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Abstract: Flow over bottom racks is highly turbulent, three-dimensional and spatially varied.
The design of bottom intake systems has mainly been studied in the laboratory. The comparison of
existing experimental studies shows large deviations in the definition of design parameters such
as wetted rack length. Each experimental study is limited to a single bar type or to a low range of
void ratios, which makes it difficult to generalize the observed data. A combination of empirical,
dimensional and inspectional analysis is presented as a useful tool to reduce the number of variables
with influence in the design parameters, such as the wetted rack length or the mean discharge
coefficient. This work includes a broad experimental campaign in which wetted rack length and
mean discharge coefficient are characterized using five different bottom racks with different void
ratios (area between bars divided by total area). T-shaped flat and circular bars are considered as
well as five different longitudinal slopes. Empirical and inspectional analyses have allowed us to
verify, in two different ways, the relation between wetted rack length and incoming flow through
potential functions. The influence of the viscous forces has been studied as a function of the incoming
flow. Similar results may be obtained when analysing the Froude number at the beginning of the
rack, depending on the wetted rack length. A new formulation for calculating the mean discharge
coefficient and wetted rack length is proposed.

Keywords: empirical analysis; dimensional analysis; inspectional analysis; bottom rack; mean
discharge coefficient; rack length

1. Introduction

The design of bottom intakes to derive flow at stepped rivers has been broadly studied by
hydraulic engineers. The definition of parameters such as the discharge coefficient and the wetted
length of the racks in the laboratory—with clear water—have been analysed with the support of
empirical and dimensional analysis. Empirical data of at least 13 hydraulic structures and scale
models are available in the literature. Those studies have void ratios (spacing between bars divided
by the total area) from 0.095 to 0.66, and incoming flows from 0.05 to 0.20 m3/s/m. Different bar
shapes have been considered: works of Noseda [1,2] Castillo et al. [3], Castillo et al. [4], García [5,6]
and Carrillo et al. [7] used T-shaped flat bars; Garot [8], Righetti et al. [9], Ghosh and Ahmad [10]
and Kumar et al. [11] analyzed prismatic rounded and flat bars; Brunella et al. [12], Vargas [13]
and Subramanya [14] presented results with circular bars; Orth et al. [15] and White et al. [16]
experimented with hydrodynamic bars; and Nakagawa [17] and Bina [18] used mesh-panel bottom
racks. At prototype scale, Drobir [19] presented the only existing measurements of wetted rack
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length. Other authors include qualitative considerations observed at prototype bottom systems
like Ract-Madoux et al. [20]; Bouvard [21]; Raudkivi [22]; and Drobir [23]. Some authors included
theoretical equations and empirical adjustments from others’ experimental data, such as De Marchi [24];
Krochin [25]; Mostkow [26]; Frank [27]; and Bouvard and Kuntzmann [28]. Experimental works
including clear water and sediments are nowadays being considered when studying occlusion
in bottom racks, such as experiments from Krochin [25]; Castillo et al. [29]; Castillo et al. [30];
Bina and Shaghi [31]. From the computational fluid dynamics field, general good agreement was
found between laboratory data and numerical modelsflow profiles over the rack using different bar
types and rack slopes like those collected in Carrillo et al. [7,32]. Those techniques may help to obtain
a better understanding of this flow type.

Despite this, the hydraulics of these structures still have numerous issues that need to be better
addressed [12]. The influence of the shape and bar spacing in the derived flow, as well as the
adopted longitudinal slope still need to be clarified and generalized for a correct design of these
structures. Experimental works have usually been developed in a specific range that makes it difficult
to extrapolate results. For instance, each author has only used a single type of bar or only one separation
between them which thus does not facilitate the use of the results for other studies. To clarify this,
Drobir [23] proposed a technical guide for the design of bottom racks where the rack length was
obtained from experimental works of Noseda [1,2] and Frank [33]. Drobir [23] considered T-shaped
bars, void ratios smaller than 0.30, and flow rates up to 0.20 m3/s/m. Vargas [13] carried out the
comparison of rack lengths of circular bars with void fractions of 0.33–0.50 and flow rates up to
0.04 m3/s/m: The author obtained differences of up to twofold for the design of a bottom rack with
void ratio m = 0.60 and specific flow rates q = 1.25 m3/s/m. Similar conclusions were observed by
Brunella et al. [12], observing a difference around 50% of the rack length for circular bars, with void
ratios of 0.664, and flows up to 0.20 m3/s/m.

