dependent viscosity of
grout and its impact on the grouting process in the framework of DFN models.

In this work, we present a novel and simple strategy for accounting for the time-dependent
viscosity in 3D UPM, which is a quasi-implicit method and exploits the advantages of UPM. A spatial-
and time-dependent parameter is introduced for indicating the elapsed time of the grouting flow to
reach a specific position from the injection point. With this strategy, the viscosity of the grout will also
be updated at every time step, providing results in good agreement with experimental investigations.
The remaining parts of the paper are organized as follows: In Section 2, the control equations of
the grout are briefly introduced, with corresponding discretized forms under the UPM framework.
Then, the strategy for accounting for the time-dependent viscosity of the grouting is prescribed.
In Section 3, our novel strategy is verified by comparing with analytical solutions and experimental
results given in [77]. In Section 4, the grouting process in the fracture networks is simulated, and the
influential factors of the grouting are analyzed. The main influential factors are found to include (i) the
material properties of the grout, (ii) the characteristics of the fractures, and (iii) the grout operation
method. Finally, the concluding remarks are given in Section 5.
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2. Methodology

2.1. Rheological Models of Grout

In this paper, we assume single-phase flow in our analysis and consider only the grout flow.
The grout penetration depth is estimated by the region with grout pressure higher than or equal to the
targeted values. The rheological models of grout are divided into two main categories: Newtonian
fluid and Bingham fluid. The linear constitutive model of the Newtonian fluid can be expressed as:

τ = µγ, (1)

where τ is the shear stress (Pa), µ is the dynamic viscosity (Pa · s), and γ is the shear rate (1/s).
Fluids such as very-fine-grained cement-based grout (silica sol) and bacterial grout (MICP) can be
regarded as being of this type [78].

A Bingham fluid is a type of viscoplastic fluid that can only flow at a higher shear stresses.
The constitutive model of a Bingham fluid is still linear, and can be expressed as

τ = µγ + τ0, (2)

where τ0 is the initial yield stress (Pa). When the water–cement ratio is smaller than 1, the cement-based
grout can be considered as this type [79].

The grout flow in a one-dimensional fracture is assumed to be laminar, steady, and incompressible.
Figure 1a is a schematic illustration of a Newtonian grout flow in a single fracture, where w is the
hydraulic aperture (m), dx is the length of a small control volume in the x-direction (m), Pg is the
grouting pressure (Pa), and Pw is the water pressure (Pa). The average flow velocity of a Newtonian
fluid in a fracture can be described using the following equation [3]:

v = − k
µ(t)

∂p
∂x

(3)

where x is the global coordinate for the fracture (m), p is the grout pressure (Pa), µ(t) is the time-varying
viscosity (Pa · s), and k is the fracture intrinsic permeability (m2). The grout flow in fractures obeys the
Darcy’s law, thus the permeability for fractures can be written as k = w2/12.

Pg b

dx

Pg b

�0

(a) (b)

dx

PwPw

�0

v v

Figure 1. Schematic illustration of the grout flow in a fracture joint (a) Newtonian grout flow,
(b) Bingham grout flow.

Figure 1b shows the Bingham grout flow between the parallel plates. Due to the effect of the
initial yield stress, the mean velocity of the grout forehead is given:

v = −
k

µ(t)
(

∂p
∂x

+ δ),

∣∣∣∣∣∂p
∂x

∣∣∣∣∣ > |δ| ,
v = 0, others,

(4)
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where δ = −τ0/w is the starting pressure gradient. The grout will only flow in the fracture when the
pressure gradient is higher than the starting pressure gradient.

2.2. Unified Pipe-Network Method (UPM) Discrete Model

In the UPM framework, the energy/mass transport inside the fracture is equivalently considered
as energy/mass transport through the artificial pipes along the fracture boundaries. The equivalent
hydraulic parameters of the pipes are derived based the unstructured triangular mesh (see Figure 2).

i

j

k
i

j

k

Fracture Pipes

Figure 2. Transformation of the mass transport inside a fracture into the mass transport through
artificial pipes on the fracture boundaries (regarding triangular mesh).

