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Abstract: Agricultural water scarcity is a global problem and this reinforces the need for optimal
allocation of irrigation water resources. However, decision makers are challenged by the complexity
of fluctuating stream condition and irrigation quota as well as the dynamic changes of the field
water cycle process, which make optimal allocation more complex. A two-stage chance-constrained
programming model with random parameters in the left- and right-hand sides of constraints
considering field water cycle process has been developed for agricultural irrigation water allocation.
The model is capable of generating reasonable irrigation allocation strategies considering water
transformation among crop evapotranspiration, precipitation, irrigation, soil water content, and deep
percolation. Moreover, it can deal with randomness in both the right-hand side and the left-hand side
of constraints to generate schemes under different flow levels and constraint-violation risk levels,
which are informative for decision makers. The Yingke irrigation district in the middle reaches of the
Heihe River basin, northwest China, was used to test the developed model. Tradeoffs among different
crops in different time periods under different flow levels, and dynamic changes of soil moisture and
deep percolation were analyzed. Scenarios with different violating probabilities were conducted to
gain insight into the sensitivity of irrigation water allocation strategies on water supply and irrigation
quota. The performed analysis indicated that the proposed model can efficiently optimize agricultural
irrigation water for an irrigation district with water scarcity in a stochastic environment.

Keywords: agricultural irrigation water allocation; optimization model; field water cycle; randomness

1. Introduction

Water scarcity has been a main constraint to social-economic development, underscoring the
importance of efficient water resource management. Irrigated agriculture, as the largest water
consumer, is being subjected to reductions in water allocation because of the expected increase in water
demand for non-agricultural sectors, such as industrial, domestic, ecological, and environmental
use [1]. Future irrigated agriculture will face challenges to meet the growing demand of food,
attributed to continuing population growth and rapid socio-economic development. Moreover, uneven
spatio-temporal distribution of available water has caused significant problems of inefficient usage of
irrigated water, droughts, and floods [2]. Therefore, optimal allocation of agricultural irrigation water
with the aim to develop and implement appropriate water resource infrastructure and management
strategies is a potential way to alleviate water scarcity.
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Optimal allocation of agricultural irrigation water can be determined using optimization
techniques, such as linear, nonlinear or dynamic programming, artificial intelligence search methods,
and simulated annealing [3–5]. As a complex and huge system, a large amount of system elements
and their intricate relationships lead to the fact that an agricultural irrigation system exhibits
uncertainties [6]. Many uncertain approaches have been developed for dealing with uncertainties in
agricultural irrigation allocation, including stochastic, fuzzy, or interval mathematical programming
and their combinations [7,8]. Among them, stochastic mathematical programming (SMP) has
been extensively applied in agricultural irrigation management due to its capacity for tackling the
randomness of water supply, water demand, and irrigation quota, which are vital for generating
irrigation strategies. One class of SMP can deal with situations in which decisions are made repeatedly
in essentially the same circumstances, and thus reaches a decision which will perform well on average,
such as the two-stage stochastic programming (TSP) [9]. Another class of SMP is averse to risk and seeks
to safeguard the obtained solution against highly undesirable outcomes, such as chance-constrained
programming (CCP) [10]. It is effective to integrate TSP with CCP to better handle the randomness of
agricultural irrigation allocation [11]. However, most CCP techniques used for agricultural irrigation
allocation focus on right-hand-side randomness such as water supply, ignoring the randomness in the
left-hand side of constraint. Therefore, it is necessary to integrate CCP with both left-hand-side and
right-hand-side randomness of constraints into the TSP framework to adequately reflect randomness
in agricultural irrigation allocation.

In several regions of the world, the conjunctive use of surface water and groundwater allows
the crop water demand to cope during the critical stages of crop growth, to ensure food productivity
and the consequential system benefit of irrigation district [12]. This takes into consideration that the
field water cycle process is necessary to efficiently allocate agricultural irrigation water, because the
connection between surface water and groundwater supplies is considered dynamically. Many studies
have suggested irrigation water management strategies, considering the interaction between surface
water and groundwater [13,14]. However, previous methods often ignore the response of crop growth
on soil water, which is an important connection between surface water and groundwater. Moreover,
the transformation among dynamic irrigation, precipitation, soil moisture, and deep percolation
make the optimization encounter more difficulties, especially in an uncertain environment, leading to
unreasonable and/or inefficient agricultural irrigation water strategies.

