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Abstract: The identification of unknown groundwater pollution sources and the characterization
of pollution plume remains a challenging problem. In this study, we addressed this problem by a
linked simulation-optimization approach. This approach couples a contaminant transport simulation
model with a Kalman filter-based method to identify groundwater pollution source and characterize
plume morphology. In the proposed methodology, the concentration field library, the covariance
reduction with a Kalman filter, an alpha-cut technique of fuzzy set, and a linear programming model
are integrated for solving this inverse problem. The performance of this methodology is evaluated
on an illustrative groundwater pollution source identification problem. The evaluation considered
the random hydraulic conductivity filed, erroneous monitoring data, a prior information shortage of
potential pollution sources, and an unexpected and unknown pumping well. The identified results
indicate that, under these conditions, the proposed Kalman filter-based optimization model can give
satisfactory estimations to pollution sources and plume morphology for domains with small and
moderate heterogeneity but cannot validate the transport in the relatively high heterogeneous field.

Keywords: pollution source identification; monitoring network design; Kalman filter; alpha-cut
technique; simulation-optimization

1. Introduction

Groundwater pollution, which remains undetected for a long time before being detected
accidentally, poses a serious threat to the environment. Source removal and plume containment
are two important aspects of remediation of contaminated sites [1]. Therefore, the characteristics
of groundwater pollution sources and pollutant plume morphology should be determined when
groundwater pollution phenomena are discovered. The main purpose of the pollution source
identification and plume morphology characterization is to improve the efficiency of remediation
techniques or reduce the cleanup costs [2–4].

In most circumstances, there is little comprehensive information related to the characteristics of
groundwater pollution sources since groundwater is stored in the hidden subsurface [5]. To resolve
the above-mentioned issue while the actual measurement of contaminant sources is missing, many
researchers began to use the inverse solution method to identify groundwater pollution sources.
A significant number of statistical and deterministic methods have been proposed to solve this
inverse problem considering the hydrogeological conditions known [5–10]. Extensive reviews on
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the identification methods of pollution source characteristics and the applications of various inverse
modeling techniques in pollution source identification have been described in past research [11–14].
Since the inverse problem possesses an ill-posed nature, linked simulation-optimization methodology
has been widely used [5,15]. In this methodology, the physically-based simulator is externally linked
to the optimization algorithm, which avoids the problem of non-uniqueness and instability in the
form of solving inverse problem. As a typical optimization method, the Kalman filter technique has
received considerable attention in subsurface flow and transport inverse problems [16–19]. Compared
with the traditional optimization-based approach, it is more convenient to employ a Kalman filter
method with existing simulators. Even though the Kalman filter method is based on Gaussian linear
hypothesis, it has been proven to be highly effective in the high-dimensional nonlinear non-Gaussian
problems [20–23]. Afterwards, in this study, the Kalman filter method was adopted to solve the
problem of pollution source identification and plume morphology characterization.

However, due to the heterogeneity of the groundwater system, it is time-consuming and expensive
to obtain the observed (measured, sampled) values for inverse modeling. The effective selection
of observation points plays an essential role in the identification of well fluxes, aquifer recharge,
and unknown hydrogeological parameters such as transmissivity, storage, etc. [24–26] and it is
an indispensable part in the problem of groundwater pollution source identification and plume
morphology characterization. An inappropriate monitoring network would result in the waste of time
and money for site data collection and may also mislead the optimal source identification results [27].
Therefore, accounting for the uncertainty of plume movement and the limitation of the budget
for monitoring projects in the groundwater system, the optimal design of the monitoring network
is imperative [8,28–30]. The monitoring network is designed to improve the efficiency of source
identification and plume characterization and many criteria are available in this simulation-based
optimal monitoring network design [4,17,19,22,29,31,32]. Considering the inverse problem solved
by the Kalman filter method, the variance reduction with the Kalman filter approach is adopted to
optimize the design of monitoring the network in this study.

Despite the fact that the linked simulation-optimization method is generic and robust, it results
in a heavy computational burden because of enormous data exchange between the simulation
models and the optimization models for achieving satisfactory fitting errors in the inverse problem
(pollution identification, monitoring design, et al.) [5]. An alternative approach to significantly facilitate
the simulation-optimization processes is to replace the physically-based simulation models with a
surrogate [33]. The construction of a good surrogate model is complex. Accordingly, the concept of the
concentration field library, which is based on the principle of linear superposition, is invented and
incorporated into our proposed method.