Figure 3 shows a triangular fracture with node i, j, k. o is the center point of the triangular fracture
and g, f , h are the corresponding three perpendicular feet of o to the edges. The flow in each pipe can
be seen as the flow through the line linking the point o and points g, f , h. Points o, g, f , h separate the
triangle into three polygons as i f og, jgoh, and kho f . The areas of these polygons provide information
of the control volume of the nodes i, j, k as:

Vi = 1 Ai f og,
Vj = 1 Ajgoh,
Vk = 1 Akho f .

(5)

Based on [66,67], for the pipe ik, the fluid flow rate Qik (m3/s) shown in Figure 3 can be
evaluated as

Qik = Q · no f =
∫

lo f

v · nof dl, (6)

where nof is a unit vector normal to the face o f , which can be calculated as:

nof =
1
lik

[
(xk − xi)

−→x + (yk − yi)
−→y
]

, (7)

where lik is the length of pipe ik.
In each fracture triangle element (composed of nodes i, j, and k), the pressure within the triangle

mesh can be written as
p(x, y) = ∑ Nm pm, m = i, j, k, (8)

where Nm is the linear shape function, expressed as

Nm =
1

2Aijk
(am + bmx + cmy), m = i, j, k. (9)
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Figure 3. Procedure of pipe equivalence.

The pressure gradient in the triangular domain is calculated as:

∇p =
1

2Aijk
((bi pi + bj pj + bk pk)x̃ + (ci pi + cj pj + ck pk)ỹ), (10)

where Aijk is the triangle element area. The coefficients bm and cm depend on the coordinates of the
three nodes in each triangle element. These coefficients are represented as

bi = yj − yk
bj = yk − yi
bk = yi − yj

and


ci = xk − xj
cj = xi − xk
ck = xj − xi

. (11)

For the pipe ik, the flow rate of Newtonian fluid (QN
o f ) can be expressed as:

QN
ik =

Ao f w2

12 µ(t)
∆p
lik

=
lo f w3

12 µ(t)
∆p
lik

, (12)

where Ao f is the cross-sectional area of the face o f regarding a 3D fracture with aperture, Ao f = w lo f
in this paper (no filling media inside the fracture), with lo f as the length of o f . lik is the length of
pipe ik.

Similarly, the flow rate of Bingham fluid (QB
o f ) in pipe ik can be expressed as:

QB
ik =

lo f w3

12 µ(t)
∆p
lik

+
lo f w3

12 µ(t)
δ, ∆p > 0

∣∣∣∆p
lik

∣∣∣ > |δ| ,
QB

ik = 0, other,

(13)

where the superscripts N and B represent the Newtonian fluid and Bingham fluid, respectively. For the
fracture pipe ik, the equivalent conductance coefficient K f

ik can be expressed as:

K f
ik =

lo f w3

12 lik µ(t)
. (14)

With this procedure, the whole fracture network can be transformed into a 3D pipe network
(see Figure 4) with equivalent mass transport properties.
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(a) (b)

Figure 4. Transforming a 3D fracture network into an equivalent pipe network: (a) domain with
fractures (b) domain with equivalent pipe networks.

With the assumptions of the UPM, in this paper, the grout flow is simulated with
a one-dimensional Dupuit–Forchheimer model [80,81] for saturated flow as:

S
∂h
∂t

= −∇(−K∇h) + qs, (15)

where S is the storage coefficient, h is the hydraulic head (m), and qs are the source terms (m/s).
For each node, the grout flow obeys the law of mass conservation. Therefore, the governing

equation in the UPM can be expressed as:

Bi
∂p
∂t

+ ρ
ni

∑
i=1

Qi = ρQsi, (16)

where Bi = SVi/g, Vi is the control volume (m3) of node i (see Equation (5)), ρ is the density of the
grout (kg/m3), and g is the gravitational acceleration (m/s2).