The results obtained with a specific rack could be extrapolated [23] to other types of racks with
remarkable errors. For the design of a specific bottom intake, an experimental campaign should be done
maintaining similar void ratios to the proposed in the field prototype and it would be recommended
to analyze flow rate up to 0.2 m3/s/m. To obtain general rack lengths, it seems necessary to have a
wide range of bottom racks flow rate measurements with different kinds of bar types and void ratios.

Besides this, the flow over bottom intake racks are three-dimensional and spatially varied,
presenting interactions with bottom bars; these racks are also highly turbulent. In order to address the
problem in a simplified way, it is normally assumed that flux is one-dimensional, there is hydrostatic
pressure distribution, and the energy head remains constant.

The orifice equation relates the derived flow with the area of the orifice, the available energy
upstream of the orifice and the discharge coefficient using the orifice equation, considering that the
derived flow will be subtracted from the principal flow, and together with the derivative of the energy
equation, the water surface profile may be obtained, while the discharge coefficient is usually adjusted
with the hypothesis of no dissipation energy along the rack and from adjustments of experimental
data. This approach does not allow the correct definition of the wetted rack length required to
calculate the total flow derived. Most of the flux sticks to the bar due to surface tension [19], which the
previous formulation does not include (Figure 1). At the beginning of the rack, the discharge through
bottom racks is principally due to gravitational forces that can be considered by Froude number and
geometrical parameters of discharge [34].

However, as the flow is spatially varied, the water depth and flow rate decrease along the rack.
There is also a remarkable curvature of the free surface. Hence, the surface tension should not be
neglected, and the Weber number may be taken into account (Figure 2). The viscosity forces are
important at small Reynolds numbers. For instance, Brunella et al. [12] considered that Reynolds
number when calculated assuming critical conditions with values lower than 250,000 would be affected
by scale effects. Thus the evaluation of these parameters should be considered when characterizing
the wetted rack length.
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Figure 1. View of the final section of the bottom rack with T-shaped bars with void ratio m = 0.16 and
spacing between bars of 5.7 mm in two different cases: (a) no flow; (b) flow adhered to the rack due to
surface tension.
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Figure 2. Scheme of the spatially varied flow over bottom intake system.

Empirical formulas are based on experimental measurements. Those expressions have been
used in designing hydraulic structures and in predicting the behavior of the flow with engineering
judgment, through trial and error processes [34].

Inspectional analysis operates with the set of equations describing the hydrodynamic
force balances. This includes any type of equation that mathematically represents a physical
phenomenon [35].

Dimensional analysis has allowed for the incorporation of variables into a basic dimensionless
expression that experience has shown to be essential. The functional relationship of several members
of this expression is then developed or approximated [36]. Dimensional analysis is performed through
the Buckingham π theorem [36]. The theorem states that if there is a physically meaningful equation
involving a certain number n of physical variables, then the original equation can be rewritten in terms
of a set of p = n − k dimensionless parameters called π1, π2, ..., πp, obtained from the original variables.
The Buckingham π theorem provides a method for computing sets of dimensionless parameters from
given variables, even if the form of the equation remains unknown.

A combination of dimensional, inspectional and empirical analyses help to obtain a correct
function to interpret the phenomena of flow.

This work includes a broad experimental campaign where wetted rack length, L, and mean
discharge coefficient, CqH , are characterized using five different bottom racks with different void ratios,
m (area between bars divided by total area) of 0.16, 0.22, 0.28 and 0.60. Two different types of bars,
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T-shaped flat and circular bars, are employed. Five different longitudinal slopes: 0; 10; 20; 30; and 33%
have been considered. The specific flow rate, q, covers the range from 0.05 to 0.20 m3/s/m.

Dimensional, empirical and inspectional analyses are taken to define variables such as wetted
rack length and discharge coefficient, which influence the design parameters of bottom rack systems.

Equations to define the mean discharge coefficient in different conditions have been obtained
by using the least square fitting tool of Microsoft Excel spreadsheet. Those expressions allow bottom
intake structures to be designed.