Furthermore, due to the lack of hydrogeological investigation for the study area and the
erroneous measurements, the physically-based groundwater flow and transport simulation model
might introduce intrinsic uncertainties [34]. For example, when collecting the hydrogeological data of
a study area, a pumping well may not be investigated. Consequently, the constructed groundwater
simulation models might lead to inaccurate simulation results. Therefore, an appropriate approach
should be developed to tackle such uncertain conditions and achieve reliable results without sacrificing
computational efficiency.

Therefore, our study tackled the challenges (optimal design of monitoring network, heavy
computational burden, unexpected uncertainties, and erroneous measurements) in identifying the
pollution sources and plume morphology characterization. In our proposed method, the Kalman
filter method is adopted as the core algorithm for its convenience and effectiveness. The concept of
a concentration field library is invented to speed up the calculation of the inverse problem and the
covariance reduction, alpha-cut technique of fuzzy set, and linear programming model are incorporated
into the Kalman filter method to realize the optimal monitoring network design and identify pollution
source location and source fluxes.
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To assess the performance of the proposed Kalman filter-based method for groundwater pollution
source identification and plume characterization, we considered a hypothetical aquifer model including
the random hydraulic conductivity field, measurement errors, and unknown uncertainty. This paper
is organized as follows. The proposed methods are formulated in Section 2. The proposed method
is applied to numerical examples in Section 3. The performance of the proposed method tested by
numerical cases are illustrated in Section 4. Lastly, the conclusions are summarized in Section 5.

2. Methodology

This section provides a framework of the proposed Kalman filter-based method and the
description of certain key processes in pollution source identification and the corresponding monitoring
network design. For simplification, the pollution source identification in the subsequent paragraphs is
used to denote both the pollution source identification and the plume morphology characterization.

2.1. Framework of the Proposed Method

A flow diagram of the proposed method is shown in Figure 1 and a brief description of the steps
of the proposed method are below.

• Step 1: On the basis of the site investigation, the location of possible pollution sources is
preliminarily determined and the initial weight and mass-loading rate for each potential pollution
source are given based on expert opinion.

• Step 2: Considering the uncertainty of site information, the random hydraulic conductivity field
is generated by the LHS (Latin hypercube sampling) technique assuming hydraulic conductivity
in a random process.

• Step 3: Groundwater flow and the transport model are constructed and the concentration field library
is obtained by Monte Carlo simulation. In the Monte Carlo simulation, each potential pollution
source with unit mass-loading rate is calculated at each hydraulic conductivity realization.

• Step 4: According to the weight of the pollution source, the concentration field is randomly
selected from the concentration field library and the superposed pollution plume and covariance
matrix are generated in combination with the mass-loading rate of the pollution source.

• Step 5: Combined with the existing sampling data, the Kalman filter method is used to update the
superposed pollution plume and the covariance matrix.

• Step 6: According to the reduction in the overall uncertainty, new sampling data are selected
sequentially using variance reduction with the Kalman filter method.

• Step 7: Without adjusting the weight value of the pollution source, a linear programming model
is adopted to identify the source mass-loading rate by using the existing sampling data.

• Step 8: The superposed pollution plume is generated from the concentration field library based
on the weight and mass-loading rate values prior to this step.

• Step 9: Combined with the sampling data obtained prior to this step, the Kalman filter method is
used to update the superposed pollution plume.

• Step 10: Based on the morphological comparison of pollution plume, the weight value of the
pollution source is updated by using the alpha-cut technique.

Repeat Step 4 to Step 10 until the weight value and overall uncertainty tends to be stable.
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Figure 1. Flow diagram of the pollution source identification using the proposed Kalman
filter-based method.

2.2. Groundwater Contaminant Transport Simulation

The contaminant transport, which is a complicated process in groundwater, may include
advection, dispersion, diffusion, adsorption, and biodegradation. Prior to the simulation of the
contaminant transport, the groundwater flow field should be figured out. The steady-state flow in a
two-dimensional aquifer system can be expressed by the equation below.

∂

∂xi

(
Kij

∂H
∂xj

)
+ W = 0 i, j = 1, 2, (1)
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where Kij is the hydraulic conductivity, H is the hydraulic head, W is the volumetric flux per unit
volume (positive for inflow and negative for outflow), and x are the Cartesian coordinates.

The two-dimensional contaminant transport for conservative solute at a point source in
groundwater can be given by the equation below.

∂C
∂t
− ∂

∂xi

(
Dij

∂C
∂xj

)
+

∂

∂xi
(uiC)− R

θ
= 0 i, j = 1, 2, (2)

where θ is the porosity, C is the contaminant concentration, ui is the average linear velocity of
groundwater flow, Dij is the dispersion coefficient (a second-order tensor), and R is the source or
sink term.