2.3. Considering the Time-Dependent Viscosity in UPM

In the framework of the UPM, the fractures are equivalently modeled as pipe networks. Points in
the considered domain are connected with pipes. For each pipe, the velocity of the grout flow is
determined by the pressures of the two nodes. When the pressure distribution is known, the elapsed
time for the grout to transport from one point to another can be calculated by the length of the pipe
and the velocity of the grout. The velocity of the grout depends on the pressure gradient as well as the
viscosity, and the viscosity depends on the elapsed time for the grout to transport in the pipes. Hence,
we introduce a new parameter at every node as “the elapsed time for the grout to reach one node from
the injection point”, denoted as “φ”. Obviously, φ = 0 at the injection points of the grout. For a pipe
connecting nodes i and j, a simple relationship exists:

φj = φi + Li,j/vi,j, (17)

where Li,j is the length of the pipe. vi,j is the velocity of the grout flow, which is a function of pressure
and viscosity at the nodes, as v(µi, µj, Pi, Pj), built based on Equations (3) and (4). Furthermore,
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the viscosity of the grout is a function of φ (i.e., µ = µ(φ)). Li et al. [82] presented a power law based
on experimental investigations:

µ(φ) = k
(

φ

1 s

)n
+ µ0, (18)

where k is the flow consistency index (Pa · s), n is the flow behavior index, and µ0 is the initial viscosity
(Pa · s). In summary, if Pi, Pj, and φi are known, φj is the only unknown in Equation (17), which can be
solved by a standard Newton method. To solve for φ at time step t, a quasi-implicit strategy is used: the
pressure distribution of time step t− 1 is used for implicitly solving µ at time step i. Compared to the
analysis with constant viscosity, our method is very efficient, requiring negligible computing efforts.

Here, we give an example of how to calculate φ. Figure 5a shows a fracture plate consisting of five
nodes, and the pressures at the nodes P1 · · · P5 are known (P1 · · · P5 are obtained in the last time step).
We assume that node 1 is the injection point and that φ1 = 0 (µ1 = µ0). Nodes 2, 3, and 4 are adjacent
nodes of node 1, and φ at these three points can be calculated by solving the following equations:

φi,1 = φ1 + Li,1/vi,1,

with

vi,1 = v(µi, µ1, Pi, P1) = −
2 ki,1

µi + µ1

Pi − P1

Li,1
, i = 2, 3, 4;

(19)

in which vi,1 is obtained based on Equation (3).
Since nodes 2 and 4 only connect to node 1, their φ values are only such that φ2 = φ2,1 and

φ4 = φ4,1. However, node 3 connects not only to node 1, but also to nodes 2 and 4. In other words,
three values of φ exist at node 3, φ3,1, φ3,2, and φ3,4, which are obtained based on the pipes connecting
to nodes (3,1), (3,2), and (3,4). Here, we make a direct assumption that φ3 is the minimum value of φ3,1,
φ3,2, and φ3,4 (i.e., φ3 = min (φ3,1, φ3,2, φ3,4)). Similarly, φ5 = min (φ5,3, φ5,4)—see Figure 5b. With this
method, the φ values at each node are obtained sequentially from the injection points.

(a) (b)

Figure 5. Calculation of φ in the unified pipe-network method (UPM) model: (a) calculate φ from
injection point, (b) determining the values of φ from one node to another.

3. Model Verification

In this section, a rectangular fracture (10 m× 10 m) in a cube with dimensions 10 m× 10 m×
10 m is used for verification. The grout was injected into a single fracture with an injection hole
(see Figure 6). Two cases were considered: (i) comparing our results to the analytical solutions and (ii)
comparing our results to the experimental results given in [77], considering time-dependent viscosities.
With UPM, a self-developed mesh generator [83] is adopted to generate triangle elements for the
fractures. The parameters employed in the simulation are listed in Table 1.
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Figure 6. Three-dimensional model with a fracture for verification.

Table 1. Parameters for verification simulation.