Wetted Rack Length L and Mean Discharge Coefficient CqH

The wetted rack length is defined as the maximum length reached by the flow over a rack to
completely derive the incoming flow (Figure 2). This is an important design parameter of the racks.
This length was proposed by Drobir [19] with an envelope of field measurements and it was defined as
L2. Additionally, Drobir defined the length scale, L1, as the distance where the flow depth disappears
in the slit between two bars. As an example of the rack slope influence in the wetted rack length,
Figures 3 and 4 show the wetted rack length, L, and its variation when different longitudinal slopes
are considered. In both cases, the inlet flow and the void fraction are the same. Wetted rack length
is usually measured experimentally in the laboratory. Knowing it, the mean discharge coefficient,
CqH , may be calculated from the orifice equation, once this equation is integrated along the wetted
rack length:

CqH =
q

Lm
√

2gHmin
, (1)

where q is the flow derived by the rack; L the wetted rack length; m the void ratio, CqH the mean
discharge coefficient for each wetted rack length; g the gravitational acceleration; and Hmin the
minimum energy head calculated as 1.5hc, with hc being the critical depth and referred to the plane of
the rack.Water 2018, 10, x FOR PEER REVIEW  5 of 21 
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Comparing values of wetted rack lengths proposed by different authors, this length may differ by
up to double in some cases [4–6]. This is principally due to the variation of the experimental conditions
used to adjust the discharge coefficient, such as the shape and width of the bars, the spacing between
them, the void ratio, the approximation flow conditions, the initial flow depth h0, or the longitudinal
rack slope, tanθ, [4–7].

2. Physical Device

The physical device consists in an intake system based on Noseda’s [1,2] physical model (Figure 5).
The inlet is a 5.00 m long and 0.50 m wide channel with methacrylate walls. At the end of the channel
there is a bottom rack intake system with different slopes (from horizontal to 33%). The racks were
built with aluminium bars with T-shaped flat and circular profiles. The rack length is 0.90 m in the flow
direction. Bars are longitudinally oriented with the flow direction. Table 1 presents the characteristics
of the racks used in the present work [4–7,32].

Table 1. Characteristics of the racks tested.

Length
(m)

Width
bw (m)

Bar Type
(mm)

Width of the
Bars (mm)

Direction of
the Bars

Spacing
between Bars,

b1 (mm)

Void Ratio
m = b1

b1+bw

Longitudinal
Slope (%)

0.90 0.50

T30/25/2

30 Longitudinal

5.7 0.16

0, 10, 20, 30, 33
T30/25/2 8.5 0.22
T30/25/2 11.7 0.28
O30/30 11.7 0.28
O30/30 45.0 0.60
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In each test, the water depth at the beginning of the rack, h0, and the wetted rack length were
measured with a vertical point gauge (accuracy ± 0.5 mm in vertical and ± 1.0 mm in horizontal) as
shown in Figure 2. The point gauge measures only vertical distances. To define the water depth at the
beginning of the rack, h0, it was necessary to measure several points to trace the water surface profile.
From this, the water depth, h0, was defined by geometric projection.

Inlet specific flows were in the range of 0.05 to 0.20 m3/s/m. The inlet total flow was measured
with an electromagnetic flowmeter Endress Häuser Promag 53W of 125 mm with an accuracy of 0.5%.
Tests were performed with five different longitudinal rack slopes. Further details of the model may be
obtained in References [4,7].

The approaching flow is subcritical in all the cases at the beginning of the inlet channel. The flow
reaches supercritical conditions at the beginning of the rack.

Scale models are traditionally used to design bottom intake systems. For instance, White et al. [5]
used a 1:6 model for the design of bottom intakes at the Sai Kung peninsula in Hong Kong;
Orth et al. [15] experimented with a 1:5 model for a bottom intake at the Grand Prix river in the
Savoy region; Vargas [13] used a 1:10 model for an intake at the Macho river in Costa Rica; and
Drobir [19] considered a 1:10 scale model at the Verpeil bottom intake in the power plant Kaunertal
(Austria). Bottom intakes are usually designed to derive flows from 0.5 to 3.0 m3/s/m [19,23]. With
those considerations, the laboratory model used would be considered to design prototypes with scales
between 1:5 and 1:20.

3. Results and Discussion

The experimental campaign consisted of around 376 measurements of wetted rack length with
five different racks considered. Once the wetted rack length had been experimentally measured,
the mean discharge coefficient was calculated using Equation (1).

From an empirical point of view, the relations between different variables are sought. These
variables are obtained from a dimensional analysis. From previous experiences in bottom intake
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systems [4–7], the main variables with an influence in the definition of the mean discharge coefficient
CqH and the wetted rack length are presented in:

f
(
U0, h0, µ, σ, ρ, g, tanθ, m, Cq0, CqH

)
= 0, (2)

where U0 is the mean velocity at the beginning of the rack, calculated as the relation between the
incoming flow and the flow depth at the beginning of the rack, q/h0, µ the kinematic viscosity; ρ the
density, and σ the surface tension of water. tanθ expresses the longitudinal slope of the rack. Cq0 is the
discharge coefficient measured in static conditions whose values are presented in Figure 6:
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Figure 6. Static discharge coefficient measurements and proposed adjustments.

