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Abstract: More than one billion people will face water scarcity within the next ten years due to climate
change and unsustainable water usage, and this number is only expected to grow exponentially in the
future. At current water use rates, supply-side demand management is no longer an effective way to
combat water scarcity. Instead, many municipalities and water agencies are looking to demand-side
solutions to prevent major water loss. While changing conservation behavior is one demand-based
strategy, there is a growing movement toward the adoption of water conservation technology as a
way to solve water resource depletion. Installing technology into one’s household requires additional
costs and motivation, creating a gap between the overall potential households that could adopt this
technology, and how many actually do. This study identified and modeled a variety of demographic
and household characteristics, social network influence, and external factors such as water price
and rebate policy to see their effect on residential water conservation technology adoption. Using
Agent-based Modeling and data obtained from the City of Miami Beach, the coupled effects of these
factors were evaluated to examine the effectiveness of different pathways towards the adoption of
more water conservation technologies. The results showed that income growth and water pricing
structure, more so than any of the demographic or building characteristics, impacted household
adoption of water conservation technologies. The results also revealed that the effectiveness of rebate
programs depends on conservation technology cost and the affluence of the community. Rebate
allocation did influence expensive technology adoption, with the potential to increase the adoption
rate by 50%. Additionally, social network connections were shown to have an impact on the rate
of adoption independent of price strategy or rebate status. These findings will lead the way for
municipalities and other water agencies to more strategically implement interventions to encourage
household technology adoption based on the characteristics of their communities.

Keywords: agent-based modeling; water conservation; technology diffusion; social networks

1. Introduction

Water is undeniably necessary, supporting 7.4 billion people and over 8.7 billion species of
life. However, the growing human population and consequences of climate change have created
widespread water scarcity that is only expected to worsen in the coming decades. By 2025, 1.8 billion
people around the globe will face water scarcity [1]. Beyond damaging an individual’s quality of life,
water scarcity also negatively impacts ecosystem health and political and social stability [2]. Climate
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change adds further pressure to water resources, and government officials and policy advocates have
taken two different approaches to address growing water concerns: supply-side management and
demand-side management [3]. Supply-side management focuses more on increasing the availability
of water through the development and renewal of water infrastructure systems and identifying
new water sources [4]. This encompasses the creation of reservoirs, water pumps, and irrigation
systems to continue to have adequate water supplies. Supply-side solutions have been effective
historically; however, it does not influence water use patterns of the consumer, which is the next
necessary step in managing demand growth [4]. Demand-side management is based on the idea that
lowering a household’s (or other users’) usage for water will subsequently reduce water demand.
While implementing demand-side management to govern a typically inelastic good is controversial
among economists and planners, it has been shown in many studies to be effective in alleviating water
scarcity [5–8]. Ref. [6] reviewed different demand-side management tools and explored their potential
and effectiveness to save water under varying conditions in developed countries.

At its core, reducing residential water demand can be done by changing behavior or technology [6].
Changing someone’s behavior, according to [9,10], is a process including incentives and disincentives,
the modeling of behaviors, education, and persuasive communication. These techniques work best
with mostly-engaged audiences, are adopted infrequently, and are less likely to save water if people do
not trust the water authorities [11]. Despite all of the multifaceted approaches, changing behavior tends
to pan out only in the short term while the comprehensive installation of water-efficient appliances in
households has been shown to reduce indoor consumption by 35–50% [6]. Change in technology is
meant to curb the problems with behavior conservation changes by erecting a more permanent fixture
for conservation. In a report of California’s water scarcity, [12] found that one-third of the state’s water
usage could be saved with existing conservation technology. This total equates to more than 2.3 million
acre-feet of water. As technology improves, as it has drastically since this report was written in 2003,
water savings will only become more prominent. The dire state of water scarcity has diminished the
sufficiency of supply-side management. It will eventually become too difficult to track down additional
water sources, or there will simply be no more water left to find. Because of this, more research is
needed on demand-side approaches. Additionally, although there are two parts to demand-side water
management, change in technology will be the most permanent, applicable method heading into the
coming decades [13]. Change in behavior is typically ephemeral, while technology is more easily
maintained through water policy adoption. However, technology’s impact on policy implementation
and household adoption patterns still needs to be specified and characterized. Governmental rebate
availability, demographic and household characteristics, and external factors are variables that can
cause different adoption patterns. Additional costs or potential savings of technology adoption can also
be highly variable [14–16]. In addition, the role of “word of mouth” through social network interactions
has been shown to be influential to the adoption processes [17]. While some of these influential factors
have been researched to promote policy change and growth, there is a deficiency in the existing
literature as to how they all intersect and challenge water conservation technology adoption.

To mitigate water scarcity, understanding why—and to what extent—households adopt
conservation technology based on the demographic and household characteristic, social interactions,
technology cost, water price and other factors is crucial. To this end, the study presented in this paper
aimed to investigate the underlying factors and behaviors affecting water technology adoption of
residential consumers through the use of Agent-based Modeling (ABM). In the agent-based model
of the current study, households are agents categorized into the three adoption states of non-adopter,
potential adopter, and adopter, based on the theory of innovation diffusion [18]. The transition of agents
between non-adopter and potential adopter is driven by the adoption utility of households, which is
determined by their demographic and household characteristics [19]. Another mechanism triggering
this transition is social interactions which influence households’ adoption decision-making based on
the theory of peer effect [20]. In addition, per the theory of affordability, if the adoption of a new
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technology is economically affordable for households [21], they would adopt it and thus transition
from the potential adopter state to the adopter state.

Unlike studies that focus on residential water use behaviors [21], conservation technology
effectiveness [22,23], and demand projection [24,25], the current study investigated how changes
in different mechanisms (such as water price structure) can affect the adoption rate of conservation
technology (rather than residential water demand). Hence, the outputs of the ABM developed in this
study are the number and type of adopted water conservation technologies under the influence of
various factors (e.g., socio-demographic characteristics, social networks, and water policies). In fact,
the outcomes of the model developed in this study can supplement the information from residential
water demand projection models in order to incorporate the effects of water conservation technology
adoption in projecting future demands under various scenarios.