Parameters Symbol Unit Value

Grout injection pressure p Pa 30, 000
Pore pressure of fracture p0 Pa 0
Grout density ρ kg/m3 1400
Yield stress τ0 Pa 1.0
Initial grout viscosity µ0 Pa · s 0.04
Flow consistency index k Pa · s 0.003182
Flow behavior index n − 2.23
Fracture aperture b m 0.005
Storage coefficient S [-] 1.4
Gravitational acceleration g m/s2 9.8

3.1. Verifying the Rheological Models

In this subsection, we first verify the rheological models, where the viscosity of the grout is
considered to be a constant value µ0. The analytical solutions for Newtonian fluid and Bingham fluid
have been proposed by Funehag [3] and Gustanafson [84], which are taken for verification.

Funehag [3] calculated the grout penetration for a Newtonian fluid with constant viscosity µ0 as:

I = b

√
∆pt
6µ0

, (20)

where ∆p is the difference between the injection pressure and initial pore pressure, and t is the
flow time.

Gustafson [84] proposed a solution for grout penetration distance (I) and penetration time (t):

I = ID · Imax, (21)

t = tD · t0, (22)

ID =
√

θ2 + 4θ − θ, (23)
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t0 =
6∆p · µ0

τ02 , (24)

Imax =
∆pb
2τ0

, (25)

where tD and ID are relative penetration time and relative penetration length, respectively, t0 is the
characteristic grouting time, Imax is the maximum grout penetration, and θ is a ratio influenced by tD.
However, the ratio is different for one-dimensional flow and two-dimensional flow:

θ =
tD

2(0.6 + tD)
1D,

θ =
tD

2(3 + tD)
2D.

(26)

As shown in Figure 7, the grout penetration length along the injection hole obtained by the UPM
simulation was consistent with the analytical results at each time step, indicating the effectiveness of
our rheological models of grout.

(a) (b)

Figure 7. Comparison of the UPM model with the analytical solutions: (a) Newtonian fluid,
(b) Bingham fluid.

3.2. Transient Flow Considering the Time-Dependent Viscosity of Grout

Zhang et al. [77] experimentally investigated the grout penetration length of a type of grout with
time-dependent viscosity. The experiments were reproduced with our model. The total simulation time
was 60 s, and the viscosity of grout ultimately reached 29.4 Pa · s. Because our strategy is quasi-implicit
and the pressure distributions at the last time step were used for calculating the distributions of φ and
µ in this step. We attempted different time intervals ∆t for sensitivity analysis. As shown in Figure 8,
comparisons between our results and the experimental results indicated that the results were not
sensitive to the selection of ∆t when ∆t ≤ 0.05 s. Furthermore, we also tested the influences of UPM
discretization. As shown in Figure 9, a total grid number larger than 10, 000 assured the reliability of
the results.

Figure 10 shows the comparisons of the grouting pressure distribution between our results and the
experimental results at different times, with ∆t = 0.05 s and a grid number equal to 15,514. Generally,
our results were in agreement with the experimental results, indicating that the proposed model was
capable of simulating grout flows with time-dependent viscosities.
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Figure 8. The influence of the time step on the UPM results.
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Figure 9. The influence of the grid density on the UPM results.
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Figure 10. Comparison of the UPM model with results obtained by Zhang [77].
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4. Application in Simulating Grouting Process in Rock Mass with Fracture Networks

The UPM was coded with C++, and all the cases in this section were calculated within 2 h
on a normal desktop. Parametric studies were performed to determine the influences of various
parameters, including (i) the material properties of the grout (viscosity), (ii) the characteristics of the
fractures (number, aperture, and roughness), and (iii) the grout operation method (the grout pressure,
the number of boreholes, and the arrangement of the boreholes) on grout penetration in fractured
rock masses.

4.1. The Influence of Viscosity

The commonly used quick-setting slurry has two components: cement and sodium silicate
slurries. The viscosity function µ(φ) depends on the ratio of cement slurry to sodium silicate slurry
(C:S). According to the experimental results provided in [85], when C:S = 1, the flow consistency index
(k) and flow behavior index (n) are 0.003182 Pa · s and 2.23, respectively, while they are 0.0008427 Pa · s
and 2.694 when C:S = 2 (see Figure 11). The other parameters were considered to be the same as listed
in Table 1.

