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Abstract: Density-driven exchange flows, which are important to the transport of nutrients, pollutants
and chemical substances without external forcing, were studied through laboratory lock-exchange
experiments. Rigid and emergent cylinders were placed in one of two reservoirs in a partitioned
wedge-shaped tank to simulate a partly vegetated slope. The experimental results found that
cylinders placed on only one side of the tank lead to different current speeds in the current head and
tail that subsequently create various flow patterns and significantly affect the downslope current
motions. By fitting with the experimental data, some unknown coefficients can be obtained in the
theoretical formulae that are able to predict the intrusion length and exchange flowrate in real field
systems. Compared to the flat bed cases, the total exchange discharge over a steep slope decreases by
up to 4% for vegetation distributed in shallow water and increases by 14% for vegetation distributed
in deeper regions. These results suggest that bed slope and vegetation distribution are crucial to the
density-driven exchange flows in the flushing of nearshore regions.

Keywords: convective exchange flows; rigid and emergent vegetation; sloping bed

1. Introduction

In aquatic environments, convective exchange flows play an important role in the transport of
nutrients, pollutants and chemical substances between the littoral and pelagic regions of lakes or
reservoirs under weak wind conditions and in the absence of other sources of momentum (e.g., river
flows) [1–3]. The convective exchange flows are mainly driven by a density difference in the horizontal
direction, which can be caused by nearshore topographic changes [4], vegetation shading [5], or turbid
patches in the water [6]. Convective circulation induced by topographic effects is most commonly found
under typical field conditions. The spatially uniform solar radiation during the day leads to warmer
water in the shallows than in the adjacent deeper regions, and this developing contrast in temperature
between shallow and deep waters produces variations in water density that generate convective
water exchange [7]. During the night, the condition is reversed, i.e., shallow regions cool more
rapidly than deeper regions, which can drive convective circulation in the opposite direction to that
during the day [7]. Thus, the diurnal heating and cooling processes can cause alternating convective
circulation, enhancing the exchange of nutrients and chemical substances, and reducing the flushing
time between the nearshore and the main parts of water bodies [8]. This process has been studied
through field observations [4,9], laboratory experiments [10,11] and numerical modeling [7,12,13].
For example, Monismith et al. [4] and Adam and Wells [9] observed a significant time lag for circulation
induced by alternating diurnal heating and cooling forcing in the nearshore. Later, Farrow and
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Patterson [7] used a simplified diurnal model to confirm analytically that the time lag can be up to
12 h. The dominant physical mechanisms driving exchange circulation at different water depths have
also been discussed. Lei and Patterson [14] revealed that deep-water thermal instability is crucial for
disrupting the residual flow and reversing the circulation during diurnal cycles. These studies provide
a solid understanding of the transient and constant components of convective exchange flow resulting
from nearshore topography.

Shading from emergent or floating vegetation can also affect water temperature, leading to
differential heating and cooling between vegetated regions and open water [15]. Dense stands of
vegetation can intercept more incident sunlight, so water temperature in vegetated areas is cooler than
that of the adjacent open water during daytime [16]. Similarly, during nighttime, emergent vegetation
can reduce radiation losses so that the open water is cooler than that in the vegetated region [17].
Previous research has indicated that the differences in temperature between vegetated regions and open
water can be sufficiently large (maximum ∆T ≈ 2− 4 ◦C) to produce obvious temperature gradients
and near-surface flow from illuminated to shaded areas [16–18]. Lövstedt and Bengtsson [16] observed
that the surface flow exchange between emergent vegetation (reeds) and open water could be as much
as 1.5 cm/s in the littoral zones of a lake. Coates and Ferris [19] revealed that shading from floating
plants could generate exchange flows that are displaced downward due to the roots. In contrast, the
inherently resistant forces of rooted vegetation significantly reduce current speed and volumetric
exchange flowrates while increasing flushing time [8,20]. Tanino et al. [5], Zhang and Nepf [8] and
Zhang and Nepf [20] modeled vegetative drag using a very common quadratic law. Zhang and
Nepf [5] investigated the combined effects of shading and drag from emergent and rooted vegetation
on thermally driven flow over a flat bed and reported that the exchange flow was inertia-dominated in
the initial stage and rapidly transitioned to being drag-dominated. Tsakiri et al. [21] further concluded
that when the vegetation density exceeded 15%, the exchange flow became drag-dominated from the
beginning of the process. However, littoral aquatic vegetation commonly grows over a sloping bed
rather than a flat bed, and vegetation is non-uniformly distributed from onshore to offshore due to
variations in the supply of light and nutrients at different water depths [22]. Therefore, the combined
effects of topography and vegetation shading on density-driven flow cannot be ignored.

Based on a simplified diurnal heating and cooling model, Lin and Wu [23] theoretically revealed
the induced circulation patterns within rigid and emergent vegetation over a slope. It was found that
vegetative drag plays an important role in reducing the magnitude of circulation and the time lag
between the reversal of diurnal forcing and circulation, especially in deep waters. They also showed
that the distribution of the vegetation could significantly alter circulation patterns and exchange
flowrates. In addition, if the water column is thermally stratified, i.e., temperature varies with the
vertical position in the water column, flow patterns become more complicated within non-uniformly
distributed vegetation [24]. Recently, Ho and Lin [25] conducted laboratory lock-exchange experiments
over a slope within uniformly and fully emergent and rigid vegetation. Assuming the distribution of
hydrostatic pressure within gravity currents, several theoretical formulae were developed, which are
provided in Section 2.

They revealed that the current head would accelerate over the downslope course if the cylinder
density was less than 2%. However, in real field conditions with a non-uniform or partly vegetated
slope, vegetation distributed on one side and open water on the other side of the slope are frequently
found and the dynamic features of density currents could be different under such conditions.
Additionally, exchange flowrates, which are the quantities of greatest interest in the transport of
nutrients, pollutants, and chemical substances, were not the primary focus in their study.

In this study, we aim to address the following research questions: whether a sloping bed and
vegetation distribution can significantly alter flow patterns, and how much of the flow intrusion length
and total exchange discharge can be influenced. To answer these questions, brine-water lock-exchange
experiments, commonly used to study thermally driven exchange flow [5,8], were carried out.
This study is an extension of work by Ho and Lin [25] that focuses solely on convective exchange
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flows within a uniformly and fully distributed canopy. Rigid and emergent cylinders were used to
mimic aquatic canopies, such as reeds, with various experimental configurations including model
canopies on both sides of the tank or a model canopy on either side. In contrast to the work of
Ho and Lin [25], this new configuration (a model canopy on one side and open water on the other)
can better simulate real field conditions, where an exchange flow is more likely to be produced by
vegetation shading. As stated by Zhang and Nepf [20], although the experiment is a simplification
of the field situation in which the difference in density varies over the course of the diurnal heating
process, the setup and transient time scale for the exchange flow is short compared with the time
scale of the diurnal temperature variations. Thus, the results from these simplified experiments are
reasonable and applicable for evaluating the scales of the speeds and exchange flow rates of the
current. The paper is arranged as follows. In Section 2, we describe the theoretical background for
predicting the speed of the current as well as the total exchange volume discharge between open and
vegetated regions. The experimental methods including setup, image acquisition, and data analysis
are described in Section 3, and the experimental results are presented in Section 4 and discussed in
Section 5. The conclusions are drawn in Section 6.