2. Background

Despite there being an immediate need for households to begin conserving water, there is limited
knowledge within the scientific community on the reasons people adopt water conservation practices
in the first place. Water conservation encompasses both behavioral conservation as well as technology
adoption. Because the scope of water conservation is so vast, with both behavioral and technological
possibilities, this study focused on water conservation technology adoption conservation as a means
of resolving problems with water scarcity. More specifically, we plan to examine the underlying
mechanism affecting a household’s willingness to adopt water conservation technologies.

Most of the recent literature on residential water conservation management and technology
adoption incorporate some of the following features: water conservation affordability, water price and
incentives, education and demographics, household/building attributes, and social network influence. In the
following sub-sections, some of the studies on residential water conservation and technology adoption
were used for identifying various influencing mechanisms and factors. Although recent studies in
this field have contributed thoroughly to water management and the understandings of household
influence on water conservation technology, there is currently little to no research assessing all of these
mechanisms and factors at once. The remainder of this section summarizes the various mechanisms
and factors affecting the water conservation technology adoption of households.

2.1. Water Conservation Affordability

Public acceptance of water conservation technology adoption is integral, but also highly
variable [14,16]. The characteristics that influence the potential installation of water conservation
technologies are not fully understood. According to [16], cost is one of the largest deterrents or
motivations of adopting water-saving technologies. The more expensive a technology, the less likely
a household will install it. Income level plays a similar role in influencing the public perception of
water-saving technology adoption [26]. Ref. [27] claims that higher-income households are more
willing to adopt technologies. Those with less income, conversely, may simply struggle to afford
new technologies.

2.2. Water Price and Incentives

Directly reflecting cost and income, external factors such as water pricing and rebate programs
play a role in water-saving technology adoption [6]. In a study of 13 California cities, it was found
that certain price-based deterrents of water consumption were more influential on conservation than
installing water—saving technology [28]. The higher the price of water, the less technology one would
adopt; conversely, the lower the price of water, the more technology one would install [28]. Ref. [6]
argue that the comprehensive adoption of water conservation technologies can only be implemented by
setting effective regulation and incentives. This sentiment is echoed by another study, which supports
the implementation of rebate programs particularly for showerheads and cloth washers [29]. However,
in older studies, government control and assistance were regarded as counterproductive, which
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caused more grief than environmental pay-off [30]. Ref. [31] assert that households avoid government
programs because they cause increased confusion, provide limited choices, take too much time to
install, and do not show the direct conservation effects. To solve this, the greater the financial benefit a
government entity or utility employs to encourage water-saving technology adoption, the greater the
non-financial resources, such as marketing and education, is needed [27]. While there are conflicting
perspectives, it is clear that water pricing and other external factors have potential effects on water
conservation technology adoption.

2.3. Education and Demographics

Education and awareness can be just as influential as government financial incentives. Education
correlates positively with public acceptance of water-conserving practices [14,16,32]. The development
of a greywater reuse program in Barcelona was considered a success due to its awareness efforts
and education [33]. For water conservation in general, the more knowledge a household has on
conservation practices—whether through behavior or technology—the more that household conserved
water [32]. Along with education, researchers have found other demographics that influence a
household’s willingness to adopt water conservation technology. One example is home ownership
status; those who own their home are more likely to consider long-term water conservation solutions
such as technology [34,35]. Gender can also make a small impact; since women are commonly
heads-of-households, they are more likely to make water conservation technology decisions [19].

2.4. Household/Building Attributes

There are studies that show the specific characteristics of a house itself reflect a particular
willingness of the household to adopt water conservation infrastructure. Firstly, the age of a household
dictates openness to new technology [36]. The newer the home, the more likely it is to already have
water-saving infrastructure [36]. The household size also influences public perception, for those
who live in bigger homes may also incur larger water costs and, thus, feel more obliged to invest in
water- and cost-saving technology [32]. Installing water conservation infrastructure outside the home
can also restore water supplies. Households with larger open spaces are more willing to incorporate
technology since outdoor areas significantly contribute to water usage [37].

2.5. Social Network Influence

Recent studies have shown that, both in developing and developed countries, social networks
and peer effects are important phenomena in human technology adoption behavior [17,38].
Individual consumer attitudes are modified over time through social influence and interactions [39].
Contextually, households share information and learn from one another. A head-of-household is
likely to adopt water-efficient technology based on interactions with someone who has adopted the
technology. Technology adopting families educate others on the benefits of technology through their
interactions with it. Intuitively, households are more likely to adopt when they know and are connected
to other adopters [40]. Through community, people are connected through different means—family,
work, neighborhoods. Interactions among households depend on the structure of social networks
through which they are connected [41]. Scientifically, however, it is difficult to identify all possible
connections based on empirical data [17].

3. Significance

Understanding the underlying mechanism of water conservation technology adoption patterns is
relevant because water scarcity is becoming a worldwide epidemic. There are two ways conservation
can combat this problem: changing conservation behavior and changing conservation technology.
While changing conservation behavior has made significant strides in water preservation, it is not the
only piece of the puzzle [12]. It has been discussed that technology improvement is a quicker and
more permanent method [6]. However, more research is required to understand the full potential
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that technology has on water conservation for households. Changing conservation technology in
conjunction with behavioral changes can help alleviate water scarcity altogether. As technology
improves—as it does every day—there will need to be methods for implementing the technology into
households of different demographic, household, and external factors. Households are the agents
adopting the technology; therefore, knowing their variability in adoption probability is the next big
step in improving the status of drought and water scarcity.

There has yet to be research done that can simultaneously analyze all the demographic, household,
external factors (i.e., water pricing structure and rebate policy), and social networks that could influence
a household’s decision to install water conservation technology. Without this information, government
agencies will have no starting point for raising awareness or creating proper policies and regulations
to encourage technology adoption. Conservation measures will not be grounded in any knowledge
of household influences, making them futile. By focusing on these demographic, household, social
and external factors, all aspects of demand-side water management can be evaluated together to solve
larger societal and political problems regarding water scarcity and climate change.

4. Methodology

To implement this research, a simulation approach was used. The simulation approach enables
replicating many various types of populations, while other methods (such as conducting surveys and
interviews) can only reflect one particular population at a time [42]. According to [43], simulation is an
effective method for theory development when (i) a theoretical field is new; (ii) the use of empirical
data is limited; and (iii) other research methods fail to generate new theories in the field. These traits are
consistent with the current study of water conservation technology adoption. The chosen simulation
technique for this study is agent-based modeling.