The head distribution of the flow field can be estimated by Equation (1). Darcy’s law can be used
to determine ui in Equation (3), which is shown below.

ui = −
Kij

θ

∂H
∂xj

i, j = 1, 2, (3)

The temporal and spatial concentration distribution of released contaminants at a specified point
can be simulated by Equations (1) and (2). In this study, MODFLOW and MT3DMS were used to
simulate the groundwater flow and transport process, respectively.

2.3. Stochastic Simulation

In this study, the hydraulic conductivity field is assumed to be log-normally distributed and
the semivariogram, which represents the log conductivity field’s spatial correlation structure, is an
exponential model.

γF(h) = δ2
F

[
1− exp

(
− h

λF

)]
, (4)

where F(x) = lnK(x), K is the hydraulic conductivity, δ2
F is the variance of random F, and λF is the

correlation length.
Given a probabilistic description of hydraulic conductivity, random field realizations are

produced and served as input to numerical models. Realizations of hydraulic head and contaminant
concentration are obtained as output from the model and the relevant statistics calculated.

In this study, the LHS technique (Latin hypercube sampling), which is a stratified sampling
approach, was used to generate hydraulic conductivity realizations. The LHS approach is characterized
by a segmentation of the assumed probability distribution into a number of non-overlapping intervals
with each having equal probability [35].

For each hydraulic conductivity realization, Equation (1) is solved and a steady state hydraulic
head distribution is obtained. Equation (3) is then solved to get a velocity realization based on the
head obtained from the hydraulic conductivity realization. A realization of the contaminant field is
finally generated from the solution to Equation (2).

2.4. Concentration Field Library

However, repetitive calling of the simulation model (MODFLOW and MT3DMS) is requisite
in the stochastic modeling and higher computation time is aggravated for the inverse problem.
Therefore, in order to speed up the calculation, the concept of the concentration field library is
proposed. The concentration field library is a library that stores the spatiotemporal concentration
field for each potential pollution source of a unit mass-loading rate and is generated based on the
principle of linear superposition, which requires the government equation to be linear. The following
paragraphs describe the concept and implementation for the concentration field library.
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Equation (2) can be rewritten as part of Equation (5).

∂C
∂t
− ∂

∂xi

(
Dij

∂C
∂xj

)
+

∂

∂xi
(uiC) =

R
θ

, (5)

The linear derivative operator L(C) represents the left side of Equation (4). Note that Cj denotes
the concentration field for the jth potential source of the unit pollution mass-loading rate. Afterward,
Cj satisfies the following equation.

L
(
Cj
)
=

δj

θ
, (6)

where δj denotes the jth potential pollution source of unit mass-loading rate (1 at the source j and 0 at
other grids).

In case of multiple pollution sources, based on the principle of linear superposition, the
superposed concentration field C (C = ∑a

j=1 mjCj) satisfies the equation below.

L(C) = L

[
a

∑
j=1

mjCj

]
=

a

∑
j=1

mjL(Cj) =
a

∑
j=1

mjδj

θ
, (7)

where a is the number of potential pollution sources and mj denotes the mass-loading rate of jth
potential source.

In this study, the potential pollution sources of the unit mass-loading rate are combined with
hydraulic conductivity realizations (Figure 2) and are regarded as model input to perform numerical
simulations. After these processes, the concentration fields are stored in the concentration field library.
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Figure 2. The construction diagram of the concentration field library.

Given the weight and mass-loading rate of potential pollution sources ((wj, mj), j = 1, . . . , a),
the concentration field corresponding to each hydraulic conductivity realization is generated utilizing
the following procedures (Figure 3). First, according to the weight value of each pollution source,
randomly select the concentration field from the n concentration fields and assign the zero concentration
field to unselected ones. Second, multiply the concentration fields by the mass-loading rate of the
pollution sources. Third, superpose the concentration fields under the same hydraulic conductivity
field. Lastly, we generate the n concentration field realizations with the given weight and the
mass-loading rate.
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The mean concentration and the covariance matrix can be calculated based on the above
realizations of the superposed concentration field. The average concentration CI at location i can be
expressed by the equation below.

CI =
1
n

n

∑
k=1

Ck
i , (8)

where Ck
i denotes the kth concentration realization at location i. In addition, the element (i, j) of the

corresponding covariance matrix is shown in the equation below.

cov
(
Ci, Cj

)
=

1
n

n

∑
k=1

(
Ck

i − Ci

)(
Ck

j − Cj

)
, (9)

The resultant mean concentration and the covariance matrix are the prior estimates before any
sample is taken. They would be used as the initial conditions in the Kalman filter method.