This study therefore aimed to optimize the allocation of irrigation water, considering the field
water cycle. The model incorporates CCP with left-hand-side and right-hand-side randomness of
constraints in a TSP framework, to effectively cope with randomness occurring in irrigation systems.
The objective of the model is to allocate limited surface water and groundwater to different crops
in different time periods under different flow levels, in order to maximize the system economic
benefit. The model is then applied in a real-world case study in an irrigation district in Northwest
China. Allocation results were generated, considering the adjustment of the groundwater supply,
and the dynamic changes of soil moisture and deep percolation under different scenarios were
analyzed in detail, which will be helpful for managers to identify a desired agricultural irrigation plan
under uncertainty.

2. Materials and Methods

2.1. Overview of the Problem

Considering a whole irrigation district as a system, the water allocation process assumes that every
farmland in each time period provides its maximum (irrigation target) and minimum (fundamental
water need to guarantee food security) water demand to determine agricultural irrigation water
allocation strategies. The system could be irrigated with surface water, groundwater, or both together,
and the optimization can therefore be conceptualized among different farmlands (different crops)
during different time periods. For each farmland, the interaction among irrigation water (both surface
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water and groundwater), precipitation, and soil water is continuous with the changes of optimization
outputs, which will directly affect the changes of groundwater level. In order to ensure that the
groundwater level is within the allowance range when irrigating farmlands, integrating field water
cycle processes with the optimization framework is necessary with groundwater supplies being
considered as the adjustment variable. Considering the uncertainties because of nature factors and
human activities, the randomness associated with the water supply and the irrigation quota is involved
in order to minimize economic penalties due to any infeasibility, and provides decisions considering
risk preferences with given probabilities. A detailed description of the decision-making framework is
depicted in Figure 1.

Figure 1. Decision making framework.

2.2. Two-Stage Chance-Constrained Programming (TSCCP) with Left/Right-Hand-Side Randomness

2.2.1. Two-Stage Stochastic Programming

TSP with resources reflects a tradeoff between predefined strategies and the associated adaptive
adjustments. In TSP, decision variables are divided into two categories: those that are determined
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before the random events occur, and those that (resource variables) are determined after the random
events occur [15]. The TSP model can be expressed as follows [16]:

max f =
J1

∑
j=1

cjxj −
J2

∑
j=1

L

∑
l=1

pldjyjl (1a)

Subject to:
J1

∑
j=1

aijxj ≤ bi ∀i = 1, 2, · · · , I (1b)

J1

∑
j=1

aijxj +
J2

∑
j=1

a′kjyjl ≥ ξ̃l ∀k = 1, 2, · · · , K; l = 1, 2, · · · , L (1c)

xj ≥ 0 ∀j = 1, 2, · · · , J1 (1d)

yjl ≥ 0 ∀j = 1, 2, · · · , J2; l = 1, 2, · · · , L (1e)

where xj represents the first stage decision variables before the random variable is observed; yjl
represents the second stage decision variables that are related to the resource actions against any
infeasibilities arising due to particular realizations of the uncertainties; ξ̃l is the random variable with
probability levels pl (∑L

l=1 pl = 1); aij, a′kj, cj, dj, and bi are parameters.

2.2.2. Chance-Constrained Programming

CCP is useful for dealing with random uncertainty and reflecting the information risk of violating
constraints. A general CCP problem can be presented as follows [17]:

max f =
J

∑
j=1

cjxj (2a)

This is subject to:

Pr

{
J

∑
j=1

aijxj ≤ bi(ω)

}
≥ 1− qi ∀i = 1, 2, · · · , I (2b)

xj ≥ 0 ∀j = 1, 2, · · · , J (2c)

where Pr{·} denotes the probability of a random event {·}; bi(ω) is the right-hand-side parameter
of the constraints that are expressed as random variables with a certain probability distribution.
qi(qi ∈ [0, 1]) is the given level of the probability of the constraint, i.e., violating the levels which
represent the admissible risk of constraint violating. I is the number of CCP constraints. The meanings
of other symbols are the same as model (1).