4.1. Agent-Based Modeling

Agent-based modeling (ABM) is a powerful modeling technique that focuses on the individual
active components of a system [44]. In ABM, active components (e.g., human entities) are characterized
as agents, each with a set of social capabilities and goals, values, and preferences. Agents exist in
an environment defined by specific rules/micro-behaviors and can inform or evolve their goals or
priorities over time [45]. ABM can account for (1) various rational and behavioral decision-making rules
for different agents; and (2) an agent’s reactions to other agents’ decisions. The use of ABM will enable
(1) discovering what factors and micro-behaviors result in technology adoption decisions; (2) juxtapose
the preferences of various households with the range of conservation technology alternatives to
determine the distribution of expected conservation outcomes; and (3) explore effective intervention
strategies to enhance water conservation technology adoption. In addition, the use of ABM will
enable the construction of a theoretical space that will include a range of community profiles in terms
of demographics, water use, social network structures, and other factors. ABM can replicate many
different types of populations, and project diverse, tangible scenarios throughout future years [46,47].

ABM has been successful in studying complex behaviors, policy analysis in infrastructure
systems [48,49], and water demand management. Ref. [4,24,50] have utilized ABM as a successful tool
to analyze water management systems. Ref. [50] demonstrated that the ABM is a useful methodological
approach to dealing with the complexity derived from multiple factors with influence in the domestic
water management in emergent metropolitan areas. Ref. [4] developed an ABM framework for
assessing the consumer water demand behavior against different degrees of water supply and water
supply systems. Their model incorporated both consumers and policy-makers as agents as they
adapted their behaviors to different water supply systems and rainfall patterns. Studies such as
these have set a precedent that agent-based modeling is a viable research tool for water use and
management issues.

ABM has also been successfully adopted in the evaluation of complex phenomena in
human-technical systems such as the adoption of environmentally-friendly technologies [38,41,51,52].
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For example, Ref. [41] developed an agent-based model for the adoption of residential solar
photovoltaic (PV) systems. In addition, other studies, such as one conducted by [38], showed that
ABM can be useful in the simulation of the adoption behavior of innovative energy conservation
technologies by capturing the underlying mechanisms affecting the decision-making behaviors of
households. In another study, Ref. [52] adopted ABM to simulate the technology adoption behaviors
related to three water-related innovations among households in Southern Germany. This study
demonstrated that ABM enables capturing the effects of various factors and attributes (e.g., geographic
attributes, heterogeneous agents, and decision processes). According to the [52], ABM provides a more
realistic model of innovation diffusion in comparison with aggregated models such as the Bass model.
Ref. [52]’s research evaluated the trends of innovation diffusion under several water strategies and
policies by developing an empirically-based ABM. However, their model differs from the one in the
current study, in which a theoretically-driven ABM was developed that enables the policymakers to
test various intervention strategies to diffuse further water-efficient infrastructure in their application
area. In particular, the model in the current study captures the effects of social networks in conjunction
with several other socio-demographic factors in understanding household behaviors related to water
conservation technology adoption.

In addition, ABM provides a useful tool for conducting exploratory analysis. Exploratory
analysis [53,54], utilizes computational models and simulation experiments to conduct scenario
analysis and evaluate the behavior of complex systems [47,55]. Exploratory analysis has been utilized
in different studies (e.g., [56,57]) for the evaluation of environmental policies. Unlike traditional
simulation approaches, exploratory analysis does not aim to predict the behavior of a system and
does not intend to optimize a system. Instead, exploratory analysis focuses primarily on considering
different policy scenarios based on changes in system behavior and future uncertainty. To this end,
ABM enables capturing the adaptive behaviors and complex interactions that affect the patterns
of behaviors in a phenomenon of interest [58]. Hence, ABM was selected in this study to conduct
exploratory analysis on the evaluation of the underlying mechanisms affecting water conservation
technology adoption by residential consumers.

4.2. Theoretical Framework

The ABM in this study was created based on a number of theoretical elements including
the theories of Innovation Diffusion, Peer Effect, and Affordability. Demographic and building
characteristics, external factors, and social interactions all play a role in whether or not a household
adopts water conservation technology. As discussed in Section 2, there have been many studies that
analyze the influence of certain demographic, household, and external factors on water conservation
technology adoption in isolation; however, theoretically, all of these attributes have the potential to
influence a household’s willingness to adopt a conservation technology. To this end, the theory
of Innovation Diffusion was adopted to capture the coupled effect of income level, education,
ownership status, house age, water pricing regimes, rebate availability, technology cost, and social
networks concurrently. Based on Innovation Diffusion Theory (IDT), in adopting new technologies,
a population can be divided into three groups: non-adopters, potential adopters, and adopters [18].
Non-adopters are individuals who do not consider adopting a new technology. In contrast, potential
adopters are individuals who do consider adopting new technologies. Different demographic and
household attributes can influence whether an individual is a non-adopter or potential adopter.
A potential adopter may become an adopter if the adoption of a technology is economically
affordable for it. Based on the similar premise, in this study, households were divided into three
categories (i.e., non-adopter, potential adopter, and adopter) in terms of their position for water
conservation technology adoption. The transitions of households between these categories depend
on their demographic characteristics, household attributes, peer influence, as well as water price
and technology price factors. The theoretical framework of these transitions is depicted in Figure 1.
Different components of the ABM framework are explained in the following section.
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4.3. Computational Simulation

The creation of a computational representation for the proposed ABM theoretical framework
entails the construction of mathematical models and algorithms to capture the theoretical logic
representing the behaviors of households for the adoption of water conservation technology.
Anylogic 7.0 was utilized to create a computational ABM. In the ABM framework proposed in this study,
an agent (household) is the main target of influence, and the model shows how the agents’ behaviors
change over a designated period of time. The model incorporates only one agent class, which is the
households. The households were divided into three categories (i.e., non-adopter, potential adopter,
and adopter), defining their position on water conservation technology adoption. The transitions of
households between these categories depend on their demographic and social attributes as well as
water price and technology price factors. A household agent, based on its attributes, can transition
from one state to another—from non-adopter to potential adopter and from potential adopter to
adopter. These transition functions ultimately influence an agent toward or against a particular output.
The variables related to the household socio-demographic characteristics, including household income,
head education, age and gender, house ownership status, and household size, as well as the household
building attributes such as house size and age and garden size, were used to determine one parameter,
called Adoption Utility, presented in Equation (1):

Adoption Utility = ∑
variable

(Coe f f icientvariable × Valuevariable) (1)