2. Mathematical Formulation

The theoretical formulae derived in Ho and Lin [25] are briefly described. Without a model
canopy, the frontal velocities ulower and uupper in the lower and upper layers are given by (see Figure 1
in [25]):

ulower =
√

g′(C1LlowerS0 + C2HL), (1)

uupper =
√

g′(−C3LlowerS0 + C4HL), (2)

where g′ is the reduced gravity; S0 is the tank slope; Llower and Lupper are the current lengths in the
lower and upper layers; and HL is the depth at the lock. C1, C2, C3 and C4 are coefficients that reflect
the mixing and entrainment of the gravity current head with the ambient fluids and should be different
for ulower and uupper. Over a flat bottom, i.e., S0 = 0, Equations (1) and (2) are equivalent to the classic
formula of current speed, u =

√
C2g′HL derived by Benjamin [26], in which C2 = C4 = 1

4 . Over a
slope where vegetation is uniformly distributed, the drag-dominated frontal velocities uv,lower and
uv,upper in the lower and upper layers are as follows [25]:

uv,lower =

√√√√− 2n
CDa

(
g′ ∂η

∂x

∣∣∣∣
η=0
− C1g′S0

)
, (3)

uv,upper =

√√√√− 2n
CDa

(
g′ ∂η

∂x

∣∣∣∣
η=0

+ C3g′S0

)
, (4)

where CD is the drag coefficient; a is the frontal area of the vegetation stems per unit volume; and η is
the interfacial profile of the current. If the interface of the gravity currents within a model canopy also
forms an inclined straight line as over a flat bed, the horizontal interface gradient ∂η(x, t)/∂x can be
represented as:

∂η(x, t)
∂x

= −s
HL + LlowerS0

Lupper + Llower
= −s

HL − hd
Llower

, (5)

where s is a scale constant which accounts for the non-linearity of ∂η(x, t)/∂x and s = 0.6 as proposed
by Tanino et al. [8], and hd is the thickness of the density currents at the lock (x = 0) (Figure 1).
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region. The maximum water depth is , and the lock is positioned at = 0, i.e., the center of the 
tank, with a water depth of = . ( , ) is the interface between two different fluid densities, 
and  and  are the horizontal distances of the interfaces from the lock in the lower and 
upper layers, respectively.  and  are the densities of heavier and lighter fluids, respectively. 

If the current motion is over a flat bottom, i.e., = 0,  becomes the result derived by Tanino 
et al. [8]. In this study, the formula related to gravity current motions within uniform vegetation [25] 
is further extended to estimate the intrusion length and exchange flow discharge within partly 
vegetated conditions.  

Herein, we consider that vegetation only occupies one side of the experimental tank and the 
dense fluid is initially in shallow regions, as shown in Figure 1. The motions of the flow after gate 
removal are influenced by vegetative drag after a short inertial period, and thus it can be expected 
that Equations (3) and (4), derived in a vegetative drag-dominated regime, will still be valid on the 
vegetated side of the tank. From Equations (3) and (4), the intrusion length  of the currents within 
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Figure 1. Schematic of a lock-exchange experiment with a model canopy distributed in a shallow
region. The maximum water depth is H, and the lock is positioned at x = 0, i.e., the center of the

tank, with a water depth of HL

(
= 1

2 H
)

. η(x, t) is the interface between two different fluid densities,
and Llower and Lupper are the horizontal distances of the interfaces from the lock in the lower and upper
layers, respectively. ρ1 and ρ2 are the densities of heavier and lighter fluids, respectively.

If the current motion is over a flat bottom, i.e., S0 = 0, uv becomes the result derived by
Tanino et al. [8]. In this study, the formula related to gravity current motions within uniform
vegetation [25] is further extended to estimate the intrusion length and exchange flow discharge
within partly vegetated conditions.

Herein, we consider that vegetation only occupies one side of the experimental tank and the
dense fluid is initially in shallow regions, as shown in Figure 1. The motions of the flow after gate
removal are influenced by vegetative drag after a short inertial period, and thus it can be expected
that Equations (3) and (4), derived in a vegetative drag-dominated regime, will still be valid on the
vegetated side of the tank. From Equations (3) and (4), the intrusion length Lv of the currents within
the canopy can be expressed as:

uv =
dLv

dt
=

√√√√− 2n
CDa

(
g′ ∂η

∂x

∣∣∣∣
η=0
± C1(or C3)g′S0

)
. (6)

Since hd and Llower in Equation (5) are unknown functions and vary with time, it is difficult to
obtain the analytic form for Lv. Instead, Lv can be written as:

Lv =

√
2ng′HL

CDa
f1(t, S0). (7)

The total exchange volume per unit width, V, that has entered the vegetation can be estimated
geometrically (if the interfacial profile of currents follows an inclined straight line, see Figure 1)
as below:

V =
1
2

Lvhv =

√
2ng′HL

CDa
f2(t, S0), (8)

where hv(= HL − hd) is the thickness of the light fluid entering the vegetation measured at x = 0.
Consequently, the volumetric discharge rate per unit width

(
= dV

dt

)
should also be a function of

time t and tank slope S0. When the gravity currents flow over a flat bottom with the model canopy



Water 2018, 10, 1073 5 of 25

distributed on only one side and hd is assumed constant, Lv, V and q can be analytically expressed
as [20]:

Lv =

[
3
2

√
ng′sH
CDa

(t− t0)

]2/3

, (9)

V =
1
2

αH

[
3
2

√
ng′sH
CDa

(t− t0)

]2/3

, (10)

q =
1
3

αH

[
3
2

√
ng′sH
CDa

]2/3

(t− t0)
−1/3, (11)

where α = hv
H is the ratio of the thickness of the gravity current to water depth at x = 0.

The vegetative drag, CD, is crucial to the estimation of quantities such as Lv, V and q. For a
smooth and isolated circular cylinder, CD can be represented as:

CD ≈ 1 + 10Re−2/3
cy , (12)

in the range of 1 < Recy < 105 [27], where Recy

(
= ud

ν

)
(u is the flow velocity, d is the diameter of the

cylinder, and ν is the kinematic viscosity of fluid) is the cylinder Reynolds number. For an array of
cylinders, Jamali et al. [28] suggested that the coefficient 10 in Equation (12) be replaced by 50 based
upon the best match between a numerical simulation and experimental data. Thus, the expression is
adopted for CD in this study:

CD ≈ 1 + 50Re−2/3
cy (13)

3. Experimental Methods

The experimental methods are similar to those used in Ho and Lin [25], so we keep the repetitive
descriptions to a minimum in this section. The wedge-shaped tanks used in the experiments had a
rectangular, 0.25 m-wide by 0.8 m-long, cross-section and three different bottom slopes, S0, of 0.075
(~4.3◦), 0.125 (~7.1◦), and 0.25 (~14.0◦), with transparent Plexiglas sidewalls. All tanks were separated
into two regions of equal length by a removable, 5-mm thick partition, and rigid wooden sticks (0.3-cm
diameter, d) and chopsticks (0.5-cm diameter, d) were used to model rigid and emergent aquatic
vegetation such as reeds that typically have a diameter, d, between 0.1 and 1 cm [29]. The thickness
of the partition (~5 mm) is very small compared with the length of the tank so that the influence of
this thickness can be neglected, as done in much of the previous research [30]. Polyvinylchloride
(PVC) sheets perforated with uniformly distributed holes (flow-aligned patterns) were placed on top
of the tank to guide the placement of the model vegetation; the wood sticks or chopsticks were pushed
through the holes to reach the tank bottom (see Figure 2). A 0.5-cm gap was left between the perforated
sheet and the water surface to prevent friction from the upper PVC sheets. Different experimental
configurations were considered in this study including a model canopy distributed in either shallow
or deeper water with open water on the other side (see Figure 2). For comparison, some configurations
included model canopies on both sides of the tank or no model canopy on either side.
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Figure 2. Set-up of a lock-exchange experiment with a model canopy distributed in a shallow region.

The density of the model canopy, φ, ranged between 0 and 0.069, producing a dimensionless
array density of ad = 0 to 0.088, which is comparable to the ad values between 0.01 to 0.1 for natural
canopies [31]. The shallow region was filled with well-mixed saltwater of density ρ1, and the deep
regions were filled with freshwater of density ρ2 (see Figure 2). For flow visualization, the saltwater
was dyed with a dark-colored food dye, and images of the flow patterns were captured with a Canon
VIXIA HF R400 camcorder (1920 × 1080-pixel resolution at 30 fps). The camcorder were placed 2.5 m
away and normal to the sidewall of the tanks. By rapidly lifting up the partition, gravity currents were
produced down the slope. After the data was collected, a binary image thresholding technique was
applied to delineate the current boundary [20,32]. The colored images were firstly converted to binary
pictures by using the commercial software Matlab. The threshold was manually chosen such that the
binary images (the gravity current body is white and the rest is black) gave the best agreement with
the visible saline-ambient interface. By detecting the edge of the white region, the contour of areas
occupied by the colored-saline, i.e., the gravity current body, can be clearly identified and delineated,
which can later be used to obtain current thickness (the vertical distance from the upper boundary
of the gravity current to the tank bottom), foremost locations and area of the colored regions, etc.
Assuming the gravity current motion is two-dimensional, the colored areas multiplied by the tank
width can represent the volume of exchange density flows. Then, the temporal volumetric discharge
can be estimated through time-series experimental images.