2.5. Kalman Filter Approach

Taking into account the uncertainty of hydraulic conductivity, which would be transferred to
contaminant concentration uncertainty, the Kalman filter method combined with sampling data is
used to estimate the concentration field so that the concentration of the estimated pollution plume is
close to that of the true plume. In this study, the discrete static Kalman filter is chosen because time is
not considered as part of the problem. The updated equations are below.

Compute Kalman gain:

K = P−HT
[

HP−HT + r
]−1

, (10)

Update estimate with measurement z:

Ĉ+ = Ĉ− + K
[
z− HĈ−

]
, (11)

Update the error covariance:
P+ = [I − KH]P−, (12)

where K is the Kalman gain matrix, P is the error covariance estimate, Ĉ is a vector of dimension
b that is an estimate of the concentration field, z is the vector of l noise corrupted measurements,
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H is the sampling matrix that contains zeros and ones (1: when a sample is taken at the specific
location, 0: when a sample is not taken) with dimension of l × b. , r is the variance of sampling error,
symbol—denotes prior estimate and + denotes posterior estimate, b is the number of the computing
node, and l is the number of the sampling node.

However, due to the heterogeneity of the groundwater system, it is time-consuming and expensive
to obtain the measured values. The efficient selection of observation points plays a crucial role in
estimating the pollution plume. Considering that the Kalman filter is adopted as the estimation,
the variance reduction is adopted to optimize the design of the monitoring network in this study.

To meet the requirements for the remediation of pollution plumes, the strategy of sequentially
adding sampling points is considered until the total variance reaches a predefined threshold. Therefore,
one single sampling point at a time is chosen sequentially to update the plume and error covariance
matrix and the sampling matrix H is a vector of dimension b.

H = [0, 0, · · · , 0, 1, 0, · · · , 0, 0], (13)

where the number 1 is located at the jth sampling location. The sampling error covariance associated
with the jth location is denoted as rj. The formula used to calculate the uncertainty measurement
corresponds to each potential sampling location, which is shown in the equation below [17,19].

σ2
T = ∑

i
P+

ii = ∑
i

P−ii −
1

P−ii + rj
∑

i

(
P−ii
)2, (14)

The term ∑i P+
ii in the above equation represents the posterior total variance. The total variance

reduction is achieved when 1
P−ii +rj

∑i
(

P−ii
)2 reaches the maximum.

While the above-mentioned predefined threshold for total variance usually requires trial-and-error
to get a reasonable value, for the ease of monitoring network design, we determined the operation of
sequentially adding sampling points by judging whether the weight and mass-loading rate of potential
sources tend to be stable.

2.6. Alpha-Cut Technique of a Fuzzy Set

In the concentration field library, there are n non-superposed concentration fields for each potential
pollution source and the resulting mean concentration field of these n concentration fields is named as
a “single pollution plume”. If there are five potential pollution sources, it corresponds to five single
pollution plumes.

An intuitive concept is that the single pollution plume, which is getting closer in morphology to the
pollution plume, generally has a higher probability of being polluted. Therefore, each single pollution
plume is compared with the updated superposed pollution plume and the similarity measurement
between them will be used as the updated weight of the potential pollution source.

In order to measure the similarity, the pollution plumes are represented as fuzzy sets with
membership functions and the membership function is defined as normalized concentration value
s (all concentration values are divided by the maximum concentration value). The alpha-cut (α-cut)
technique of a fuzzy set provides the interval range corresponding to a specific value of membership
function and is adopted in this study. Mathematically, the α-cut technique is represented by the
equation below [18].

Cutα A = {x|µA(x) ≥ α} (15)

where A is a fuzzy set (the representative of the plume), µA(x) is the membership function (normalized
concentration value), and α is the value of alpha. Several α-cuts are considered such as five α-cuts
(αi = 0.1, 0.3, 0.5, 0.7, 0.9).
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Each α-cut for the updated superposed pollution plume is compared with the corresponding
α-cut of each single pollution plume. Figure 4 is the comparison of α-cuts where the overlapping area
of the two α-cuts is shown in shade and the area of the overlapping areas S (measure of similarity)
are calculated. Afterwards, the global degree (g) of similarity between two plumes is obtained by
weighting the overlapping area by the α-cut values and summing all the products (Equation (16)).
Lastly, the degree of similarity between each single pollution plume and the updated superposed
plume is normalized by the largest value of g and is assigned as the updated weight values of each
potential pollution source.

g = ∑
i

αiSi (16)
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2.7. Linear Optimization Model

Using the method of contaminant plume morphological comparison, the location of the pollution
source can be identified when the mass-loading rate of the pollution source is known. However, when
the mass-loading rate is unknown, these pollution source identification problems would be more
complicated. Afterward, the methods for modifying the pollution source mass-loading rate needs to
be embedded in the aforementioned method. In this study, considering the computational efficiency,
local search methods, which are not intelligent optimization algorithms, are adopted for modifying
(also belongs to optimization) the mass-loading rate. A description of the optimization model for the
mass-loading rate modification is presented below.