The variables related to the socio-demographic and building attributes of the households,
as well as the coefficients of these variables, were abstracted from the study conducted by [19].
The variables and their coefficients are summarized and documented in the Appendix A (Table A1).
For example, the Adoption Utility of a household whose head is a female college graduate, without
other demographics considered, is calculated as follows: 2.91education × 1yes + 1.21gender × 1female.
If the utility value is greater than or equal to a user-inputted utility threshold, it then triggers the
transition from non-adopter to potential adopter. The threshold indicates a measure of sensitivity.
A model user can increase the adoption utility threshold in order to increase the importance placed
on the demographic and household characteristics. For this particular model, the lowest possible
theoretical threshold is 3000, while the maximum threshold is 60,000. The utility threshold is important
because it allows the model to simulate a variety of community profiles. Because the utility value
and threshold are based on the demographic characteristics and importance of those characteristics,
respectively, variations in the threshold values make it possible to explore a range of community
profiles. Communities have varying characteristics (e.g., income, education, or even house size
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distribution). Through the use of the utility threshold, the difference among communities can be
reflected in the analysis.

The function rule that triggers the transition from potential adopter to adopter is based on
the Affordability Theory. Affordability is defined as the ability of households to pay for their water
expenditures [59]. A household’s annual water expenditures include the annual water bill plus
costs of new water conservation technologies adopted until that year. In this model, household
Affordability Index is measured by the household’s annual water expenditures as a percentage of annual
income, as shown in Equation (2) [21,59]:

A f f ordability Index = 100

(
B + ∑

T
(CT − RT)× nT

)
/I (2)

where, B is the household annual water bill, I is the household annual income, T is the water
conservation technology available for adoption, CT is the average initial cost of purchasing the
technology, RT is the available rebate for the adoption of the technology, and nT is the number of the
technology in the household.

If the Affordability Index of a household agent is less than the user-defined affordability threshold
value, the household agent will transition from potential adopter to adopter. If it exceeds the
affordability threshold, the adoption of technology is not affordable, and thus the agent will remain
as a potential adopter. In other words, a household adopts the offered conservation technologies
until the household’s Affordability Index exceeds the affordability threshold value. The affordability
threshold value is a function of income, water price, and water technology costs. Since water price
might be regulated based on the income profile of communities, the affordability threshold can be
location-specific. The affordability threshold ranges from 1–3% according to the studies conducted
by the California Department of Public Health, the US Environmental Protection Agency, and United
Nations Development Programs [60].

In the affordability measurement process, water price regime is incorporated into the model as
an input parameter. Three different water pricing structures were assessed: fixed price, fixed charge,
and block prices. The fixed price strategy places a cost on water per unit value. For example, one cubic
meter of water costs a household $1.16. A noteworthy component of this pricing strategy is that the
cost directly depends on how much water was used. Conversely, fixed charge is a pre-established,
flat rate ($25.25) per month, regardless of how much water was actually consumed. Block pricing is
similar to fixed pricing in the sense that the unit rate depends on how much water was used—it is a
volumetric pricing strategy. However, instead of charging consumers per unit of water with the same
rate, block pricing charges households based on the amount of water they consume. Households who
typically use more water are charged at a higher rate than those who use less water. More specifically,
households using less than 0.65 m3/day of water will be charged $0.95 per m3; households using
between 0.65 and 1.5 m3/day of water will be charged $1.14 per m3; and households using more than
1.5 m3/day of water will be charged $1.37 per m3. These water pricing structures are proposed by [23],
and the price values are based on the Miami-Dade Water and Sewer Department’s rates [61].

Technology cost was also incorporated into this model as a parameter affecting the
affordability index. An agent is able to adopt six main types of water conservation technology:
high-efficiency bathroom faucets, kitchen faucets, shower heads, toilets, washing machines (clothes),
and dishwashers. [23] conducted a study on the cost and efficiency of these technologies, which is
documented in Table A2 of the Appendix A, along with the rebate information that the City of Miami
Beach Utility offers for each of these technologies [62]. Each technology’s water-saving capacity is
considered a measure of water demand reduction, as the technology is new and more water-efficient.
The rebates can affect the technology cost as well—if household agents feel as though they will receive
money back, the costs may be perceived as more affordable according to the established affordability
index. This, in turn, impacts the model outputs.
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Equations (1) and (2) make up the Adoption Utility and Affordability Index, which define the
adoption state of each household agent (i.e., non-adopter, potential adopter, and adopter). There is
another phenomenon that can lead a household agent to transition from the non-adopter state to
the potential adopter state and that is the social network influence from other agents. According
to the theory of Peer Effect, household agents can have a connection to each other; through this
connection between non-adopter and adopter households, non-adopter agents may communicate
with adopter agents, and thus get influenced by them into making decisions regarding the adoption
of a new technology [20,63]. The model considers and implements five structures of social networks,
the description of which are shown in the Appendix A (Table A3). Once the model has established
a network according to the given structural parameters, it proceeds to simulate the social influence
between connected agents. Given a user-defined likelihood of influence, if the non-adopter agent is
connected to an adopter agent, there is a chance that the non-adopter will transition into the potential
adopter state. Further details about social network influence modeling can be found in [64].

Figure 2 depicts all the transition rules between the three adoption states of the household agents.
As shown in Figure 2, each agent, which is in the non-adopter state initially, can become a potential
adopter based on its adoption utility or influence from social networks, and then immediately becomes
an adopter if the conservation technology is affordable. Hence, it is possible for a non-adopter to
become adopter in one time-step of simulation. However, at the same time step, a non-adopter agent
should first become a potential adopter before it turns into an adopter. This is because a direct transition
from the non-adopter state to the adopter state is not considered in the theory of innovation diffusion.
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Income growth and household size growth were the last attribute input parameters for the model.
All of these inputs will generate a number of outputs, which demonstrate the basis of the type and
timing of technology adoption by household agents. The simulation model outputs include the annual
percentage distribution of all of the adoption states, the water demand reduction, and the different
types of technology adopted over the predetermined time period of simulation which is twenty years.