The measurement uncertainties mainly from the pixel resolution, image thresholding and
obstruction of modeled vegetation are less than 3% of measurements in the absence of modelled
vegetation, but up to 5–10% of measurements in dense vegetation population (φ = 0.069) due to the
obscure current head within vegetation. Since the current velocities in the upper and lower toes are
different, the entrainment and mixing between the current and ambient fluids are also varied, i.e., the
areas occupied by the gravity current, namely, the colored areas in the downslope and upslope sides
may not be equal. The colored areas in the upslope side are sometimes fuzzy due to the reflection
from the water surface; hence the colored areas in the downslope side will be used to determine
the volume of exchange flow in the study. Table 1 lists the experimental conditions and relevant
parameters. Relower

(
= ulower HL

ν

)
, where ulower is the average lower toe current speed, HL is the depth

at the lock and Recylower

(
= ulowerd

ν

)
are the Reynolds number and cylinder Reynolds number based



Water 2018, 10, 1073 7 of 25

upon the average lower toe current speed. The shallow regions were filled with heavy (saline) fluid,
so the experiments can represent real field conditions, in which the water temperature is cooler in
shallow regions compared to deep regions. As a result, a model canopy in a shallow or deep region can
simulate convective water exchange in the following conditions: (1) for a model canopy distributed
in the shallows, the experiments can mimic exchange flows during daytime; and (2) a model canopy
distributed in deeper regions but with heavy fluid in the shallows allows modelling the nighttime
exchange flows. Because the heat fluxes between daytime heating and nighttime cooling are usually
considered equal, experimental results can be applied to the entire diurnal cycle whether vegetation is
present on the shallow or deep side. The ranges in water depth, H, and g′ under typical field conditions
are approximately 10 to 100 cm and 0 to 1 cm/s2, respectively, yielding utoe ∼

√
g′Hmax ∼ O

(
10 cm

s
)
,

where Hmax is the maximum water depth [8]. The reduced gravity, g′, in this study varied between 2
to 15 cm/s2, and the maximum water depth ranged between 6 to 20 cm. Therefore, the scale of the
current velocity in the experiments covered the same range as in typical field conditions. In Section 2,
the mathematical formulation showed that several parameters need to be non-dimensionalized by the
drag coefficient, CD. As a result, a constant CD value needs to be assigned. Based on Equation (13)
with the current speed measured in Ho and Lin [25], CD is simply set to 1, 1.75, and 2.5 for φ being
2.1%, 4.2%, and 6.9%, respectively.

Table 1. Summary of the experimental conditions and relevant parameters.

Run S0 g′
(
cm/s2) Hmax (cm) Vegetation Side φ d (cm) Relower Recy_lower

1 0.075 2.1 5.6 No 0 No 314 N.A.
2 0.075 2.1 5.4 Both 0.021 0.5 246 46
3 0.075 2.1 5.6 Both 0.042 0.5 227 41
4 0.075 2.1 5.4 Both 0.069 0.5 188 35
5 0.075 2.1 5.5 Shallow 0.021 0.5 292 N.A.
6 0.075 2.1 5.3 Shallow 0.069 0.5 230 N.A.
7 0.075 2.1 5.4 Deep 0.021 0.5 278 52
8 0.075 2.1 5.5 Deep 0.069 0.5 276 50
9 0.075 4.1 5.6 No 0 No 474 N.A.
10 0.075 4.1 5.6 Both 0.021 0.5 427 76
11 0.075 4.1 5.6 Both 0.069 0.5 358 64
12 0.075 4.1 5.5 Shallow 0.021 0.5 445 81
13 0.075 4.1 5.6 Shallow 0.069 0.5 479 86
14 0.075 4.1 5.4 Deep 0.021 0.5 470 87
15 0.075 4.1 5.5 Deep 0.069 0.5 445 81
16 0.075 7.2 5.7 No 0 No 759 N.A.
17 0.075 7.2 5.5 Both 0.021 0.5 674 123
18 0.075 7.2 5.6 Both 0.042 0.5 652 117
19 0.075 7.2 5.6 Both 0.069 0.5 638 114
20 0.075 7.2 5.5 Shallow 0.021 0.5 688 125
21 0.075 7.2 5.6 Shallow 0.069 0.5 782 140
22 0.075 7.2 5.6 Deep 0.069 0.5 718 128
23 0.125 2.1 9.5 No 0 No 752 N.A.
24 0.125 2.1 9.5 Both 0.021 0.5 571 60
25 0.125 2.1 9.6 Both 0.069 0.5 518 54
26 0.125 2.1 9.5 Shallow 0.021 0.5 670 71
27 0.125 2.1 9.5 Shallow 0.069 0.5 727 77
28 0.125 2.1 9.5 Deep 0.021 0.5 653 69
29 0.125 2.1 9.7 Deep 0.069 0.5 748 77
30 0.125 4.1 9.5 No 0 No 1110 N.A.
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Table 1. Cont.

Run S0 g′
(
cm/s2) Hmax (cm) Vegetation Side φ d (cm) Relower Recy_lower

31 0.125 4.1 9.3 Both 0.021 0.5 1060 114
32 0.125 4.1 9.5 Both 0.069 0.5 1026 108
33 0.125 4.1 9.5 Shallow 0.069 0.5 1137 120
34 0.125 4.1 9.6 Deep 0.069 0.5 1099 114
35 0.125 7.2 9.6 No 0 No 1592 N.A.
36 0.125 7.2 9.5 Both 0.042 0.5 1382 146
37 0.125 7.2 9.7 Both 0.069 0.3 1328 82
38 0.125 7.2 9.5 Shallow 0.021 0.5 1435 151
39 0.125 7.2 9.5 Shallow 0.069 0.5 1637 172
40 0.125 7.2 9.5 Deep 0.069 0.5 1553 164
41 0.25 2.1 19.7 No 0 0 2602 N.A.
42 0.25 2.1 19.5 Both 0.069 0.3 2040 63
43 0.25 2.1 19.5 Shallow 0.069 0.3 2493 77
44 0.25 2.1 19.5 Shallow 0.069 0.5 2198 113
45 0.25 2.1 19.7 Deep 0.069 0.3 2107 64
46 0.25 4.1 19.5 No 0 0 3936 N.A.
47 0.25 4.1 19.5 Shallow 0.069 0.3 2942 91
48 0.25 4.1 19.5 Shallow 0.069 0.5 4019 206

Note: N.A. denotes “Not Applicable”.

4. Results

4.1. Nature of Density-Driven Exchange Flows

Gravity currents began to propagate downslope after the lock gate was swiftly removed, and the
nature of the produced exchange flow (laminar or turbulent) is firstly determined. Very few studies
have provided a specific value of the Reynolds number to determine if the density exchange flow
laminar or turbulent. Ilıcak [33] used numerical simulations to show that the lock exchange flow is
still laminar when the Reynolds number reaches 500. Hogg et al. [34] used a constant inflow device to
observe the gravity current boundary and check when the flow becomes turbulent and perturbation at
the interface of the current occurs. Their results showed that when the Reynolds number reaches 300,
the disturbance at the interface of the current appears. For the experiments without a model canopy,
we also used visual observations to determine whether the flow is laminar or turbulent and found that
when the Reynolds number based upon the lower toe current speed Relower is larger than 340, some
disturbance occurs at the back of current head (see Figure 3 below). In Figure 3a, the small disturbance
shown (red circle) was due to the lock gate removal and disappeared rapidly. In Figure 3b,c, the
interface of the current is smooth, and the flow can be regarded as laminar.
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As the current moves downslope further, the current speed and its Reynolds number Relower
become larger. The disturbance at the interface of the current turns more obvious, i.e., the flow
gradually becomes turbulent. Therefore, the Reynolds number Relower of approximately 340 could be
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used as an indicator to determine if the gravity current is turbulent. In Table 1, the Reynolds numbers
Relower for different runs are all larger than 340, implying that the experimental runs for the gravity
current flowing downslope without a model canopy are all classified as turbulence in an average sense.