Previous adjustments proposed for the static discharge coefficient [3,4] are presented in the
following equations:

Circular bars : Cq0 = 1.4287e−0.771m, (3)

Prismatic bars : Cq0 = 1.15e−0.771m, (4)

T− shaped bars : Cq0 = 0.901e−0.771m, (5)

These adjustments include new values measured in this work for racks made with circular bars.
The additional values do not introduce modifications in the expressions (see Figure 6).

From Equation (2), 10 main variables are considered (n = 10). Considering the Buckingham's
Theorem Π, a reduced number of dimensionless parameters can be found. There are k = 3 independent
variables (basic dimensions: mass, length and time), with which we can reduce the problem
to p = n − k = 7 dimensionless variables [36]. Selecting the independent variables ρ, U0, h0, the
dimensionless parameters may be obtained as a function of the mean discharge coefficient:

CqH = f

(
U0h0

µ/ρ
,

U2
0 h0

σ/ρ
,

U0√
gh0

, tanθ, m, Cq0

)
, (6)

or:
CqH = f

(
Re0, We0, Fr0, tanθ, m, Cq0

)
, (7)

where Re0, We0, and Fr0 are the Reynolds, Weber and Froude numbers, respectively. The sub-index 0
indicates that variables are calculated at the beginning of the rack.

Once the dimensionless variables have been obtained, their influence in the mean discharge
coefficient may be analysed by Equation (7).

Considering empirical and inspectional analysis, a reduced expression of the mean discharge
coefficient is presented in the following sections.
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3.1. Flow Depth vs Incoming Flow

From an inspectional point of view, the flow over bottom racks is considered a flow governed by
gravitational forces or by Froude number Fr0. From this dimensionless number, the flow depth at the
beginning of the rack h0, may be related with the incoming specific flow through:

h0 = f
(

q2/3
)

, (8)

From an empirical point of view, Figures 7–11 present the values of flow depth at the beginning of
the rack with the incoming flow for the five different racks tested, and distinguishing the five different
longitudinal slopes. At these figures, the experimental values are overlapped with dashed lines that
represent a potential curve fit. The ratio flow depth/incoming flow follows Equation (8), with a power
of 2/3.Water 2018, 10, x FOR PEER REVIEW  9 of 21 
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Figure 7. Flow depth at the beginning of the rack h0 as a function of the incoming flow q. Circular bars
with void ratio m = 0.28.
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with void ratio m = 0.60.
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Figure 9. Flow depth at the beginning of the rack h0 as a function of the incoming flow q. T-shape bars
with void ratio m = 0.16.
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In the horizontal slope case, the values of h0 adjust to the power of the flow proposed in
Equation (8) in all the range of the incoming flows considered in the present study. However, in
the case of longitudinal slopes of 30% and 33%, Equation (8) is not accomplished until values of
incoming flow are larger than a specific value. For instance, 0.15 m3/s/m in the rack of T-shaped bars
and void ratio m = 0.16. These lower limit incoming flows are shown in Table 2.

Table 2. Viscosity influence in the flow depth at the beginning of the rack for 30% and 33%
longitudinal slopes.

Bar Type Void Ratio, m Longitudinal Slope Flow with Viscosity
Influence, for q = m3/s/m

Circular 0.28
30%, 33%

<0.10
Circular 0.60 <0.12
T-shaped 0.16 <0.15

In this sense, the empirical influence of the surface tension and the viscous forces are observed
in the flow depth at the beginning of the rack in high slope cases. Table 2 includes a summary of the
range of flows that do not accomplish Equation (8) related to the longitudinal slope for each rack.
In the case of T-shaped flat bars with a void ratio m = 0.22 and 0.28, the flow depth measurements
were not extended as long as necessary to avoid viscosity influence, due to the dimensions of the
laboratory infrastructure.

The Froude number, Fr0, was also compared with the measured wetted rack length, L,
in Figures 12–14. In low wetted rack lengths and high longitudinal rack slopes, the Froude numbers
reach higher values that do not follow the almost horizontal trend observed for larger flows.
For instance, in the rack with circular bars, a void ratio m = 0.60, and slopes of 30% and 33%, all the
cases of wetted rack length larger than 0.40 m adjust to a horizontal trend. In low wetted rack lengths
and high longitudinal slopes cases, the values of Froude number calculated at the beginning of the
rack Fr0 may be considered affected by viscosity influence. These effects seem to be more important
for larger longitudinal slopes. Surface tension and viscous effects are not negligible with water depths
lower than 0.05 m [35,37]. Those depths were found for low incoming flows and slopes of 30% and 33%.