4.4. Model Initialization and Implementation

In addition to developing a theoretically-driven ABM of household water conservation technology
adoption, empirical data was used as values for initial conditions and model parameters to calibrate
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the ABM. To this end, data from the City of Miami Beach was used in the implementation of the ABM.
The City of Miami Beach has more than ten thousand residential water consumers. To reduce the
computational complexity of the model, a sample of 280 households that statistically represent the
demographic distribution of the population was randomly selected and divided into three zip codes
to be modeled. All 280 agents will start out as non-adopters; and, depending on different influences,
will transition to potential adopter or adopter. The model then runs using Census data from these
three zip codes, as well as individual household water use data provided by the Miami-Dade Utility.
The census data includes information regarding median household income, education, average home
ownership and average household size. Since some of the data provided by the Census are only
average values, a triangular average distribution was used to assign each household a random value
(see Figure A1 in the Appendix A). A uniform distribution was also used to assign the household
head age, garden size, and house size in square feet. Values of parameters such as head gender and
house age were randomly assigned due to the unavailability of data. Moreover, data related to a
household’s source of water such as the number of showerheads, toilets, and faucets come from a
custom distribution. While the model could have been made with hypothetical inputs not based on
reality, utilizing real data helps to convey a better narrative about water technology adoption for future
policy-making and regulation.

5. Model Verification and Validation

ABMs are often criticized for relying on informal and subjective validation or no validation
at all [65]. Validating ABMs developed for complex systems using historical data is difficult and
infeasible because of the stochastic nature of human-behavior models [48]. Ref. [52] argued that
social-system models cannot be tested for their structure appropriateness in a meaningful way as
the interconnections of social processes are vague in the sense that competing theories exist for most
phenomena. ABMs are typically validated using internal verification of the features representing the
model quality [48,66]. The verification of the ABM developed in this study was conducted through a
gradual, systemic, and iterative process. The internal validity of the model was ensured through the use
of grounded theories for modeling decision and behavioral processes of households. The theoretical
and computational models were built rich in causal factors that can be examined to see what leads
to particular outcomes. Each component of the model was checked for completeness, coherence,
consistency, and correctness (4Cs) based on the performance of the model outputs. For instance,
the model performance was verified by (i) taking the function of one component of the model and
making sure it influences the outputs to the degree that is specified in the model; and (ii) running
the simulation model with extreme values of each component and verifying the functionality of the
model under that situation. Most errors that were discovered through verification had less to do with
problems within the theories, and more regarding issues with coding correctly. Thus, most errors in
the verification process were fixed relatively quickly and smoothly and then the aforementioned four
features (4Cs) of the model were ensured. As there are no aggregated independent data available
regarding the adoption of such water technologies in various lifestyles [52], the external validity of
the ABM was conducted through the comparison of the model outcomes with the findings of other
studies in the area of water conservation technology adoption. This technique has been also applied
in a study by [67] for validating multi-agent models. As shown in Table 1, the results of the model
reinforce what other studies have already noted. For example, the results of the model showed that
the rate of adoption of water conservation technologies under various scenarios can lead to a 3–10%
reduction in the overall water demand of the City of Miami Beach; this outcome is consistent with the
findings of a study conducted by [68] that analyzed the impacts of the water conservation incentives
on water demand in Miami-Dade County through surveys among the households. This study reports
that about 6–14% reduction in water demand was achieved during the implementation of two 4-year
water conservation incentive programs in this area.
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Table 1. The external validation of the model findings.

Aspect of Technology
Adoption Findings of the Model Examples of Other Studies with

Similar Findings

Impact of conservation
technology adoption on
water demand reduction of
the service area

Adoption of water conservation
technology under various
scenarios potentially could lead to
a 3–10% reduction in the overall
demand of the City of
Miami Beach.

About a 6–14% reduction in water
demand has been observed during the
implementation of the water
conservation incentives program for the
residential consumers in
Miami-Dade [68]

Effect of water price strategy

Fixed charge strategy of water
pricing, which provides cheaper
water for households, led to a
greater number of adoptions in
the model.

“Pricing structure plays a significant
role in influencing price
responsiveness” [69].
The higher the price of water, the less
technology one would adopt;
conversely, the lower the price of water,
the more technology one would
install [28].

Effect of rebate and
incentives

Rebate allocation in low-income
communities could increase the
adoption of the expensive water
conservation technologies.

Providing incentives such as rebates for
retrofitting households with
water-efficient technologies have shown
mixed results in terms of reducing
water use, especially when compared to
price-based approaches [13]

Effect of social networks

Social interactions speeded up the
diffusion of water conservation
technology. Although the
structure of a network was not
important in the adoption of
technology, it affected the time
required for the adoption rate to
reach an equilibrium.

“Social network type is not significant
in determining mean energy use change,
but is when considering the time
required the network to reach
equilibrium” [40].

Effect of household
income level

Income growth mostly influences
a household’s willingness to adopt
water conservation technology.

“We have previously found financial
variables to be important supplements
to attitude measures in technology
adoption modeling” [30].

6. Scenario Setting

After the model was verified and validated, it was used for simulation experimentation and
scenario setting. Each of the three water price strategies was analyzed based on the simulation model
for different combinations of the model input parameters. The possible scenarios were established
based on different combinations of the input parameters in the model, shown in Table 2. Through
the combination of various values of the input parameters, 230 scenarios were generated in total.
The combinations of these scenarios reflect changes in water pricing structure, rebate status, income
growth, household size growth, utility threshold, affordability threshold, and social network structure.
Accordingly, under each specific scenario, 100 runs of Monte-Carlo experiments were conducted to
determine the mean value of the output parameters (i.e., the number of adoptions and the resulting
water savings). In addition, in order to compare the scenarios equally across the analysis, a base
scenario was created as the reference point for the comparison. Table 2 also shows the values used for
the parameters in the base scenario (see the last column). More details related to which parameters
were used and how they were changed in the experimentation process to provide a diverse and
all-encompassing series of outputs are presented in the Appendix A (Table A4).
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Table 2. The variation of the input parameter values for the scenario setting.