For the gravity currents within a model canopy, it is difficult to observe the interface of the current.
Tanino and Nepf [35] used dye streaklines flowing within cylinder arrays to examine whether the flow
is laminar or turbulent. They concluded that for the sparse (density φ = 0.01) and dense (φ = 0.1)
canopy arrays, the flow patterns are laminar for their cylinder Reynolds number Recy less than 30,
and turbulent eddies gradually appear at larger Recy. For the experimental runs for gravity currents
within a model canopy, the corresponding Recy values are all larger than 30 (see Table 1), indicating
that the nature of gravity currents for these runs are also turbulent.

4.2. Density-Driven Exchange Flow Patterns and Current Head Profiles

Figure 4 shows the pictures of gravity currents traveling down at two different vegetation
configurations, i.e., a model canopy distributed in either a shallow or deep region. Although few
wooden sticks were not perfectly vertical, the horizontal projected areas of the sticks were still identical
as those of vertical ones, i.e., they would impose the same drag forces on the gravity current. The effects
of flow velocity not normal to the cylinders on drag forces will be discussed and evaluated in Section 5
Discussion. In Figure 4a, when a model canopy is only in deep regions, the model canopy allows less
fluid flowing into the deep regions; the dense fluid thus accumulates in front of the model canopy,
leading to the increases in the current thickness at the lock (x = 0). For the case of a model canopy
distributed in shallows and open water in deep regions, the classic semi-elliptic head, and intense
mixing and entrainment between the current and ambient fluid obviously appear in the downslope
current (Figure 4b). In the shallow region, the interfacial profiles between the saline and fresh water in
shallow regions perform like an inclined straight line (Figure 4b).
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Figure 4. Images of gravity currents for two different configurations: (a) open water in shallows and
a model canopy in deeper regions (Run 34); and (b) a model canopy in shallows and open water in
deeper regions (Run 33).

To understand the combined effect of slope- and density-induced driving forces on downslope
current motions, the interfacial profiles between the saline and fresh water are firstly investigated.
Herein, the interfacial profiles in a milder slope with a smaller g′ value or a moderate slope with a
larger g′ value on different vegetation configurations are exhibited. Figure 5 presents the temporal
evolution of the interface between the saline and fresh water on a 4.3◦ slope at the same reduced
gravity (g′ = 2.1 cm/s2), but a model canopy (φ = 6.9%) occupies only a shallow or deep region while
the other side is open water. When a model canopy is only in deep regions, the light fluid moving into
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the shallows flows against the slope and thus decelerates with time. Thus, the interfacial profiles of
the current in shallows resemble more of a parabolic shape than a semi-elliptical shape (Figure 5a).
Furthermore, the model canopy in the deep region can reduce the downslope current and subsequently
rise the current thickness at around the lock (Figure 5a). Within the model canopy, the interfacial
profiles gradually form linear patterns as the current moves further into the model canopy. The classic
semi-elliptical shape of the current head can only be found at the very front (Figure 5a). On the
contrary, for the case of a model canopy distributed in shallows and open water in deep regions,
the interfacial profiles in shallows perform like an inclined straight line. In deep regions, the classic
semi-elliptical shape of the gravity current head is obvious when the current descends an unvegetated
slope (Figure 5b), because gravity and buoyancy work in concert to accelerate the current. As the flow
descends the slope, mixing and entrainment of the saline current with the ambient fluids gradually
progress, while the current thickness at x = 0 remains nearly constant (Figure 5b).
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Figure 5. Temporal progression of the interface at a slope of 0.075 (~4.3◦) and g′ = 2.1 cm/s2: (a) Run 8
(φ = 0% in shallows and φ = 6.9% in deep regions); and (b) Run 6 (φ = 6.9% in shallows and φ = 0%
in deep regions). The dashed line is the location of the lock, and the time interval between each profile
is provided on the top of each figure.

The temporal evolutions of the upper and lower toe locations of the gravity current, i.e., x-t
curves, are shown in Figure 6, where H

(
= 1

2 H
)

is the mean water depth, i.e., the depth at the lock
(x = 0). After the removal of the gate, the current experiences an unsteady period (also called the
initial effect) until the semi-elliptical head is formed [31]. The toe locations during this period cannot
be distinctly identified, and thus the data collected during the initial period are excluded in Figures 6
and 7. Vertical error bars are added in Figures 6 and 7 to reflect the uncertainty in determining the
propagation distance of gravity currents. Based upon the slope of x-t curves, the current velocity can
be estimated. When the model canopy is in deep regions, the mean downslope current velocity (black
line in Figure 6a) is faster than that when the model canopy is in shallows (grey line in Figure 6a).
The results can be attributed to two reasons: (i) the conveyance areas inside the model canopy are
reduced, and thus the current speed increases; (ii) the increased current thickness at the lock enlarges
the pressure gradient between the current body and the current head, which leads to greater current
head speeds.
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For the upper toe, the mean current velocity within and without a model canopy exhibits two
different trends. When a model canopy is absent in shallows, the slope of x-t curves, i.e., the current
velocity, show a two-stage change (black line in Figure 6b): the mean current velocity is initially large
and then gradually reduced. The initially greater current velocity is due to the inertia of the current,
and the decreasing current velocity at the later stage is because viscosity increases as the current
approaches the tip of the domain, i.e., a shallower water depth. For the presence of a model canopy
in shallows, the mean current velocity in the upper toe is approximately constant during the whole
course (grey line in Figure 6b). This result implies that the viscous effect is insignificant even in a
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shallow water depth within vegetation, and the vegetation drag becomes dominant to determine the
current velocity.

Figure 7 compares the cases in a relatively large reduced gravity (g′ = 7.2 cm/s2), i.e., larger
driving forces. In Figure 7a (lower current toe), when the dimensionless time is less than 10, the x-t
curves for a model canopy in either shallow (grey line) and deep regions (black line) are overlapped.
Until the dimensionless time is larger than 10, the model canopy in deep regions gradually decreases
the current speed, and therefore the current speed, i.e., the slope of the x-t curves for a model canopy
in deep regions (black line), is smaller than that for a model canopy in shallow regions (grey line).
In Figure 7b (upper current toe), the initial gate removal affects the x–t curves for a model canopy in
shallow or deep regions. However, the speeds of the upper current toe (the slope of the x–t curves)
are similar, implying that the model canopy has almost no effect on current speed in shallow regions.
In comparison with Figure 6, the x–t curves in Figure 7 for a canopy model in shallow and deep
regions are relatively similar, suggesting that the location of a model canopy either in shallow or deep
water plays a minor role rather than the reduced gravity, namely, the driving force of gravity current.
In summary, the driving force (reduced gravity and tank slope), vegetation density and distribution
could affect the lower and upper toe positions. If the driving force is larger, i.e., greater reduced gravity
or larger tank slope, vegetation density and distribution will slightly affect the lower and upper toe
positions. On the other hand, if the driving force is smaller, the vegetation density and distributions
can result in significant differences in the lower and upper toe positions.