Table 3 includes a summary of the range of wetted rack lengths where it is considered that
viscosity influence appears. The flow depths, h0, associated to these cases are in the range of 0.032 m to
0.050 m. For water depth values smaller than 0.050 m, surface tension effects may not be neglected as
stated by Rouse [34], Heller [35] and Chanson [37]. The results are in agreement with those presented
in Table 2.
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Figure 12. Froude number at the beginning of the rack Fr0 as a function of the wetted rack length for
circular bars with void ratios m = 0.28 and 0.60.



Water 2018, 10, 1035 11 of 21

Water 2018, 10, x FOR PEER REVIEW  11 of 21 

 

high longitudinal slopes cases, the values of Froude number calculated at the beginning of the rack 

Fr0 may be considered affected by viscosity influence. These effects seem to be more important for 

larger longitudinal slopes. Surface tension and viscous effects are not negligible with water depths 

lower than 0.05 m [35,37]. Those depths were found for low incoming flows and slopes of 30% and 

33%. 

 

Figure 12. Froude number at the beginning of the rack Fr0 as a function of the wetted rack length for 

circular bars with void ratios m = 0.28 and 0.60. 

 

Figure 13. Froude number at the beginning of the rack Fr0 as a function of the wetted rack length for 

T-shaped flat bars with void ratios m = 0.16 and 0.22. 

 

Figure 14. Froude number at the beginning of the rack Fr0 as a function of the wetted rack length L, 

for T-shaped flat bars with void ratio m = 0.28. 

Table 3 includes a summary of the range of wetted rack lengths where it is considered that 

viscosity influence appears. The flow depths, h0, associated to these cases are in the range of 0.032m 

to 0.050 m. For water depth values smaller than 0.050 m, surface tension effects may not be neglected 

1.00

1.20

1.40

1.60

1.80

2.00

2.20

2.40

2.60

2.80

3.00

0.20 0.30 0.40 0.50 0.60 0.70

F
r0

L (m)

m = 0.60 circular bars tanθ= 0%

tanθ= 10%

tanθ= 20%

tanθ= 30%

tanθ= 33%

1.00

1.20

1.40

1.60

1.80

2.00

2.20

2.40

2.60

2.80

0.20 0.30 0.40 0.50 0.60 0.70 0.80

F
r0

L (m)

m = 0.28 circular bars

Viscosity influence, tanθ = 30%, 33%

0%

10%

20%

30%

33%

1.00

1.20

1.40

1.60

1.80

2.00

2.20

2.40

2.60

2.80

0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

F
r0

L (m)

m = 0.22 T-shaped bars tanθ= 0%

tanθ= 10%

tanθ= 20%

tanθ= 30%

tanθ= 33%

1.00

1.50

2.00

2.50

3.00

3.50

4.00

0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

F
r0

L (m)

m = 0.16 T-shaped bars

Viscosity influence, tanθ = 30%, 33%

0%

10%

20%

30%

33%

1.00

1.20

1.40

1.60

1.80

2.00

2.20

2.40

2.60

2.80

0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

F
r0

L (m)

m = 0.28 T-shaped bars tanθ= 0%

tanθ= 10%

tanθ= 20%

tanθ= 30%

tanθ= 33%

Viscosity influence, tanθ = 30%, 33%

0%

10%

20%

30%

33%

Figure 13. Froude number at the beginning of the rack Fr0 as a function of the wetted rack length for
T-shaped flat bars with void ratios m = 0.16 and 0.22.
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Figure 14. Froude number at the beginning of the rack Fr0 as a function of the wetted rack length L, for
T-shaped flat bars with void ratio m = 0.28.

Table 3. Viscosity influence in the flow depth at the beginning of the rack in the case of 30 and 33%
longitudinal slopes.