0 10 20 30 40 50 60
0

10

20

30

40

50

60
 C : S = 1
 C : S = 2

 

 

V
is

co
si

ty
 (P

a.
s)

Time (s)

Figure 11. Grout viscosity with time. Reference [77].

Figure 12 shows the pressure distributions for a constant viscosity (µ = µ0) and time-dependent
viscosity with varying C:S. The results indicate that assuming a constant viscosity greatly overestimated
the penetration length of the grout, and the grout flow lasted for a long time. In the cases with a
time-dependent viscosity, on the other hand, the grout flow almost stopped after 30 s.
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Time = 10s Time = 30s Time = 60s

(a) Constant viscosity

(b) C : S = 1

(c) C : S = 2

Figure 12. Distribution of pressure at different simulation times.

4.2. The Influence of Fractures and Grout Operation Method

We generated fracture networks to analyze the influences of the fractures on grout penetration
with the same cube model size of 10 m× 10 m× 10 m. Two sets of elliptical fractures were generated
by a random function with the parameters listed in Table 2. For each fracture, its center coordinate
followed a uniform distribution, and the major and minor axes followed a logarithmic distribution.
The Fisher coefficient was 22. The configuration of the random fractures and their mesh are illustrated
in Figure 13. The red line represents the borehole through the fractured rock. In the model, there were
7088 nodes and 13, 210 triangle elements in total. The grout parameters were the same as those listed in
Table 1. The grout was injected through the borehole with an injection pressure of 30 kPa. The pressure
distributions are shown in Figure 14, therein indicating that the pressure distributions became stable
after 90 s.
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Table 2. Parameters adopted for the generation of the fracture models.

Group Fracture Number Mean Length (m) St Dev Dip Angle (Degree) Dip Direction (Degree)

1 10 x-axis 5 2 16 40
y-axis 3 2

2 10 x-axis 3 2 56 256
y-axis 3 2

Note: St dev is standard deviation.

10

0

y

5

2

0

4

z

2

6

8

x

4

10

6
8 010

Figure 13. The fracture grid model.

T = 10s T = 20s T = 30s

T = 60s T = 90s T = 120s

Figure 14. Grout flow process.

Here, we define the grout filling rate as the ratio between the area of grout-filled fractures and the
total fracture area. Figure 15 shows the influences of a uniform aperture and joint roughness coefficient
(JRC) [86] on the grout filling rate, indicating that the grout filling rate increased with increasing
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joint aperture and decreased with increasing JRC. The influence of JRC on intrinsic permeability was
considered by an empirical equation given in [47].

Figure 15. Sensitivity analyses with respect to the fracture aperture and joint roughness. (JRC: joint
roughness coefficient.)

Furthermore, we tested different grout operation methods. Figure 16 shows the influences of the
grout pressure for a single borehole, and Figure 16 shows the influences of the borehole number at the
same injection pressure of 30 kPa, indicating that the grout filling rate was increased by increasing
either the injection pressure or the number of boreholes.

Figure 16. Sensitivity analyses with respect to the grout pressure and the number of boreholes.

5. Conclusions

In this study, a three-dimensional numerical model based on the UPM is developed for modeling
the transient grout penetration in fractured networks. Rheological models of grout, including
Newtonian and Bingham fluids, are considered. A novel quasi-implicit method is presented to
account for the time-dependent viscosity of grout, therein calculating the elapsed time φ of the grout
to reach specific positions from the injection points. By comparison to analytical and experimental
results, the new model is validated. Finally, parametric and case studies are presented regarding
a complicated 3D fractured rock mass with boreholes. All the results evidence the effectiveness of
our model, which estimates the penetration regions and time for the stabilization of grout with a
time-dependent viscosity.
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15. Draganović, A.; Stille, H. Filtration and penetrability of cement-based grout: Study performed with a
short slot. Tunn. Undergr. Space Technol. 2011, 26, 548–559. [CrossRef]