As the reduced gravity and tank slope become larger, the interfacial profiles of the gravity current
exhibit different patterns (Figure 8). For a model canopy only distributed in deep regions, the saline
fluid in the shallows rapidly descends but is arrested in front of the model canopy, causing the
rising interface at the lock (x = 0) (Figure 8a). Once the current gradually flows into the model
canopy, the original jammed saline fluid slowly drains along the slope, and the elevated interface at
the lock decreases. In contrast, when there is a model canopy in the shallows, the thickness of the
current at the lock rapidly decreases as the current moves into the open and deep regions (Figure 8b).
With the thinning current thickness, the current head tends to detach (or separate) from the current
body, as mentioned by Nogueira et al. [36] in the study of gravity current over a rough and flat bed.
The thinning current body is because the major saline fluid is trapped within a model canopy in the
shallow region, and sufficient fluid cannot be immediately supplied to the current head in the deep
region. Without enough fluid supply, the current head moves as an individual body and accelerates
along the downslope course. The thinning body between the leading and trailing parts of the density
current causes a greater current head velocity but less exchange volumetric discharge in comparison
to the case of a model canopy distributed in deep regions. This phenomenon can be observed more
clearly in the temporal variations of the current thickness, hd, at the lock (Figure 9).
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Figure 8. Temporal progression of the interface at a slope of 0.125 (~7.1◦) and g′ = 7.2 cm/s2: (a) Run 34
(ϕ = 0% in shallows, and ϕ = 6.9% in deep regions); and (b) Run 33 (ϕ = 6.9% in shallows, and ϕ = 0%
in deep regions).
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Figure 9. Normalized temporal variation in current thickness at the lock of the tank: (a) a model canopy
distributed in shallows; and (b) a model canopy distributed in deep regions.

4.3. Current Thickness of Density-Driven Exchange Flows

The current thickness, hd, is made dimensionless with the mean water depth H, ĥ = hd
H

and the

time, t, after the lock removal as t̂ = t
√

g′
H

. For a model canopy distributed in shallows and open

water in deep regions, ĥ− t̂ curves perform exponential decay at various rates (Figure 9a). This reflects
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the consequences that the current tails are trapped within the model canopy and the lower current
toe moves downslope at a faster speed; the current thickness becomes thinner, which confirms the
tendency of the current head and body to separate. The experimental results regarding the current
thickness at the lock can be manually categorized as the “thinning” or “normal” cases (see the dashed
line in Figure 9a), where “thinning” means that the current thickness at the lock reduces rapidly and
“normal” denotes the slow decrease of the current thickness. For the case of slope S0 = 0.075 and
φ = 6.9% in the shallow region, when the reduced gravity g′ is 2.1 cm/s2, the ĥ values at the lock do not
significantly reduce. However, when the reduced gravity g′ increases to 4.1 and 7.2 cm/s2, the lower
current toe speed increases as well, and the ĥ curves at the lock transit from the “thinning” regime to
the “normal” regime. When the bottom slope S0 becomes 0.125 and φ = 6.9% in the shallow region,
even for the case of g′ = 2.1 cm/s2, the ĥ curves would reach the “thinning” regime. Therefore, the
“thinning” phenomenon is dependent on the speed differences of the current head and tail, which are
determined by the tank slope, reduced gravity, and canopy density in shallows. However, it is difficult
to determine the “thinning” criteria as the interaction between the aforementioned factors is complex
and there are currently insufficient data.

When a model canopy is present in deep regions, ĥ versus t̂ data show two distinctly different
groups: one group with higher ĥ values and the other with lower ĥ values (Figure 9b). Another dashed
line drawn on Figure 9b can separate these two groups as “fluid jammed” and “fluid unjammed”.
Both ĥ values from the two groups decrease at a similar pace as t̂ increases. The data with higher ĥ
values (“fluid jammed” on Figure 9b) indicate that the saline fluid cannot swiftly flow through the
model canopy, i.e., the saline fluid will jam in front of the model canopy. The occurrence of this fluid
jam is due to the slower current head speed but faster current tail speed, i.e., the dense model canopy
only in deep regions. In contrast, the data with smaller ĥ values (“fluid unjammed” on Figure 9b)
suggest that the gravity current flows down the slope without difficulty. The “fluid unjammed” cases
are mainly from the sparse model canopy only in deep regions. In Figure 9b, the cases conducted
under conditions without a model canopy or with uniformly and fully distributed model canopies are
also compared. For the cases without a model canopy or with uniformly and fully distributed model
canopies, the ĥ− t̂ data perform “fluid unjammed” patterns. For a sparse model canopy (φ = 2.1%) in
deep regions, the downslope current speeds are the key to determine if the “fluid unjammed” pattern
occurs. For a milder slope (S0 = 0.075, see symbol ‘-’ in Figure 9b) with φ = 2.1%, i.e., slow downslope
current speed, the “fluid jammed” pattern occurs, whereas for a steeper slope (S0 = 0.125, see symbol
‘N’ in Figure 9b) with φ = 2.1%, i.e., fast downslope current speed, the “fluid unjammed” pattern can
be found. Therefore, it can be concluded that fluid-jamming phenomena only occurs when vegetation
is present in deep regions, and the tank slope, reduced gravity and vegetation density in deep regions
are key factors resulting in significant differences between current head and current tail speeds as
well as subsequent fluid jamming. However, the transition from the “fluid unjammed” regime to
the “jammed” regime is still unclear. Figure 9b does not show the transition cases from the “fluid
unjammed” regime to the “jammed” regime. To understand its transition criteria, more laboratory
experiments for different slopes and densities of a model canopy needs to be carried out in the future.

5. Discussions

5.1. Froude Numbers of Density-Driven Exchange Flows

The experimental results in four model canopy configurations including no model canopy, model
canopies on both sides, and a model canopy in shallow or deep sides of tanks are firstly compared to
discuss the effects of vegetation distribution on gravity current. Figure 10 presents the mean Froude

number Fr
(
= utoe√

g′H

)
for four experimental configurations. The mean current speeds of the lower

and upper toes are used to calculate the Fr values. For a gravity current over a smooth and flat bed,
the Fr value is approximately equal to the value of 0.42 obtained from laboratory experiments [37].
When gravity current travels downslope in the absence of a model canopy, the Fr value based on the
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lower toe speed is greater than for a flat bottom because of the slope-induced gravitational component.
In general, this effect increases as the reduced gravity and the tank slope become larger. As the current
flows to the tip of the tank, the current velocity of the upper toe is reduced owing to the downslope
current motions and the viscous effect in shallow regions. When the reduced gravity g′ is less than
7.2 cm/s2, the Fr value of the upper toe is smaller than that in flat bottom cases. At S0 = 0.075,
the Fr values of the lower and upper toes without a model canopy are generally larger than in the
other three cases, indicating a faster mean current velocity in the lower and upper toes (Figure 10a,b).
When model canopies occupy both sides of the tank, the Fr value is the smallest among the four
canopy configuration, but there are several exceptions found here. For instance, when a model canopy
only occupies the shallow regions, the lower toe speed grows faster as the reduced gravity g′ increases
than in the case with no model canopy (Figure 10a). This is possibly due to the thinning phenomenon
between the lower and upper bodies of the current, which reduces the volume of the downslope
current and causes faster lower toe speed. The upper toe velocities at S0 = 0.075 for a model canopy
distributed in deep regions are comparable or even faster than the case of no model canopy on either
side (Figure 10b). The smaller conveyance areas within a model canopy and larger pressure gradient
between the current body and head, as mentioned in the previous section, are possibly responsible for
the result.
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At S0 = 0.125 (Figure 10c,d), the Fr values among the four canopy configurations are closer to
each other in comparison to the cases at S0 = 0.075 (Figure 10a,b), indicating that the vegetation
configurations have a larger impact for currents over small slopes (S0 = 0.075) rather than over larger
slopes (S0 = 0.125). The lower toe velocities when a model canopy is only present in shallow regions
gradually become larger as the reduced gravity increases, again confirming the thinning effect in the
current body. When a model canopy is only in deep regions, the upper toe velocities at S0 = 0.125
are also faster than the case without any model canopy until the reduced gravity reaches 7.2 cm/s2

(Figure 10d). At the steep slope (S0 = 0.25) and with 6.9% vegetation cover on both sides, the lower and
upper toe current velocities and Fr values (≈0.45) are still larger than the flat bottom cases without a
model canopy (Figure 10e,f). The experimental results on a 0.25 slope also reveal that a model canopy
with a larger diameter can decrease current speed more than a smaller canopy diameter given the
same canopy density and configuration.