The decision variables in this optimization problem consists of the mass-loading rate for each
potential pollution source and the objective function of the optimization model can be mathematically
expressed below.

min ∑
i
|(Ci − zi)| i = 1, · · · , l (17)

where Ci is the simulated concentration at sampling location i, zi is the measured concentration at
sampling location i, and l is the total number of sampling locations.
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The constraints for the optimization problems can be expressed by the equations below.

0 ≤ mj ≤ m∗ j = 1, · · · , a (18)

Ci = fi(m) i = 1, · · · , l (19)

where m is a vector of dimension a, mj is the mass-loading rate of the jth potential pollution source, and
m∗ is the upper bound of the mass-loading rate of the pollution source. f (m) represents the function
that transforms the mass-loading rate of the pollution source into simulated concentrations via the
physically-based model and can be obtained by performing arithmetic operations on the concentration
filled library based on the principle of superposition.

The form of the objective function defined in Equation (17) is not compatible with linear
optimization because it contains absolute values [36]. It can be rewritten by using the equations below.

min ∑
i
(Ui + Vi) i = 1, · · · , l (20)

such that
Ui −Vi = zi − Ci i = 1, · · · , l (21)

Ui, Vi ≥ 0 i = 1, · · · , l (22)

Therefore, the constraints for the optimization problems with the decision variables Ui, Vi are
made up of Equations (18) and (19), Equations (21) and (22). In addition, the optimization problem
defined above has only linear constraints and was solved by function linprog in MatLab.

3. Application of the Proposed Method

The performance of the proposed methodology is assessed in an illustrative study area where
the aquifer has already been contaminated for a long time and the pollution plume has reached a
quasi-steady state. Therefore, the groundwater system is assumed to be in a steady state flow and
transport conditions. The illustrative application of the methodology also considers advective transport
and hydrodynamic dispersion. For greater realism, incomplete site information (uncertain hydraulic
conductivity field and an unknown pumping well), erroneous monitoring data, and prior information
short on the potential pollution sources are introduced in the illustrative application.

3.1. Aquifer Site

This study area is a two-dimensional, heterogeneous, isotropic confined aquifer measuring
300 × 200 m. The flow domain is bounded by the constant-head boundary on the south side, flow
boundary on the north side, and no-flow boundaries on the other sides (Figure 5). The head values for
the south side is equal to 10.0 m. The flow rate along the north side is 1.0 m2/day.

The hydraulic conductivity field is assumed to be a second order stationary, isotropic and follow
lognormally distribution, with a mean of 2.5 (ln(m/day)), a standard deviation of 0.5 (ln(m/day)), and
a correlation length of 40.0 m. The assumption of a known hydraulic conductivity field is unrealistic
to some extent. In fact, in field conditions, it is difficult to get detailed information about hydraulic
parameters and, for this reason, there is a large collection of research studies regarding estimating
hydraulic conductivity variability [37]. The focus of this paper is testing the efficiency of the proposed
method under the assumptions of a known hydraulic conductivity field and the transport parameters.
A grid size of 5 × 5 m is used for numerical calculation of physically-based models. Other input
parameters of the flow and transport model are given in Table 1.
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Table 1. Hydrogeological characteristics of the hypothetical aquifer.

Parameters Unit Value

Grid spacing in x direction m 5
Grid spacing in y direction m 5

Saturated thickness m 10
Top elevation of aquifer m 20

Bottom elevation of aquifer m 10
Effective porosity dimensionless 0.30

Longitudinal dispersivity m 4
Transverse dispersivity m 1.2

Effective diffusion coefficient m2/day 1.75 × 10−4

3.2. Pollution Source Identification Problem

The pollution source identification in this issue is achieved by selecting optimal monitoring points
with incomplete site information (uncertain hydraulic conductivity field, unknown pumping well)
and erroneous monitoring data.