Bar Type Void Ratio, m Longitudinal
Slope

Length with Viscosity
Influence, (m)

Flow Depth,
h0 (m) Re0

Circular 0.28

30%, 33%

<0.50 <0.050 <103,080
Circular 0.60 <0.40 <0.054 <111,313
T-shaped 0.16 <0.70 <0.032 <35,303
T-shaped 0.22 <0.70 <0.034 <43,131
T-shaped 0.28 <0.70 <0.038 <52,777

3.2. Reynolds Number Re0 vs. Wetted Rack Length L

Brunella et al. [12] proposed an expression to calculate the critical Reynolds number in bottom
intake systems. Those authors estimated that there are no scaling effects when this value is bigger
than 250,000, which corresponds with specific flows greater than 75 l/s/m in the laboratory model
used. In the previous section, Table 3 presents values of Reynolds number, Re0, calculated from flow
depth measured at the beginning of the rack, h0, according to Equations (6) and (7) from which viscous
effects are observed in function of longitudinal rack slopes.

Figures 15–17 compare the Reynolds numbers obtained at the beginning of the rack with their
corresponding wetted rack lengths. Tests include the five different racks, distinguishing the five
different longitudinal slopes. The measured Reynolds number, Re0, was in the range of 18,200 to
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213,000 in the case of circular bars and 16,400 to 105,000 for the T-shaped bars. Experimental values
overlapped with dashed lines that represent a potential curve fit, relating Re0 with L using a potential
function:

Re0 = f (Lpower), (9)

Racks with voids ratios of m = 0.16, 0.22 and 0.28 follow the power of 1.62, irrespective of the bar
type. However, m = 0.60 follows the power of 2.14. According to the results, the spacing between the
bars is the value that distinguishes the power ratio between Re0 and L. As seen in Table 1, the separation
between bars of m = 0.60 (b1 = 0.045 m) is almost four times longer than for m = 0.28 (b1 = 0.0117 m).
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Figure 15. Reynolds number at the beginning of the rack Re0 as a function of the wetted rack length L,
for circular bars with void ratio m = 0.28 and 0.60.Water 2018, 10, x FOR PEER REVIEW  13 of 21 
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Figure 16. Reynolds number at the beginning of the rack Re0 as a function of the wetted rack length L,
for T-shaped flat bars with void ratio m = 0.16 and 0.22.
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Figure 17. Reynolds number at the beginning of the rack Re0 as a function of the wetted rack length L,
for T-shaped flat bars with void ratio m = 0.28.
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3.3. Weber Number We0 vs. Wetted Rack Length L

Figures 18–20 show the relation of the Weber numbers measured at the beginning of the rack with
their wetted rack lengths. Graphs include the five racks, distinguishing the five longitudinal slopes.
The weber number, We0, was in the range of 251 to 5930 in the case of circular bars and 182 to 2120 for
the T-shaped bars. Dashed lines represent a potential curve that relates We0 with L. Results with voids
ratios of m = 0.16, 0.22 and 0.28 follow the power of 2.16, irrespective of the bar type. Data of m = 0.60
follows the power of 2.86. In this sense, the spacing between the bars is the value that distinguishes
the power ratio between We0 and L.
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Figure 18. Weber number at the beginning of the rack We0 as a function of the wetted rack length L,
for circular bars with void ratio m = 0.28 and 0.60.Water 2018, 10, x FOR PEER REVIEW  14 of 21 
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Figure 19. Weber number at the beginning of the rack We0 as a function of the wetted rack length L,
for T-shaped flat bars with void ratio m = 0.16 and 0.22.
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Figure 20. Weber number at the beginning of the rack We0 as a function of the wetted rack length L,
for T-shaped flat bars with void ratio m = 0.28.
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3.4. Mean Discharge Coefficient CqH vs. Incoming Flow q

From the experimental measurements of wetted rack length and using Equation (1), the mean
discharge coefficient CqH may be calculated. An adjustment as a function of the bar type and spacing
between bars may be considered:

CqH =
amCq0

(1 + tanθ)
qb, (10)

where constants a and b have been obtained for each void ratio and bar type. Those are the parameters
collected in Table 4.

Table 4. Constants of Equation (10) for the adjustment of the mean discharge coefficient CqH .