5.2. Intrusion Length and Volume Discharge of Density-Driven Exchange Flows

Through the present experimental datasets, the relationships to quantitatively estimate the
intrusion length and exchange flowrate through with different bottom slope and vegetation distribution

are developed. The dimensionless intrusion length L̂v

(
=
( 2

3
)2/3Lv

(
nH2

CDa

)−1/3
)

against t̂ when the

model canopy is distributed in either the shallow or deep sides is presented in Figure 11 and compared
with the regression curves obtained from Zhang and Nepf [20].
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Figure 11. Normalized temporal variation in the intrusion length of the currents: (a) vegetation
distributed in shallows; and (b) vegetation distributed in deep regions.

The results show that the L̂v value at φ = 2.1% is much smaller than in the other cases where the
vegetation density φ is 6.9% as well as the results from [20] (Figure 11a). This is because the derivation
from Zhang and Nepf [19] assumes the dominance of vegetative drag on the flow motions; however,
the flow condition within a spare model canopy is inertially controlled. Hence, these data will be
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excluded in the following regression analysis. Over a flat bed, the dimensional intrusion length L̂v

versus t̂ can be expressed as [19]:
L̂v

3/2 = 0.77
(
t̂− t̂0

)
(14)

where t̂0 is the dimensionless initial period of inertial flow and equals to 0.1. In this study, we
assume that L̂v(t̂0) as well as V̂v(t̂0) follow the same formulaic forms, i.e., L̂v

3/2 ∝ (t̂− t̂0) and
V̂v ∝ (t̂− t̂0)

0.74, in Zhang and Nepf [19], but the coefficient in front of (t̂− t̂0) must be fitted with
the present experimental data. The advantage to making these assumptions is that the differences
in intrusion length and exchange volume discharge over a flat bed and sloping bed can be easily
indicated by comparing the coefficients in front of the (t̂− t̂0) term in Equation (14). Since the drag
coefficient, CD, used in this study is larger than that in Zhang and Nepf [19] and L̂v is proportional
to CD

1/3, the L̂v versus t̂ profiles suggested by Zhang and Nepf [19] need to be accordingly adjusted,
which is given by:

L̂v
3/2 = 1.22(t̂− t̂0). (15)

For a model canopy in shallows, two regression lines with uncertainty for S0 = 0.075 and 0.125
can be obtained:

S0 = 0.075, L̂v
3/2 = (1.33± 0.16)(t̂− t̂0), (16)

S0 = 0.125, L̂v
3/2 = (1.73± 0.36)(t̂− t̂0). (17)

It is confirmed that L̂v is a function of tank slope, S0, and that t follows from the scaling analysis
proposed in Section 2.

For a model canopy distributed in deep regions, data collected for S0 = 0.075 and 0.125
approximately collapse all the cases, indicating that the scaling is universal (Figure 11b), i.e.:

L̂v
3/2 = (3.54± 0.59)(t̂− t̂0). (18)

The regression lines can represent the trend of the experimental data well, which justifies the
validity of adopting the same formulaic form proposed by Zhang and Nepf [19].

Based upon the areas displaced by the saline fluid in the deep side of the tank and assuming
the density current is two-dimensional flow, the total exchange volume per unit width, V, as well as
exchange volumetric flowrate per unit width, q, can be estimated. For a 0.25 slope, the intense mixing
at the interface between the water and saline fluid makes it difficult to estimate the exchange volume
discharge and flowrate accurately, and therefore this analysis herein only focuses on the runs at the
milder slopes (S0 = 0.075 and 0.125). Figure 12 shows the temporal variation in the dimensionless total

exchange volume discharge per unit width V̂

= V

1
2

[
3
2

(
nH2s/CDa

)1/2
]2/3

 at runs with a canopy density

φ = 6.9%, where s (= 0.6) is a scale constant, as proposed by Tanino et al. [8]. The results indicate
that the V̂ − t̂ data change with the tank slope for either a model canopy distributed in shallow or
deep regions, and the induced discharges on a steeply sloping bed are larger than those over a mildly
sloping bed. These results can also be found in Figure 8, in which the areas occupied by the saline
fluid are larger for a model canopy distributed in deep regions than a model canopy distributed in
shallows at any time instant. Furthermore, the total volume discharge also increases with increasing
tank slope, and the V̂ − t̂ data at the same bed slope approximately collapse together; i.e., a universal
equation can be obtained for an individual slope. In this study, the formulaic form derived in Zhang
and Nepf [19], i.e., V̂ = a(t̂− t̂0)

0.74, where a is fitted with experimental data, is adopted to represent
the V̂ − t̂ curves.
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Figure 12. Temporal variation in the total volume discharge per unit width: (a) vegetation distributed
in shallows and (b) vegetation distributed in deep regions.

The regressed V̂ − t̂ curves with uncertainty are given as follows:

(a) A model canopy in shallows:

S0 = 0.075, V̂ = (0.67± 0.26)
(
t̂− 0.1

)0.74±0.30, (19)

S0 = 0.125, V̂ = (0.83± 0.24)
(
t̂− 0.1

)0.74±0.22. (20)

(b) A model canopy in deep regions:

S0 = 0.075, V̂ = (0.54± 0.18)
(
t̂− 0.1

)0.74±0.24, (21)

S0 = 0.125, V̂ = (0.98± 0.23)
(
t̂− 0.1

)0.74±0.18. (22)

The original V̂ − t̂ curve in Zhang and Nepf [19] is: V̂ = (0.63± 0.18)(t̂− 0.1)0.74±0.08,
but since V̂ is proportional to CD

1/3, the V̂ − t̂ curve in Zhang and Nepf [19] is revised to
V̂ = (0.86± 0.25)(t̂− 0.1)0.74±0.08 (black line on Figure 12).

Figure 13 provides the normalized volumetric discharge rate, q̂

(
= q√

g′H3

)
, versus the

dimensionless vegetation drag, (= CDaH
n ), within uniformly and fully distributed model canopies.

It seems that the discharge rate q̂ value exhibits an exponential decay as CDaH
n increases and strongly

depends on the tank slope; i.e., a large slope can induce more exchange flows given the same CDaH
n .
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’
represents the cases on a 0.125(~7.13◦) slope.

Figure 14 shows q̂

(
= q√

g′H3

)
versus CDaH

n when a model canopy only occupies one side of

the tank. Although the data points are scattered, some trends still can be found. q̂ possibly exhibits
two different trends with the increase in CDaH

n (Figure 14); one decreases linearly, and the other
decays exponentially. The data showing a linear decrease are mainly from the cases on a steep slope
(S0 = 0.125) or on a mild slope with a larger gravitational acceleration (g′ ≥ 4.1cm/s2), leading to
larger downslope current speeds. In contrast, the data following an exponential decay are obtained
from runs on milder slopes or steeper slopes with a smaller g′, resulting in slower downslope current
speeds. For runs with a linear decrease, their Fr values range from 0.48 to 0.62, whereas for runs with
exponential decay, the Fr values vary from 0.37 to 0.50. Therefore, the Fr(≈0.50) value could possibly
be an indicator to distinguish the two regimes for the discharge rate q̂. The data in Figure 14 are
scattered and can lead to more uncertainty when one generates a regression curve. Instead, the V̂ − t̂
data shown in Figure 12 can obtain a more reliable regression curve to estimate the total exchange
volumetric discharge.
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In the study of Zhang and Nepf [19], the developed formulas were used to estimate the intrusion
length L̂v and the total exchange volume V̂ in a real field system (wetland). Since the formulaic forms
adopted in this study are the same as those in Zhang and Nepf [19], the differences of the intrusion
length and the total exchange volume among different vegetation distributions over a gentle or sloping
bed can be estimated by simply comparing the coefficients in Equations (14)–(22). For example, if the
vegetation is distributed in shallows the exchange flow can penetrate more deeply into the vegetation
by ~6% and ~26% at slopes of 0.075 and 0.125, respectively, more than the flat bed cases in which the
exchange flow can penetrate ~100 m into the vegetation. For vegetation distributed in deep regions,
the intrusion length into the vegetation becomes double that of the case over a flat bed. These results
imply that the exchange flow over a sloping bed can flush more areas than over a flat bed. Furthermore,
the total exchange volume for vegetation distributed in shallow regions is decreased by ~22% and
~4% on slopes of 0.075 (mild) and 0.125 (steep), respectively, compared with that over a flat bed (the
average discharge rate is 1.7 m3·m−1·h−1 in Zhang and Nepf [19]). In this calculation, the volume
of heavy fluid over a flat bed is double that over a sloping bed, so the total exchange volume over a
slope is smaller in some cases than over a flat bed. If the volume of heavy fluid is the same on flat
and sloping beds, the total exchange volume over a slope would increase. For comparison, the total
exchange volume in the case of vegetation distributed in deep regions is also estimated. The total
exchange volume over a mild slope decreases by 37% while increasing by 14% over a steep slope
compared with flat bed cases. The results presented above highlight the importance of bed slope and
vegetation distribution in determining convective exchange flow.
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5.3. Effects of Drag-Coefficient on Density-Driven Exchange Flows