In this problem, on the basis of the site investigation, there are five potential pollution
sources (S1–S5) in the aquifer domain, but the mass-loading rate of pollution source is unknown.
The fact is that there is only one true pollution source at S2 with the mass-loading rate of 500 g/day
and a pumping well with a flow rate of 150 m3/day is missed by accident in the site investigation.
The potential pollution sources (S1–S5) and the missing pumping well (Q) are shown in Figure 5.
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There are 500 hydraulic conductivity realizations generated by the Latin hypercube sampling
technique and a randomly selected realization is treated as the actual hydraulic conductivity field
(Figure 6). Under this hydraulic conductivity field, the true pollution plume is generated and depicted
in Figure 5.Water 2018, 10, x FOR PEER REVIEW  12 of 22 
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3.3. Erroneous Monitoring Data

Since it is a hypothetical example, the monitoring data are numerically calculated through the
simulation model. In addition, in order to test the robustness and applicability of the methodology,
the measurement (Cobs) is generated by the observation error covariance matrix (R) and true value
(Csimu). See Equation (23).

Cobs = X× D + Csimu (23)

where Cholesky decomposition is performed on R (R = D′D) and X is a standard normal distribution
random vector with the same dimension of Csimu.

Note that the monitoring data are obtained under the groundwater flow condition with pumping
wells, but the pumping well is ignored in the groundwater flow model established for pollution source
identification. The unknown pumping well (Q) with 150 m3/day pumping rates was introduced to
assess the robustness of the proposed approach.

4. Results and Discussion

4.1. Stochastic Modeling Analysis

Latin hypercube sampling (LHS) from a Gaussian distribution was applied to randomly generate
the hydraulic conductivity realizations. The values of these parameters are described in Section 3.1
and each realization was combined with five potential sources with a unit mass-loading rate to obtain
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the corresponding concentration individually. Therefore, the concentration field library that contains
2500 concentration realizations is built to choose to calculate the superposed pollution plume.

To test the validity and ergodicity of the concentration field library, the analysis of statistical
characteristics (mean and standard deviation) at four virtual sampling points (O1–O4, in Figure 5) is
performed. In the course of analysis, these sampling data points are extracted from the 2500 realizations
of the concentration field under the pollution sources with the weight of (0.7, 0.8, 0.9, 0.6, 0.9) and the
mass-loading rate of 500 g/day.

Figures 7 and 8 are the iterative curves of mean and standard deviation for O1–O4, respectively.
It can be seen that the mean value and standard deviation gradually reach a stable state with the
increase of the sampling number and nearly converge after about 350 iterations (samplings). Therefore,
the concentration field library obtained from LHS with 500 samplings is adequately satisfactory to be
used for subsequent pollution source identification.
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4.2. Pollution Source Identification

The illustrative application is solved with the proposed method discussed above. The parameters
set for the proposed method are as follows. The initial weights of the pollution sources are set to
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(0.7, 0.8, 0.9, 0.6, 0.8), respectively. The initial mass-loading rates of the pollution sources are all set to
200 g/day. Four α-cuts (0.2, 0.4, 0.6, 0.8) for morphological comparison of pollution plume is adopted.

Figure 9 are the normalized contour maps of the pollution plume. Figure 9a shows the true
plume and Figure 9b–f shows the pollution plume updated with 1, 2, 3, 4, and 6 monitoring sampling
data, respectively. As the number of samplings increases, the shape of the pollution plume gradually
approaches that of the true pollution plume.
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Table 2 summarizes the identification results (mass-loading rates and weights of potential
pollution sources) of the proposed method. In Table 2, the weights and mass-loading rates of
pollution sources tend to be stable after taking six samples. At this time, the corresponding weights
of each potential pollution sources are (0, 1, 0, 0, 0), which exactly matches the actual situation and
the corresponding mass-loading rates are (0.01, 530.64, 0.01, 0.01, 0.01), which the deviation of the
mass-loading rate is about 6%. Note that the value of 0.01 is meant to prevent disturbances in solving
the linear optimization problem for the mass-loading rates.

Therefore, it can be concluded that the proposed method is successful in identifying the true
source location and characterizing the pollution morphology plume after the collection of six samples.
The first sample is selected near the true pollution source for its high concentration value, the second
sample is selected near the unknown pumping well to reduce this uncertainty, the third one is selected
to exclude other potential pollution sources, and the other three samples are selected downstream of
the true pollution source to characterize the plume.
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Table 2. Pollution source identification results.