Model Input Parameter Possible Values Value in Base Scenario

Water pricing structure Fixed price; fixed charge; block prices Fixed price
Rebate status Rebate; no rebate No rebate

Income growth (%) −5; −4; −3; −2; −1; 0; 1; 2; 3; 4; 5 0
Household size growth (%) −5; −4; −3; −2; −1; 0; 1; 2; 3; 4; 5 0

Utility threshold 10,000; 20,000; 30,000; 40,000; 50,000 30,000
Affordability threshold (%) 1, 1.5, 2, 2.5, 3 1.5

Social network structure
Random (N = 1); distance-based (R = 100);

ring lattice (N = 1); scale-free (M = 1);
small-world (N = 1, P = 0.1)

Random (N = 1)

7. Results and Discussion

Using the developed agent-based model, the scenario analyses of the simulated data were
conducted in order to specify the effects of different factors on the water conservation technology
adoption of households. Due to the stochastic nature of the simulation model, the 100 experiments
related to each scenario led to varying outcomes, from which the mean value of percent adopter,
number of adopted technologies, and overall demand reduction were abstracted and recorded.
The results and corresponding discussions were formulated using three different forms of analysis as
explained below.

7.1. Socioeconomic Scenario Analysis

Trend analysis across the various generated scenarios of income growth, water pricing strategy,
rebate program, and utility threshold showed how much water households saved, how many
households adopted, and which technologies were adopted under each scenario. Of these scenarios,
certain trends regarding overall demand reduction—due to adoption of the technologies—were
discerned and documented in Figure 3. The amount of residential water demand reduction due to the
adoption of conservation technology was calculated based on the number and type of technologies
adopted over the simulation period (i.e., 20 years). This study did not consider the behavioral aspects
related to water conservation. The calculated residential water saving potential is only based on the
adoption of conservation technologies. If the water conservation behaviors of the users are considered,
the potential for residential water saving could be even more significant. Among the three water price
strategies, the fixed charge strategy led to a more overall demand reduction. As shown in Figure 3,
allocating rebates could increase its enhancement by 24% (4 m3/day). The strategy of fixed charge
with rebate resulted in a total of 8–12 m3/day water savings more than the strategy of fixed price
without rebate in various income growth rates. This amount means about 46–72% increase in the
overall residential water demand reduction amount. In Figure 3, for all water price strategies and
rebate status, as the income increased, there was an exponential increase in overall water demand
reduction after adoption of new and efficient technologies.

Although increased income led to more water savings derived by the adoption of conservation
technologies, it might also lead to higher per capita water usage because higher-income households
were shown to consume more water than lower-income households [29]. Hence, the relationship
between water usage, the adoption of water conservation technologies, and income is complex.
Therefore, the number of technologies adopted were also accounted for in this study, and brought
about interesting insights.

Figure 4a shows an exponential trend in the total adoption number of expensive technologies
(i.e., toilet, washing machine, and dishwasher) under various water pricing structures and rebate
programs. It was discovered that with rebate allocation, the total number of expensive technology
adoptions increased by almost 50% regardless of water price strategy or income growth. In Figure 4b,
the adoption of inexpensive technologies (i.e., kitchen and bathroom faucet and showerhead) does
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not increase significantly (less than 10%) under any water price scheme when a rebate is included for
affluent households (i.e., positive income growth rates); however, it is significant among the households
with negative income growth rates. In other words, the results showed that the effectiveness of rebate
programs is dependent on two factors (i) the type of technology (i.e., expensive or inexpensive),
for which the rebate is allocated; and (ii) the affluence of the community, in which the rebate program
is implemented. Additionally, it can be observed that under the strategy of fixed charge with
rebate allocation, the maximum number of inexpensive technologies were adopted, approximately
independent of income growth rate. What can be noted, however, is that across all of the other water
price and rebate strategies, income growth will lead to the higher adoption of both expensive and
inexpensive technologies.
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The analysis also considered the sensitivity of the results to the utility threshold values. The utility
threshold had a negative linear correlation with the adoption rate. Figure 5 shows the mean
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frequency of adoption states (i.e., adopter, potential adopter, and non-adopter) under various utility
threshold values in the base scenario. In this figure, as the threshold increased, the percent adopter
decreased, regardless of water price strategy or rebate status. The greater the threshold, the greater
the demographic and building characteristics have to be in order to adopt. In contrast, the lower
the threshold, the lower importance is granted to these factors. For example, if it is anticipated that
demographic and building characteristics will not be important in the adoption of water conservation
technology for a specific community (i.e., lower utility threshold), the results show that there is even a
potential of a 67% adoption under the base scenario.Water 2018, 10, x FOR PEER REVIEW  14 of 24 
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7.2. Social Network Influence Examination

For all water pricing and rebate potential strategies, five structures of social networking were
implemented and tested. Figure 6 demonstrates that among the social network structures, the highest
percentage of households transitioned out from a non-adopter state through the scale-free network,
followed by distance-based, then small-world networks. In the social networks with the random
and ring lattice structures, the smallest household percentage was influenced into adopting water
conservation technology. The results also showed that the effect of the social network structure on the
adoption of water conservation technology is independent of water price strategy and rebate status.
However, the adoption percentage fluctuates across the five social networks under each scenario of
price strategy and rebate status.
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Another analysis conducted related to the effects of social network structures was about the
rate (speed) of each structure in reaching the adoption equilibrium state. The adoption equilibrium
means a steady or stable state where the adoption rate no longer changes [40]. From this point
forward, there will be no significant increase or decrease in the adoption rate. The faster a social
network structure reaches the adoption equilibrium, the earlier technology diffusion happens [40]
and consequently, more water is saved earlier. As shown in Figure 7, whenever a steady state
was observed in these graphs, it was identified as the time at which the adoption rate reaches an
equilibrium through the influence of social networks. As shown in Figure 7, among the social network
structures, the distance-based network reached the equilibrium state most quickly followed by ring
lattice then scale-free and small-world networks. The random network has not reached equilibrium
over the twenty-year period. So the results indicate that if the peer effect is activated through a
distance-based network structure, it can speed up the diffusion of water conservation technology more
than other structures.

Under the base scenario, various numbers of connections per agents (N = 0–10) were tested for
the random social network structure to evaluate the impact of the increasing connectivity level on the
adoption rate of the agents’ network. As shown in Figure 8, increasing the number of connections
between the households improved their adoption rate significantly. However, it was identified that
increasing the connectivity level of agents to more than 5 connections in the random network would
have no additional impact on the adoption rate. This level of connectivity (i.e., N = 5) in this network
can be characterized as a tipping point, where the effect of connectivity level reaches a stable state.
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The results of this study demonstrated that activating peer effect through social networks in a
community can accelerate the diffusion of innovation regardless of the structure of social networks.
Educating the public is one of the ways to achieve a greater rate of conservation diffusion [32]. The idea
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of social marketing can be used to design effective information campaigns in order to encourage water
consumers to adopt water conservation technology. Informational programs through various means of
social media can increase the knowledge of residents about the benefits of adopting water conservation
technologies. For instance, promoting water conservation technology adoption through mass media
has the potential to reach a very large number of residential consumers [70]. Based on the results of
the current study, future studies can further examine the effects of social media on users’ choices of
water conservation adoption.