Since the dimensionless intrusion length L̂v and volume V̂ both are proportional to CD
−1/3,

the coefficients and results obtained in Equations (14)–(22) can be significantly influenced by the
vegetative drag coefficients CD. For example, L̂v and V̂ estimated can be 60% larger for CD = 2.5 in
this study than for CD = 1 in Zhang and Nepf [19]. The vegetative drag coefficient CD which we
adopted is based upon the best match of numerical results with the laboratory measurements [28]. It is
still challenging to correctly estimate the CD values within vegetation. In this study, the coefficients in
Equations (14)–(22) were all gained from 6.9% dense vegetation cases. Thus, it is not possible to include
the effects of vegetation density on coefficients in Equations (14)–(22). The comparisons obtained
from Equations (14)–(22) assumed the same vegetation density but the vegetation configuration and
nearshore slope were varied. It will be our future work to consider the effect of vegetation density in
Equations (14)–(22).

For the sloping bottom, the current velocity is not normal to rigid cylinders, and the vortex
shedding induced can be changed and subsequently affect the drag coefficient [38]. The “independence
principle” is often used to consider the flow over inclined cylinders, where the flow velocity needs to be
revised as normal to the cylinders [39]. According to the geometrical relation (see Figure 1), the lower
toe current velocity component normal to the cylinders becomes ulower cos θ. The independence
principle works well for θ ≤ 35

◦
[38] and can possibly extend to θ = 60

◦
[38].

By using the “independence principle”, the normal flow velocity is reduced by 3% for the steep
slope cases (S = 0.25) and 0.3% for the mild slope cases (S = 0.075). Then, applying the cylinder
Reynolds number-drag coefficient relation (CD ≈ 1 + 50Re−2/3

cy ), the current velocities u of 0.03 m/s
and the diameter d of cylinders of 0.5 cm at S = 0.25, the drag coefficient CD is reduced by 1%.
Therefore, the effect of the current velocity not normal to rigid cylinders on drag resistance can be
ignored for subsequent analysis.

6. Conclusions

Density-driven exchange flows, important to the transport of nutrients, pollutants and chemical
substances in nearshore zones with weak wind conditions, were studied through laboratory
lock-exchange experiments. Rigid and emergent cylinders were placed in one of two reservoirs,
which were formed by partitioning a wedge-shaped laboratory tank, to represent aquatic canopies
and simulate a partly vegetated slope. The most important finding from the experiments results was
that a model canopy occupying only one side of the tank can result in variations in current head and
tail speeds that subsequently create different flow patterns. For a model canopy in shallows and open
water in deep regions, gravity currents trapped in shallows can result in less fluid into the current head,
causing the body between the current head and current tail to thin due to a greater downslope current
head speed. On the other hand, for a model canopy distributed in deeper regions with open water in
shallows, gravity currents can potentially be jammed in front of the model canopy, which increases
the thickness of the current at the center of the tank. Since the saline fluid can be regarded as a
deformable and continuous body, the motion of the current on one side can somehow be influenced by
that on the other side. By fitting with the experimental data, the equations for intrusion length and
total exchange discharge can be obtained as they are functions of vegetation distribution, time and
tank slope. The results also reveal that the total discharge rate generally decreases with increasing
canopy drag. The key outcome of this study is to obtain the empirical equations that can be used to
quantitatively estimate intrusion length and total volume exchange discharge in real field systems
with different bottom slope and vegetation distribution. The evident differences on the estimates
highlight the importance of bed slope and vegetation distribution in determining convective exchange
flow. In order to meet real field conditions, future experiments will be carried out in tanks of various
sizes, characterized by stratified environments. In addition, based upon the visual observations,
the three-dimensional current behaviors may be important on measurement uncertainties, especially
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for the cases without a model canopy. In this study, these is lack of quantitative estimation on the
effects. Future experiments need to address the issue as well.

Author Contributions: The methodology for the experiments was a joint effort of Z.G. and Y.-T.L. H.-C.H. and
Z.W. were responsible for carrying out the experiments and analyzing the experiment data. Y.L. developed the
theoretical model. Z.G. wrote the first draft of the paper, and H.-C.H., Z.W., and Y.-T.L. contributed to reviewing
and editing the manuscript.

Funding: This research was funded by the National Key Research and Development Program of China (No.
2016YFC0401500), 3rd sub-topic (No. 2016YFC0401503), 7th sub-topic (No. 2016YFC0401507), and the National
Natural Science Foundation of China (11672267).

Acknowledgments: The authors thank the editors and three anonymous reviewers for their constructive
suggestions and comments for improvement of the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. James, W.F.; Barko, J.W. Estimation of phosphorus exchange between littoral and pelagic zones during
nighttime convection circulation. Limnol. Oceanogr. 1990, 36, 179–187. [CrossRef]

2. MacIntyre, S.; Romero, J.R.; Kling, G.W. Spatial-temporal variability in surface layer deepening and lateral
advection in an embayment of Lake Victoria, East Africa. Limnol. Oceanogr. 2002, 47, 657–671. [CrossRef]

3. Woodward, B.L.; Marti, C.L.; Imberger, J.; Hipsey, M.R.; Oldham, C.E. Wind and buoyancy driven horizontal
exchange in shallow embayments of a tropical reservoir: Lake Argyle, Western Australia. Limnol. Oceanogr.
2017, 62, 1636–1657. [CrossRef]

4. Monismith, S.B.; Imberger, J.; Morison, M.L. Convective motion in the sidearm of a small reservoir. Limnol.
Oceanogr. 1990, 35, 1676–1702. [CrossRef]

5. Zhang, X.; Nepf, H.M. Thermally-driven exchange flow between open water and an aquatic canopy. J. Fluid
Mech. 2009, 632, 227–243. [CrossRef]

6. Coates, M.; Patterson, J.C. Unsteady natural convection in a cavity with non-uniform absorption of radiation.
J. Fluid Mech. 1993, 256, 133–161. [CrossRef]

7. Farrow, D.E.; Patterson, J.C. On the response of a reservoir sidearm to diurnal heating and cooling. J. Fluid
Mech. 1993, 246, 143–161. [CrossRef]

8. Tanino, Y.; Nepf, H.M.; Kulis, P.S. Gravity currents in aquatic canopies. Water Resour. Res. 2005, 41, W12402.
[CrossRef]

9. Adams, E.E.; Wells, S.A. Field measurements on side arms of Lake Anna, Va. J. Hydraul. Eng. 1984, 110,
773–793. [CrossRef]

10. Sturman, J.J.; Ivey, G.N. Unsteady convective exchange flows in cavities. J. Fluid Mech. 1998, 386, 127–153.
[CrossRef]

11. Lei, C.; Patterson, J.C. Natural convection in a reservoir sidearm subject to solar radiation: Experimental
observations. Exp. Fluids 2002, 32, 590–599. [CrossRef]

12. Horsch, G.M.; Stefan, H.G. Convective circulation in littoral water due to surface cooling. Limnol. Oceanogr.
1988, 33, 1068–1083. [CrossRef]

13. Lei, C.; Patterson, J.C. Natural convection induced by diurnal heating and cooling in a reservoir with slowly
varying topography. JSME Int. J. Ser. B Fluids Therm. Eng. 2006, 49, 605–615. [CrossRef]

14. Chimney, M.; Wenkert, L.; Pietro, K. Patterns of vertical stratification in a subtropical constructed wetland in
south Florida (USA). Ecol. Eng. 2006, 27, 322–330. [CrossRef]

15. Lövstedt, C.; Bengtsson, L. Density-driven current between reed belts and open water in a shallow lake.
Water Resour. Res. 2008, 44, W10413. [CrossRef]

16. Pokorný, J.; Kvet, J. Aquatic plants and lake ecosystem. In the Lakes Handbook; Blackwell Science Ltd.: Malden,
MA, USA, 2004.