Sampling
Number

Source 1 Source 2 Source 3 Source 4 Source 5

Mass-Loading
Rate (g/day) Weight Mass-Loading

Rate (g/day) Weight Mass-Loading
Rate (g/day) Weight Mass-Loading

Rate (g/day) Weight Mass-Loading
Rate (g/day) Weight

0 200 0.7 200 0.8 200 0.9 200 0.6 200 0.8
1 1000 0.48 868.4 0.39 1000 1.0 0.01 0 0.01 0
2 0.01 0 1000 1 60.2 0 0.01 0 0.01 1
3 0.01 0 694.72 1 0.01 0 0.01 0 0.01 1
4 0.01 0 578.52 1 0.01 0 0.01 0 0.01 1
5 0.01 0 530.64 1 0.01 0 0.01 0 0.01 1
6 0.01 0 530.64 1 0.01 0 0.01 0 0.01 0
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4.3. Sensitivity Analysis

This section describes the results of the sensitivity analysis to gain insight into various aspects
of the proposed method. The sensitivity analysis is performed for the illustrative problem and the
parameters considered are the number and values of α-cuts, the initial weights, the initial mass-loading
rate, and the heterogeneity of hydraulic conductivity field.

Three different settings of α-cuts are adopted for the sensitivity analysis and the results are shown
in Table 3. For comparison, keeping the former illustrative case as the first case, the second case
omits the higher α-cut 0.8, and the third case uses the logarithmic α-cuts. It is shown that the α-cuts
(0.2, 0.4, 0.6) get the worst results (the deviation is about 16%). The other two α-cuts settings get a
similar result (6%~8%). This result can be demonstrated by the fact that more emphasis is given to the
higher α-cuts, which may produce better results. Therefore, it can be concluded that this proposed
method is sensitive to the setting of α-cuts to a certain degree.

The second parameter considered is the initial weight and the results are shown in Table 4.
The first case is the former illustrative case, which reduces the weight of the true pollution source to
the lowest probability of 0.1 in the second case and the highest initial weight is only set to the potential
pollution source farthest from true pollution source in the third case. It is shown that, in the last
two cases, both need 11 sampling points to get the convergent result and the results is only slightly
worse than first case. It can be concluded that the proposed method is less sensitive to the setting of
initial weights.

The third parameter considered is the initial mass-loading rates and the results are shown in
Table 5. Assuming the first case is identical to the former illustrative case, the second case reduces the
mass-loading rate of the true pollution source to 10% and the initial mass-loading rates in the third
case are randomly selected. It is shown that all three cases get the same results at the same convergence
speed (i.e., sampling points needed). It can be concluded that our proposed method is not sensitive to
the setting of initial mass-loading rates.

The former three parameters are algorithm parameters while the last parameter taken into account
for sensitivity analysis is the heterogeneity of hydraulic conductivity field.

Table 6 is the sensitivity analysis results of the heterogeneity of hydraulic conductivity field.
The small heterogeneity case denotes the former illustrative case, which increases the variance from
0.25 to 4.0 and keeps the mean and correlation length in the moderate heterogeneity case identical
to those of the former case. Figure 10a,b show the true plume and the pollution plume updated
with 14 monitoring sampling data under moderate heterogeneity, respectively. In this case, we can
observe that the shape of the identified pollution plume is close to the true plume (Figure 10), but clear
deviations appear at some locations.

In Table 6, the stable weight of each potential pollution source under moderate heterogeneity
is (0, 1, 0, 0, 0), respectively. According to the weight value, source 2 is determined and the actual
mass-loading rate of source 2 is 422.32 g/day. Moreover, the deviation of the mass-loading rate under
moderate heterogeneity is about 16%, which is higher than that of the medium heterogeneity case (6%).
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Table 3. Sensitivity analysis results of the α-cuts setting for pollution source identification.

α-Cuts Setting
Sampling

Points
Needed

Source 1 Source 2 Source 3 Source 4 Source 5

Mass-Loading
Rate (g/day) Weight Mass-Loading

Rate (g/day) Weight Mass-Loading
Rate (g/day) Weight Mass-Loading

Rate (g/day) Weight Mass-Loading
Rate (g/day) Weight

(0.2 0.4 0.6 0.8) 6 0.01 0 530.64 1 0.01 0 0.01 0 0.01 0
(0.2 0.4 0.6) 13 0.01 0 578.26 1 0.01 0 0.01 0 0.01 0

(0.3 0.6 0.78 0.9) 10 0.01 0 542.36 1 0.01 0 0.01 0 0.01 0

Table 4. Sensitivity analysis results of the initial weight for pollution source identification.