Bar Type m a b

T 0.16 3.3 0.05
T 0.22 2.1 0.05
T 0.28 1.5 0.05
O 0.28 1.45 0.05
O 0.60 0.70 0.20

Figures 21–25 show the values of the mean discharge coefficient calculated and adjusted with
Equation (10). According to Equation (10), the mean discharge coefficient is a function of the flow
with a power defined by the parameter b (0.05 for void ratios of m = 0.16, 0.22 and 0.28; 0.2 for void
ratio of m = 0.60). An important influence of the spacing between bars is observed, as appeared in
previous sections.
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Figure 21. Mean discharge coefficient CqH as a function of the incoming flow q, for circular bars with
void ratio m = 0.60.
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Figure 22. Mean discharge coefficient CqH as a function of the incoming flow q, for circular bars with
void ratio m = 0.28.
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Figure 23. Mean discharge coefficient CqH as a function of the incoming flow q, for T-shaped flat bars
with void ratio m = 0.16.
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Figure 24. Mean discharge coefficient CqH as a function of the incoming flow q, for T-shaped flat bars
with void ratio m = 0.22.
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Figure 25. Mean discharge coefficient CqH as a function of the incoming flow q, for T-shaped flat bars
with void ratio m = 0.28.

An index of goodness of the adjustment IG may be considered. This parameter represents the
sample standard deviation of the differences between measured and calculated values:

IG =

√
1
n

n

∑
i
(Lmeasured_i − Lcalculated_i)

2 (11)

where IG is the root mean square deviation proposed as an index of the goodness of the fit between the
measured and calculated, Lmeasured_i is the wetted rack length measured in the laboratory, Lcalculated_i is
the wetted length calculated with Equations (1) and (10), and n is the number of measured events. The
values of IG for each rack and void ratio are shown in Table 5. Good agreement was obtained in all the
cases, with values lower than 1.17 × 10−2 m.

Table 5. Index of goodness of the fit between measured and calculated values.

Bar Type Void Ratio m (-)
Slope (%)

0 10 20 30 33
IG (m)

T 0.16 5.609 × 10−3 1.083 × 10−2 8.105 × 10−3 1.477 × 10−2 7.635 × 10−3

T 0.22 1.190 × 10−2 1.258 × 10−2 6.574 × 10−3 2.391 × 10−2 5.979 × 10−3

T 0.28 1.252 × 10−2 1.036 × 10−2 1.193 × 10−2 1.452 × 10−2 9.113 × 10−3

O 0.28 8.374 × 10−3 1.214 × 10−2 6.386 × 10−3 8.891 × 10−3 8.686 × 10−3

O 0.60 6.325 × 10−3 4.885 × 10−3 8.436 × 10−3 6.016 × 10−3 4.261 × 10−3

The experimental uncertainty is around 2 mm for the water depth accuracy and around 5 mm for
the wetted rack length.

3.5. Inspectional Analysis

From an inspectional analysis, the orifice equation (Equation (1)) may be chosen to adjust and
represent the flow collected in a bottom intake rack. Hence, the ratio between the wetted rack length L
and the incoming flow rate q may be obtained as:

L =
q

CqHm
√

2gHmin
, (12)
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Starting from this equation, each variable may be expressed as a power function of the incoming
flow q.

By definition, Hmin is a function of q2/3 because it is obtained when the Froude number equals the
unity, and there is critical depth.

From Section 3.4, the mean discharge coefficient CqH , is a function of q0.05 (if void ratio is m = 0.16,
0.22 and 0.28) or q0.2 (if m = 0.60). At this point, Equation (11) can be expressed as:

if m = 0.16, 0.22 and 0.28 → L = f
(

q
q0.05q1/3

)
= f

(
q0.62

)
, (13)

if m = 0.60 → L = f
(

q
q0.2q1/3

)
= f

(
q0.46

)
, (14)

Expressions of Equations (15) and (16) can also be linked with empirical observations
(see Figures 15–17) between the wetted rack length and the Reynolds number Re0 as:

if m = 0.16, 0.22 and 0.28 → Re0 =
U0h0

µ/ρ
=

(q/h0) ∗ h0

µ/ρ
=

q
µ/ρ

= f
(

L1/0.62
)
= f

(
L1.62

)
, (15)

if m = 0.60 → Re0 =
U0h0

µ/ρ
=

(q/h0) ∗ h0

µ/ρ
=

q
µ/ρ

= f
(

L1/0.46
)
= f

(
L2.14

)
, (16)

Hence, from inspectional analysis, the relations found between L and Re0 in Figures 15–17 have
been confirmed.

In the same way, the expressions of Equations (17) and (18) can also be linked with the empirical
observations between the wetted rack length and the Weber number We0 (see Section 3.3).

If m = 0.16, 0.22 and 0.28 → We0 =
U2

0 h0

σ/ρ
=

q2/h0

σ/ρ
= f

(
q2/q2/3

)
= f

(
L2.16

)
, (17)

If m = 0.60 → We0 =
U2

0 h0

σ/ρ
=

q2/h0

σ/ρ
= f

(
q2/q2/3

)
= f

(
L2.86

)
, (18)

In Equations (17) and (18), it has also been considered that the flow depth h0 and the incoming
flow q are related by the power of 2/3, in the range where no viscosity influence is considered.