16. Lee, J.; Bang, C.; Mok, Y.; Joh, S. Numerical and experimental analysis of penetration grouting in jointed
rock masses. Int. J. Rock Mech. Min. Sci. 2000, 37, 1027–1037. [CrossRef]

17. Neuman, S.P. Trends, prospects and challenges in quantifying flow and transport through fractured rocks.
Hydrogeol. J. 2005, 13, 124–147. [CrossRef]

18. Moës, N.; Bolbow, J.; Belytschko, T. A finite element method for crack growth without remeshing. Int. J.
Numer. Methods Eng. 1999, 46, 131–150. [CrossRef]

http://dx.doi.org/10.1016/j.ijrmms.2017.07.015
http://dx.doi.org/10.1007/s12665-015-4655-5
http://dx.doi.org/10.1016/j.tust.2006.12.005
http://dx.doi.org/10.1061/(ASCE)GT.1943-5606.0000465
http://dx.doi.org/10.1016/j.ijrmms.2008.02.003
http://dx.doi.org/10.1016/j.tust.2012.02.014
http://dx.doi.org/10.1016/j.tust.2015.10.018
http://dx.doi.org/10.1016/0886-7798(96)00027-2
http://dx.doi.org/10.1016/S1365-1609(00)00080-0
http://dx.doi.org/10.4028/www.scientific.net/AMM.256-259.547
http://dx.doi.org/10.1016/j.enggeo.2004.08.007
http://dx.doi.org/10.1007/s10706-012-9512-7
http://dx.doi.org/10.1016/S0886-7798(01)00003-7
http://dx.doi.org/10.1016/j.tust.2005.08.011
http://dx.doi.org/10.1016/j.tust.2011.02.007
http://dx.doi.org/10.1016/S1365-1609(00)00040-X
http://dx.doi.org/10.1007/s10040-004-0397-2
http://dx.doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J


Water 2018, 10, 1122 16 of 18

19. Moës, N.; Belytschko, T. Extended finite element method for cohesive crack growth. Eng. Fract. Mech. 2002,
69, 813–833. [CrossRef]

20. Song, J.-H.; Areias, P.; Belytschko, T. A method for dynamic crack and shear band propagation with
phantom nodes. Int. J. Numer. Methods Eng. 2006, 67, 868–893. [CrossRef]

21. Areias, P.; Song, J.-H.; Belytschko, T. Analysis of fracture in thin shells by overlapping paired elements.
Comput. Methods Appl. Mech. Eng. 2006, 195, 41–43. [CrossRef]

22. Wu, J.-Y.; Li, F.-B. An improved stable XFEM (Is-XFEM) with a novel enrichment function for the
computational modeling of cohesive cracks. Comput. Methods Appl. Mech. Eng. 2015, 295, 77–107. [CrossRef]

23. Simo, J.; Oliver, J.; Armero, F. An analysis of strong discontinuities induced by strain-softening in
rate-independent inelastic solids. Comput. Mech. 1993, 12, 277–296. [CrossRef]

24. Saloustros, S.; Pelà, L.; Cervera, M.; Roca, P. Finite element modelling of internal and multiple localized cracks.
Comput. Mech. 2017, 59, 299–316. [CrossRef]

25. Saloustros, S.; Cervera, M.; Pelà, L. Tracking multi-directional intersecting cracks in numerical modelling of
masonry shear walls under cyclic loading. Meccanica 2018, 53, 1757–1776. [CrossRef]

26. Saloustros, S.; Cervera, M.; Pelà, L. Challenges, tools and applications of tracking algorithms in the numerical
modelling of cracks in concrete and masonry structures. Arch. Comput. Methods Eng. 2018. [CrossRef]
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Arch. Comput. Methods Eng. 2018, 25, 753–784. [CrossRef]

71. Grassl, P. A lattice approach to model flow in cracked concrete. Cement Concr. Compos. 2009, 31, 454–460.
[CrossRef]
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