Initial Weight Sampling
Points

Source 1 Source 2 Source 3 Source 4 Source 5

Mass-Loading
Rate (g/day) Weight Mass-Loading

Rate (g/day) Weight Mass-Loading
Rate (g/day) Weight Mass-Loading

Rate (g/day) Weight Mass-Loading
Rate (g/day) Weight

(0.7 0.8 0.9 0.6 0.8) 6 0.01 0 530.64 1 0.01 0 0.01 0 0.01 0
(0.7 0.1 0.9 0.6 0.8) 11 0.01 0 543.28 1 0.01 0 0.01 0 0.01 0
(0.1 0.1 0.1 0.1 1.0) 11 0.01 0 551.73 1 0.01 0 0.01 0 0.01 0

Table 5. Sensitivity analysis results of the initial mass-loading rate for the pollution source identification.

Initial
Mass-Loading Rate Sampling

Points

Source 1 Source 2 Source 3 Source 4 Source 5

Mass-Loading
Rate (g/day) Weight Mass-Loading

Rate (g/day) Weight Mass-Loading
Rate (g/day) Weight Mass-Loading

Rate (g/day) Weight Mass-Loading
Rate (g/day) Weight

(200 200 200 200 200) 6 0.01 0 530.64 1 0.01 0 0.01 0 0.01 0
(200 20 200 200 200) 6 0.01 0 530.64 1 0.01 0 0.01 0 0.01 0
(195 16 85 16 171) 6 0.01 0 530.64 1 0.01 0 0.01 0 0.01 0

Table 6. Sensitivity analysis results of the heterogeneity of hydraulic conductivity field.

Heterogeneity Sampling
Points

Source 1 Source 2 Source 3 Source 4 Source 5

Mass-Loading
Rate (g/day) Weight Mass-Loading

Rate (g/day) Weight Mass-Loading
Rate (g/day) Weight Mass-Loading

Rate (g/day) Weight Mass-Loading
Rate (g/day) Weight

small 6 0.01 0 530.64 1 0.01 0 0.01 0 0.01 0
moderate 14 0.01 0 422.32 1 0.01 0 0.01 0 0.01 0
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Therefore, our proposed method is effective in identifying the true source location and
characterizing the pollution morphology plume even under moderate heterogeneity condition
(variance = 4.0), but the performance is less satisfied. More highly heterogeneity conditions
(variance = 6.25, 9.0, 12.25, 16.0) are tested and our proposed method is completely invalid when
tackling with highly heterogeneous field (variance = 16.0). It indicates that the proposed method can
provide relative satisfied results for a homogeneous domain or a domain with a small and moderate
heterogeneity, but it cannot validate the transport in the relatively high heterogeneous field. Therefore,
our proposed method is sensitive to the heterogeneity of a hydraulic conductivity field.

5. Summary and Conclusions

(1) The purpose of the proposed method is to facilitate the remediation strategy of the contaminated
sites in an attempt to realize the cost of the pollution source identification and the plume
characterization (optimal monitoring network design).

(2) The proposed Kalman filter-based method incorporates multiple techniques such as the
concentration field library, the covariance reduction with the Kalman filter, the alpha-cut
technique of the fuzzy set, and the linear programming model, which are demonstrated for
the pollution source identification and plume characterization.

(3) The performance of this methodology is evaluated on an illustrative groundwater pollution
source identification problem and the identified results indicate that the proposed Kalman
filter-based optimization model can give satisfactory estimations even when the random hydraulic
conductivity field, erroneous monitoring data, prior information shortage of potential pollution
sources, and unexpected unknown pumping well are considered.

(4) The results of the sensitivity analysis investigate the effect of various algorithm parameters on
convergence. It is concluded that the most important parameter is the setting of α-cuts used at
the plume comparison step. The identification results are less sensitive to the setting of initial
weights and is not sensitive to the setting of the initial mass-loading rate.
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(5) The results from the sensitivity analysis on heterogeneity of hydraulic conductivity field proves
that our proposed method would be effective in identifying the true source location and
characterizing the pollution plume even under a moderate heterogeneity condition, but the
performance may be less satisfied. Additionally, our proposed method is completely ineffective in
a highly heterogeneous field (variance = 16.0). It indicates that the proposed method can provide
relatively satisfied results for a homogeneous domain or domain with small and moderate
heterogeneity, but it cannot validate the transport in the relatively high heterogeneous field.

(6) In this work, our proposed method is designed and assembled for two-dimensional problems and
it should be modified to be integrated into three-dimensional problems. In the two-dimensional
field, new sampling points are selected to minimize the overall uncertainty of the concentration
field. However, for the three-dimensional field, sampling points may exist in different layers and,
therefore, exhibit different uncertainties. Whether layered processing is more effective requires
further study by comparing it with overall processing. The extension of the alpha-cut technique
for comparison of plume in a three-dimensional field is another aspect worthy of further study.
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