In order to solve model (2), the constraint (2b) should be converted into the corresponding
deterministic linear equivalents with a series of predefined constraints-violation levels pi:

aijxj ≤ bi(ω)(qi) ∀i = 1, 2, · · · , I (3)

where bi(ω)(qi) = F−1(qi), representing the cumulative distribution function of bi(ω){i.e.Fi[bi(ω)]}.
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However, in many cases, some parameters in the left-hand-side constraints present randomness,
and the above method is not capable of handling such cases. Therefore, a left-hand-side CCP constraint
is formulated as follows:

Pr

{
J

∑
j=1

aij(ω)xj ≤ bi

}
≥ 1− qi ∀i = 1, 2, · · · , I (4)

where aij(ω) is the left-hand-side parameters of the constraints, which can be expressed as random
variables with normal distributions for simplicity. Let µij be the mean value and σij be the standard

variation of random variables aij(ω). Because aij(ω) ∼ N
(

µij, σ2
ij

)
, the linear combinations of its

elements also follow normal distribution. Thus, we have:[
J

∑
j=1

aij(ω)xj

]
∼ N

[
J

∑
j=1

µijxj,
J

∑
j=1

(
σijxj

)2
]

(5)

Then, by transforming aij(ω) into standard normal random variables, Formula (4) can be
expressed as follows:

Pr


J

∑
j=1

aij(ω)xj −
J

∑
j=1

µijxj√
J

∑
j=1

(
σijxj

)2
≤

bi −
J

∑
j=1

µijxj√
J

∑
j=1

(
σijxj

)2

 ≥ 1− qi ∀i = 1, 2, · · · , I (6a)

⇔ Φ


bi −

J
∑

j=1
µijxj√

J
∑

j=1

(
σijxj

)2

 ≥ 1− qi ∀i = 1, 2, · · · , I (6b)

⇔
bi −

J
∑

j=1
µijxj√

J
∑

j=1

(
σijxj

)2
≥ Φ−1(1− qi) ∀i = 1, 2, · · · , I (6c)

⇔ Φ−1(1− qi)

√√√√ J

∑
j=1

(
σijxj

)2
+

J

∑
j=1

µijxj ≤ bi ∀i = 1, 2, · · · , I (6d)

Φ−1(·) is the inverse function of the cumulative distribution function of a parameter that obeys the
standardized normal distribution. Inequality (6d) enables the left-hand-side CCP to be dealt with by
transforming the nonlinear programming into its approximated linearization form.

2.2.3. Model Structure of TSCCP with Left/Right-Hand-Side Randomness

The TSCCP with left/right hand-side randomness model can be formulated by integrating TSP
and CCP with left and/or right-hand side randomness, and it can be expressed as follows:

max f =
J1

∑
j=1

cjxj −
J2

∑
j=1

L

∑
l=1

pldjyjl (7a)
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This is subject to:

Pr

{
J1

∑
j=1

ai1 jxj ≤ bi1(ω)

}
≥ 1− qi1 ⇔ ai1 jxj ≤ bi1(ω)(qi) ∀i1 = 1, 2, · · · , I1 (7b)

Pr

{
J1
∑

j=1
ai2 j(ω)xj ≤ bi2

}
≥ 1− qi2 ⇔ Φ−1(1− qi2

)√ J
∑

j=1

(
σi2 jxj

)2
+

J
∑

j=1
µi2 jxj ≤ bi2 ∀i2 = 1, 2, · · · , I2 (7c)

T

∑
t=1

mtjxj ≤ nt ∀t = 1, 2, · · · , T (7d)

J1

∑
j=1

aijxj +
J2

∑
j=1

a′kjyjl ≥ ξ̃l ∀k = 1, 2, · · · , K; l = 1, 2, · · · , L (7e)

xj ≥ 0 ∀j = 1, 2, · · · , J1 (7f)

yjl ≥ 0 ∀j = 1, 2, · · · , J2; l = 1, 2, · · · , L (7g)

where mtj and nj are parameters.