7.3. Scenario Landscape Analysis

The results of the ABM simulation model should be processed to generate the scenario landscape
and to identify pathways towards the desired outcomes. Classification and Regression Tree (CART)
analysis was used to analyze the simulation data and explain the impact of different factors affecting
the water conservation technology adoption. CART is a nonparametric technique for data mining that
can select, from among a large number of variables, the most important variables in determining the
desirable outcomes based on their interactions [71]. CART operates by recursively partitioning the
data until the ending points, or terminal nodes, are achieved using preset criteria. It, therefore, begins
by analyzing all explanatory variables and determining which binary division of a single explanatory
variable best reduces the deviance in the response variable (final output) to produce accurate and
homogenous subsets [72]. The CART analysis has two components: the predictor importance analysis
and the regression tree. The predictor importance analysis distinguishes which variables lead the
greatest significance for the response variable. The regression tree is a tree-structured representation
in which a regression model is fitted to the data in each partition. The importance predictors of each
parameter engender a tree diagram that illustrates all possible pathways (combination of different
values of the variables) toward or against the final response variable [73].

The predictor importance analysis of CART was conducted to highlight which parameters
(mechanisms) fostered the greatest significance to the model outputs. The predictor importance
analysis was conducted to determine which parameters (mechanisms) had the greatest effect on the
model outputs. The results of this analysis are shown in Figure 9. The results show the importance of
each independent parameter (e.g., income growth, water price structure, etc.) in determining different
model outcomes: (a) Expensive Technology Adoption (ETA); (b) Inexpensive Technology Adoption;
and (c) Overall Daily Water Demand Reduction (ODWDR). As shown in Figure 9 (panel c), the results
demonstrated that income growth, affordability threshold, water price structure, and rebate program
were the top four most important parameters (in descending order) affecting the total technology
adoption (which results in ODWDR). The structure of social networks, utility threshold, and household
size growth had less impact on water demand reduction. This order of importance is mostly consistent
in the adoption of inexpensive technology. In the adoption of inexpensive technologies, water price was
the most important parameter, followed by income growth and utility threshold (panel b). The adoption
of inexpensive technologies was more dependent on socio-demographic and house characteristics
(which is reflected in the utility threshold) than for expensive technologies. Nevertheless, income
growth and affordability threshold, which are economic parameters, influenced the adoption of
expensive technologies (panel a).

The simulated data were also utilized for meta-modeling using the regression tree of CART
analysis. The scenario landscape was created based on the best fit of the CART model (Figure 10).
In Figure 10, each path includes a set of branches representing the specific values of the most important
parameters in determining the model outcome based on the predictor importance analysis. Each path
leads to a terminal node (shown with bold border) representing the final outcome which is the overall
daily water demand reduction (ODWDR). Basically, the scenario landscape of adoption patterns
(Figure 10) demonstrates how the results (in terms of residential water demand reduction derived
by conservation technology adoptions) would vary under different scenarios (combinations) of the
underlying technology adoption mechanisms. As shown in the scenario landscape of adoption patterns
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(Figure 10), the residential water demand can be reduced potentially by as much as 5.8–18.3 m3/day
(see the red and green nodes) through the adoption of water conservation technology under different
scenarios (which translates to about a 3–10% reduction in the overall water demand of households in
the service area).
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for encouraging household water conservation technology adoption. Firstly, income growth most
influences potential adopter households’ willingness to adopt, followed closely by water pricing
strategy. With no regard to other factors, households adopted enough water conservation technologies
to reduce the daily water demand by more than 7 m3 (almost 8% of the city’s daily residential water
demand) under the fixed charge water pricing. This reduction was not met under the volume use
charging strategies. While fixed charging strategies may lead people to pay less than their water use
shows, it can make the adoption of water conservation technology affordable. This is especially true
for households that are aware of water shortages, making them potential adopters.

Based on assessing different community profiles from the CART analysis, volumetric water
charging strategies are best implemented in more affluent communities where income growth is more
likely. Conversely, a fixed charge regime would be best suited for less affluent communities, where
income growth is less common. Rebate allocation programs increased the adoption rate—especially for
expensive technologies, which had an increase of 50%. The findings suggest that municipalities and
water agencies can use rebate allocation programs either with volumetric water pricing strategies or
across less affluent communities. This pathway leads to a desired amount of water demand reduction.
The adoption of inexpensive technology—i.e., kitchen and bathroom faucet, showerhead—did not
increase at all when a rebate was included, and this was especially so in households with high
income growth rates. In fact, the adoption of inexpensive technologies is significantly dependent
on socio-demographic and household characteristics than for expensive ones. This indicates that
targeting households to adopt inexpensive technology needs to involve outreach programs more than
rebate policy.

Another important finding was related to the effects of social networks. The adoption percentage
fluctuated across all five social networking schemes under each scenario of water price and rebate
status. However, the distance-based network, among all network types, reached equilibrium in a
shorter period. This means that the peer effect through neighboring social connections can speed up
technology adoption potential more so than other social networks.

In terms of water pricing, for households who are already potential adopters, implementing
a fixed charge strategy makes the adoption of water conservation technology more affordable.
Offering rebates for technologies along with volumetric water pricing will lead communities to adopt
enough technology to reach the desired water demand reduction levels. More broadly, if agencies’
goals are to increase the rate of technology adoption, they must consider which pricing and rebate
policies will be the most successful in their particular community. The planning and governance
of water price has a greater importance on household adoption of water conservation technology
than any other demographic, household, or social networking factors. The results of this study are
important to consider in improving demand-side conservation management strategies. It should be
noted that the modeling approach was utilized in this study to explore possible patterns of water
conservation technology adoption and examine the underlying mechanisms rather than making
predictions. While the research fostered a unique way to evaluate water conservation technology
patterns, there are past studies (see Table 1) that, despite using a variety of different methods, found
similar findings to the model. This, in turn, served as a point of external validation to the model’s
results. These results provide a clear course of action for the future development of household
water conservation technology adoption programs and provide further evidence that demand-side
management strategies will help foster a solution to urban water conservation problems.