17. Lightbody, A.F.; Avener, M.; Nepf, H.M. Observations of short-circuiting flow paths within a constructed
treatment wetland in Augusta, Georgia, USA. Limnol. Oceanogr. 2007, 53, 1040–1053. [CrossRef]

18. Coates, M.; Ferris, J. The radiatively driven natural and convection beneath a floating plant layer. Limnol.
Oceanogr. 1994, 39, 1186–1194. [CrossRef]

http://dx.doi.org/10.4319/lo.1991.36.1.0179
http://dx.doi.org/10.4319/lo.2002.47.3.0656
http://dx.doi.org/10.1002/lno.10522
http://dx.doi.org/10.4319/lo.1990.35.8.1676
http://dx.doi.org/10.1017/S0022112009006491
http://dx.doi.org/10.1017/S0022112093002745
http://dx.doi.org/10.1017/S0022112093000072
http://dx.doi.org/10.1029/2005WR004216
http://dx.doi.org/10.1061/(ASCE)0733-9429(1984)110:6(773)
http://dx.doi.org/10.1017/S002211209800175X
http://dx.doi.org/10.1007/s00348-001-0402-7
http://dx.doi.org/10.4319/lo.1988.33.5.1068
http://dx.doi.org/10.1299/jsmeb.49.605
http://dx.doi.org/10.1016/j.ecoleng.2006.05.017
http://dx.doi.org/10.1029/2008WR006949
http://dx.doi.org/10.4319/lo.2008.53.3.1040
http://dx.doi.org/10.4319/lo.1994.39.5.1186


Water 2018, 10, 1073 25 of 25

19. Zhang, X.; Nepf, H.M. Density-driven exchange flow between open water and an aquatic canopy. Water
Resour. Res. 2008, 44, W08417. [CrossRef]

20. Tsakiri, M.; Prinos, P.; Koftis, T. Numerical simulation of turbulent exchange flow in aquatic canopies.
J. Hydraul. Res. 2016, 54, 131–144. [CrossRef]

21. Wietzel, R.G. Lake and river ecosystems. Limnology 2001, 37, 490–525.
22. Lin, Y.T.; Wu, C.H. The role of rooted emergent vegetation on periodically thermal-driven flow over a sloping

bottom. Environ. Fluid Mech. 2014, 14, 1303–1334. [CrossRef]
23. Lin, Y.T.; Wu, C.H. Effects of a sharp change of emergent vegetation distributions on thermally driven flow

over a slope. Environ. Fluid Mech. 2015, 15, 771–791. [CrossRef]
24. Ho, H.C.; Lin, Y.T. Gravity currents over a rigid and emergent vegetated slope. Adv. Water Resour. 2015, 76,

72–80. [CrossRef]
25. Benjamin, T.B. Gravity currents and related phenomena. J. Fluid Mech. 1968, 31, 209–248. [CrossRef]
26. Nepf, H.M. Drag, turbulence, and diffusion in flow through emergent vegetation. Water Resour. Res. 1999,

35, 479–489. [CrossRef]
27. Jamali, M.; Zhang, X.; Nepf, H.M. Exchange flow between a canopy and open water. J. Fluid Mech. 2008, 611,

237–254. [CrossRef]
28. Leonard, L.; Luther, M.E. Flow hydrodynamics in tidal marsh canopies. Limnol. Oceanogr. 1995, 40, 1474–1484.

[CrossRef]
29. He, Z.; Zhao, L.; Lin, T.; Hu, P.; Lv, Y.; Ho, H.C.; Lin, Y.T. Hydrodynamics of gravity currents down a ramp in

linearly stratified environments. J. Hydraul. Eng. 2017, 143, 04016085. [CrossRef]
30. Kadlec, R.H. Overland flow in wetlands: vegetation resistance. J. Hydraul. Eng. 1990, 116, 691–706. [CrossRef]
31. Wilson, R.I.; Friedrich, H.; Stevens, C. Turbulent entrainment in sediment-laden flows interacting with an

obstacle. Phys. Fluid 2017, 29, 036603. [CrossRef]
32. Ilıcak, M. Energetics and mixing efficiency of lock-exchange flow. Ocean Model. 2014, 83, 179–187. [CrossRef]
33. Hogg, C.A.R.; Dalziel, S.B.; Huppert, H.E.; Imberger, J. Inclined gravity currents filling basins: The influence

of Reynolds number on entrainment into gravity currents. Phys. Fluid 2015, 27, 096602. [CrossRef]
34. Tanino, Y.; Nepf, H.M. Lateral dispersion in random cylinder arrays at high Reynolds number. J. Fluid Mech.

2008, 600, 339–371. [CrossRef]
35. Nogueira, H.; Adduce, C.; Alves, E.; Franca, M. Analysis of lock-exchange gravity currents over smooth and

rough beds. J. Hydraul. Res. 2013, 51, 417–431. [CrossRef]
36. Shin, J.O.; Dalziel, S.B.; Linden, P.F. Gravity currents produced by lock exchange. J. Fluid Mech. 2004, 521,

1–34. [CrossRef]
37. Vanatta, C. Experiments on vortex shedding from yawed circular cylinders. AIAA J. 1968, 6, 931–933.

[CrossRef]
38. Shang, J.K.; Stone, H.A.; Smits, A.J. Flow past finite cylinders of constant curvature. J. Fluid Mech. 2018, 837,

896–915. [CrossRef]
39. Zhou, T.; Razali, S.M.; Zhou, Y.; Chua, L.; Cheng, L. Dependence of the wake on inclination of a stationary

cylinder. Exp. Fluid 2009, 46, 1125–1138. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1029/2007WR006676
http://dx.doi.org/10.1080/00221686.2016.1141803
http://dx.doi.org/10.1007/s10652-014-9336-5
http://dx.doi.org/10.1007/s10652-014-9382-z
http://dx.doi.org/10.1016/j.advwatres.2014.12.005
http://dx.doi.org/10.1017/S0022112068000133
http://dx.doi.org/10.1029/1998WR900069
http://dx.doi.org/10.1017/S0022112008002796
http://dx.doi.org/10.4319/lo.1995.40.8.1474
http://dx.doi.org/10.1061/(ASCE)HY.1943-7900.0001242
http://dx.doi.org/10.1061/(ASCE)0733-9429(1990)116:5(691)
http://dx.doi.org/10.1063/1.4979067
http://dx.doi.org/10.1016/j.ocemod.2014.08.003
http://dx.doi.org/10.1063/1.4930544
http://dx.doi.org/10.1017/S0022112008000505
http://dx.doi.org/10.1080/00221686.2013.798363
http://dx.doi.org/10.1017/S002211200400165X
http://dx.doi.org/10.2514/3.4630
http://dx.doi.org/10.1017/jfm.2017.884
http://dx.doi.org/10.1007/s00348-009-0625-6
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Mathematical Formulation 
	Experimental Methods 
	Results 
	Nature of Density-Driven Exchange Flows 
	Density-Driven Exchange Flow Patterns and Current Head Profiles 
	Current Thickness of Density-Driven Exchange Flows 

	Discussions 
	Froude Numbers of Density-Driven Exchange Flows 
	Intrusion Length and Volume Discharge of Density-Driven Exchange Flows 
	Effects of Drag-Coefficient on Density-Driven Exchange Flows 

	Conclusions 
	References