2.3. TSCCP for Irrigation Allocation Considering Water Resources Transformation

2.3.1. Optimization Model for Irrigation Water Allocation

The aim of the optimization model for irrigation water allocation is to allocate limited surface
water and groundwater resources to different farmlands corresponding to different crops in an
irrigation district during each time period. The model structure is the TSCCP with left/right-hand-side
randomness. The objective function is the maximization of system economic benefits, considering the
variations of different flow levels, and it can be expressed as follows:

maxF = max

{
C

∑
c=1

S

∑
s=1

T

∑
t=1

BCc ·WPc ·WTcst −
C

∑
c=1

S

∑
s=1

T

∑
t=1

L

∑
l=1

pl · PCcst ·WScstl

}
(8a)

where c denotes the crop types and the total number of crops is C, s denotes the water sources and
the total number of water sources is S, t denotes the time period and the total number of time periods
during the whole growth period of crops is T, l denotes the flow level and its total number is L; BCc

is the benefit coefficient of crop c, in RMB/kg (RMB is the Chinese currency unit); WPc is the water
productivity of crop c, in kg/m3, WTcst is the water target of crop c with water source s in time period
t in m3, pl is the occurrence probability of flow level l, PCcst is the penalty coefficient of crop c with
water source s in time period t in RMB/m3, and WScstl (decision variable) is the water shortage of
crop c with water source s in time period t under flow level l in m3. WTcst −WScstl indicates the water
allocation amount to crop c with water source s in time period t under flow level l in m3.

The objective function subjects to the following constraints:

(1) Surface water supply constraint

The surface water allocation in each time period under each flow level should not be larger
than surface water supply. As the water supply greatly depends on the runoff with a randomness
characteristic, this constraint is expressed as CCP with right-hand-side randomness, and it can be
described as follows:

Pr

{
ω

∣∣∣∣∣ C

∑
c=1

[
WTc(s=1)t −WSc(s=1)tl

]
/
(

ηc · η f

)
≤ SWS(ω)tl

}
≥ 1− qSWS ∀t, l (8b)
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where, ηc is the water use efficiency coefficient of canal water and is dimensionless, η f is the water
use efficiency coefficient of the field and is dimensionless, SWS(ω)tl is the surface water supply in
time period t under flow level l in m3, and qSWS is the violating probability of the surface water
supply constraint.

(2) Groundwater supply constraint

Similarly to surface water supply constraint, the groundwater allocation in each time period
should not be larger than the groundwater supply. The fluctuation of groundwater is much smaller
than the surface water and the changes of groundwater under different flow levels are insignificant.
Therefore, this constraint is not expressed as CCP. However, it is worth noting that the groundwater
supply can potentially be adjusted based on the results of the water resource transformation process
in order to guarantee the rational exploitation of groundwater. This constraint can be expressed
as follows:

C

∑
c=1

[
WTc(s=2)t −WSc(s=2)tl

]
/η f ≤ GWSt ∀t, l (8c)

where GWSt is the groundwater supply in time period t in m3.

(3) Food security constraint

The food demand for each crop should be satisfied to ensure people’s elementary needs. Food
demand is related to population, irrigation quota, yield per unit area, and food demand standard.
Among them, irrigation quota is greatly affected by hydro-meteorological conditions and human
elements, which lead to the randomness of the irrigation quota. Therefore, this constraint is expressed
as CCP with left-hand-side randomness, and it can be described as follows:

Pr

{
ω

∣∣∣∣∣ T

∑
t=1

S

∑
s=1

[YAc/IQ(ω)c]·(WTcst −WScstl) ≥ PO · FDc

}
≥ 1− qFS ∀c, l (8d)

where YAc is the yield per unit area for crop c in kg/ha, IQ(ω)c is the irrigation quota of crop c in
m3/ha, PO is the population of the whole irrigation district, FDc is the food demand of crop c in
kg/capita, and qSWS is the violating probability of the food security constraint.