9. Limitations and Future Studies

While the findings of this study will help municipalities and water agencies to strategically
encourage the household adoption of water conservation technology, they do pose some limitations.
Unfortunately, not every demographic characteristic of an individual can have could be accounted
for, such as religious identity, race, sexual orientation, or even number of children in the household.
That is not to say that all of these demographics would have had an impact on the utility value and
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household’s adoption state, but it could have fostered more inclusive results. These characteristics
were not considered due to a lack of information from the Census or water research. In the future,
these identities will hopefully become more prominent in mainstream Census and demographic
research, allowing for their inclusion in these models. Another important note about this model is that
the only dynamic parameters considered were house age and social network influence (peer effect).
The other input parameters in the model (such as threshold values) are static, which inhibits the ability
of capturing feedback mechanisms. Through a feedback mechanism, households can reflect upon
their decisions and change accordingly [63]. For example, the water pricing stays the same over the
simulation period (20 years) and does not change based on the rate of adoption. While it is possible
for government officials to change water pricing regime after a certain amount of time based on the
adoption rate (as a feedback mechanism), this model did not account for them. In the model presented
in this study, no feedback mechanism was incorporated as the inclusion of feedback mechanisms in
the diffusion of innovations requires new methods of parametrization, calibration, and validation [74].
Hence, it is of great importance to consider the feedback mechanisms in water conservation technology
adoption of households in future studies. Future studies can also evaluate additional mechanisms
and phenomena affecting the water conservation technology adoption. For example, the impact
of implementing water outage policies in a community on the conservation technology adoption
behavior of households can be added to the model developed in this study. Despite these limitations,
this study presented valuable findings towards better understanding the underlying mechanism of
water conservation technology adoption for residential consumers.

Author Contributions: K.R. initiated the research under the supervision of A.M.; K.R. was involved in
conceptualization, data analysis, interpretation, and writing the paper; B.L. and A.M. were involved in data
collection and editing of manuscript. M.P.R. was involved in simulation and visualization. All authors have read
and approved the final manuscript.

Funding: This research was funded by the National Science Foundation (NSF) under Grant Number 1444758.

Acknowledgments: This material is based in part upon work supported by the NSF, and the help of the City of
Miami Beach Utility. Any opinions, findings, and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of NSF or the City of Miami Beach Utility.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. The coefficients and values for adoption utility function variables [19].

Variable Value Coefficient Distribution Type

Education:
High school or less If Yes = 1, if No = 0 1.92

Real data
Some college If Yes = 1, if No = 0 2.58

College graduate If Yes = 1, if No = 0 2.91
Advanced degree If Yes = 1, if No = 0 4.39

Income
Less than $40,000 If Yes = 1, if No = 0 0

Real data$40,000–$75,000 If Yes = 1, if No = 0 1.07
Above $75,000 If Yes = 1, if No = 0 1.58

Home ownership Owner = 1, Renter = 0 1.84 Real data
Head gender Female = 1, Male = 0 1.21 Random

Resident (head) age Years 1.01 Histogram
House size Square feet 1 Uniform (70; 56,000)
Garden size Square feet 1 Uniform (0; 8000)
House age Years 0.99 Random (1100)

Household size Numbers 0.98 Real data
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Table A2. The attributes of water conservation technologies in the model [23,62].

Technology Price ($) Potential
Rebate ($)

Expected Water Savings
(Gal/Day/Capita) Category

Bathroom faucet 15 15 0.57 Inexpensive
Kitchen faucet 15 15 2.8 Inexpensive
Showerhead 100 25 4.85 Inexpensive

Toilet 420 50 1.63 Expensive
Washing machine 670 150 6.91 Expensive

Dishwasher 500 50 0.35 Expensive

Table A3. The attributes and parameters of social network structures [64].

Network Structure Attribute Parameter Parameter values

Random Assigns each agent a random number of
connections within the given average.

Average number of
connections per agent (N) N = 0–10

Distance-based

If the distance between two agents is
less than the given maximum
connection range (the maximum
distance in meters between agents for
there to be a connection), then both
agents are connected.

Maximum connection
ranges (R) R = 0–500

Ring lattice
Agents are connected according to their
closeness to each other while also
forming a ring.

Average number of
connections per agent (N) N = 0–10

Small-world

Connections between agents are similar
to the ring lattice, while also including
some long-distance relationships. The
neighbor link probability is the chance
that two agents connected to the same
neighbor may also connect to
each other.

Average number of
connections per agent (N);

and Neighbor link
probability (P)

N = 0–10
P = 0–1

Scale-free
Some agents have multiple connections
(considered as hubs), while others have
very few connections.

Number of hubs (M) M = 1–10
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Table A4. The variation of parameters for the model experimentation process.

Parameter Use Method Input Unit Changes

Household Agent Estimation of consumption; Influence
diffusion

No change; 280 agents were
used throughout the

experimentation process

Water price strategy Input parameter Fixed price; fixed charge; block tariffs Nominal

Rebate status Input parameter Rebate; no rebate Nominal

Social network
structure Input parameter Random, distance-based, ring lattice,

small world, scale-free Nominal

Likelihood of adoption
due to social network Input parameter

Function of randomTrue (p), given the
likelihood p;

True/False result
1, 5, 10, 15, . . . , 100%

Income growth Input parameter Change in annual income −5, −4, . . . , 0, 1, . . . , 5%

Household size growth Input parameter Change in household size −5, −4, . . . , 0, 1, . . . , 5%

Utility threshold Input parameter
Accumulation of attributes influencing
the potential for technology adoption

(Utility > Threshold)

10,000; 20,000; 30,000;
40,000; 50,000

Affordability threshold Input parameter
Household ability to pay water

expenditures (annual water bill +
technology cost)

1, 1.5, 2, 2.5, 3%

Percent adopter Output parameter Percentage of agents that adopted at least
one water conservation technology

(Changes in the outputs are
a reflection of changes in the

input parameters)

Demand reduction Output parameter m3 per household

Kitchen faucet Output parameter Number of kitchen faucets adopted

Bathroom faucet Output parameter Number of bathroom faucets adopted

Shower head Output parameter Number of shower heads adopted

Toilet Output parameter Number of toilets adopted

Washing machine
(clothes) Output parameter Number of washing machines adopted

Dishwasher Output parameter Number of dishwashers adopted
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