3.6. Comparison of Results with Field Measurements

Drobir [19] obtained field measurements in a Tyrolean weir of the bottom intake system of Verpeil,
at the Kaunertal power plant. From field measurements, Drobir [19] proposed an envelope of wetted
rack length called L2. Measurements were taken in a bottom intake with the void ratio of m = 0.60 and
a longitudinal slope of 20%.

For the same case, in Figure 26, the wetted rack length has been obtained from Equation (12) using
the mean discharge coefficient proposed in Equation (10) for m = 0.60 and 20% of slope. Lengths are
dimensionless with the critical depth and are represented for a broad range of flows. The length
obtained with Equation (12) shows good agreement with the field measurements. The lengths
calculated are lower than those proposed by the L2 envelope of Drobir [19].
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Figure 26. Comparison of adjusted wetted rack lengths L, L1 and L2 envelopes dimensionless with
critical depth, as a function of the incoming flow for circular bars with m = 0.60 and longitudinal slope
of 20%.

The index of goodness of the adjustment, IG, may be calculated between the predicted values
using Equation (11) and the laboratory measurements, obtaining IG = 0.09. This value of IG represents
a 10% of difference with the mean of the lengths measured in the field installation. As the field number
of values is limited to seven, a difference of 10% may be considered acceptable.

4. Conclusions

In the design of bottom racks used in stepped streams to catch water, the discharge coefficient
and the wetted length of the racks are considered key factors. Due to the complexity of flow over
bottom racks, experimental works have always been needed. Empirical, dimensional and inspectional
analyses are important tools that can help to reduce the variables and to select those parameters that
have more influence on the phenomenon. Their analysis can also allow the identification of viscosity
and surface tension influence in different conditions.

This work includes a broad experimental campaign in which the wetted rack length is measured
for different incoming flows at rack slopes, with two types of bars.

From experimental works the relation between the flow depth at the beginning of the rack, h0,
and the incoming flow, q, has also been studied; this enables the effect of the viscosity forces for
flows smaller than 0.14 m3/s/m and for longitudinal slopes of 30 and 33% to be identified. Similar
conclusions have been obtained with the Froude number at the beginning of the rack.

Empirical and inspectional analyses have allowed us to check the relation between the wetted
rack length L, and the incoming flow q in two different ways, obtaining potential functions. Besides
this, empirical relations between the wetted rack length L, and non-dimensional numbers (Reynolds
and Weber) have been analysed. Finally, with inspectional analysis, a relation of the mean discharge
coefficient with the incoming flow has been proposed in Equation (10).

The separation between bars, b1, influences the relations when the void ratio changes from 0.28
to 0.60.

To summarize, from empirical, dimensional and inspectional analyses, the wetted rack length
can be defined as a function only of the incoming flow through a potential function whose power has



Water 2018, 10, 1035 19 of 21

been defined. This single variable can also be the Reynolds number or the Weber number, which are
usually considered variables of influence due to the decrease of the flow along the rack in this spatially
varied flow.
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Notation

a, b
constant of adjustment depending on the shape of bars and the space between them in
Equation (10)

b1 space between bars
bw bar width
CqH mean discharge coefficient for energy head
Cqh discharge coefficient for flow depth
Cq0 static discharge coefficient
g gravitational acceleration
H energy head along the rack referred to the rack plane
H0 energy head at the beginning of the rack referred to the rack plane

Hmin
minimum energy head obtained when the Froude number equals the unity, and there is
critical depth

hc critical depth
h0 flow depth at the beginning of the rack

IG
root mean square deviation proposed as an index of goodness of the fit between measured
and calculated wetted length

Lmeasured_i is the wetted rack length measured in the laboratory (m) as used in the IG index
Lcalculated_i is the wetted length calculated with Equations (1) and (10) as used in the IG index
L wetted rack length
L1 envelope of the maximum wetted length over the bar
L2 wetted length in the slit
m void ratio
n is the number of measured events
q1 specific approaching flow
U mean velocity
U0 mean velocity at the beginning of the rack
µ kinematic viscosity of water
ρ density of water
σ surface tension of water
θ angle of the rack plane with the horizontal
Fr0 Froude number calculated at the beginning of the rack
We0 Weber number calculated at the beginning of the rack
Re0 Reynolds number calculated at the beginning of the rack
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