(4) Maximum irrigation constraint

In order to avoid water waste, water allocation, including both surface water and groundwater to
each crop under each flow level, should not be larger than the maximum irrigation amount during the
whole crop growth period. This constraint can be expressed as follows:

S

∑
s=1

T

∑
t=1

(WTcst −WScstl) ≤ IWAmax,c ∀c, l (8e)

where IWAmax,c is the maximum irrigation water amount for crop c in m3.

(5) Water allocation constraint

Water allocation amount to each crop with each water source in each time period under each flow
level should be non-negative. This constraint can be expressed as follows:

WTcst −WScstl ≥ 0 ∀c, s, t, l (8f)

(6) Non-negative constraint

The decision variables of the model should be non-negative. This constraint can be expressed
as follows:

WScstl ≥ 0 ∀c, s, t, l (8g)
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2.3.2. Field Water Cycle Process

The transformation among surface water, precipitation, soil water, and groundwater is considered
when optimizing agricultural irrigation water. The revised Thornthwaite–Mather (T–M) model which
was developed by Thornthwaite and Mather [18], with a detailed study of the model done by Alley [19],
is used to calculate the changes of soil water storage and deep percolation [20], and this will help to
amend the irrigation water allocation results. There exists a basic assumption when using the T–M
model, i.e., the evapotranspiration rate decreases linearly from a maximum value, when the soil water
content corresponds to field capacity, to zero, when the soil reaches the permanent wilting point.
The time step of the T–M model is usually in months. The fluctuations of the soil moisture in the
unsaturated zone depend on whether the water supply including precipitation and irrigation water
(results of the optimization model) of month t, i.e., EP(t) + I(t), is greater or less than the reference
evapotranspiration for the month PET(t). The PET(t) in a certain time period can be calculated by
the PM-ET0 method [21] and the effective precipitation EP(t) can be estimated using the empirical
formulae derived from the USDA Soil Conservation Service [22].

When EP(t) + I(t) ≤ PET(t), the soil moisture content can be described as:

S(t) = S(t− 1) exp
{
−[PET(t)− EP(t)− I(t)]/

(
S f c − Swp

)}
(9)

where St, St−1 represent soil moisture content in the root zone at the beginning and the end of the
time period, respectively, in mm; S f c and Swp denote soil water content in the point of field capacity
and permanent wilting point, respectively; S f c − Swp represents the water holding capacity in the root
zone. In the above case, the deep percolation (∆DP(t)) equals 0.

When EP(t) + I(t) ≥ PET(t), the soil moisture content is updated by:

S(t) = min
[

EP(t) + I(t)− PET(t) + S(t− 1),
(

S f c − Swp

)]
(10)

The excess precipitation and irrigation water are assumed to contribute to deep percolation.
In such a case, the deep percolation can be expressed as:

∆DP(t) =
[

EP(t) + I(t)− PET(t) + S(t− 1)−
(

S f c − Swp

)]
(11)

2.3.3. Solution Method

The steps for solving the optimization model for irrigation water allocation based on the TSCCP
with left/right-hand-side randomness considering the field water resources transformation process,
are described as follows:

Step 1: Formulate the TSCCP model with left/right-hand-side randomness for irrigation water
allocation (i.e., model (8)).

Step 2: Linearize the CCP constraints under the given violating probabilities. Specifically, for the
CCP with right-hand-side randomness, the theoretical distribution curve should be fitted first, based
on which, the values corresponding to each given violating probability can be determined. For the CCP
with left-hand-side randomness, the normal probability distribution was assumed. Then, the CCP can
be transformed into the corresponding linear form according to (6d) based on the mean value and the
standard deviation value of the samples.

Step 3: Give an initial value of groundwater supply, and solve the optimization model by coding
in an optimization software and recording the outputs.

Step 4: Input the outputs of the optimization into the T-M model to estimate the soil moisture and
deep percolation.

Step 5: Judge whether the changes of groundwater levels in each time period can be calculated
based on whether the deep percolation and irrigation area is within the range of permissible
fluctuations (i.e., the range between groundwater levels that can cause overexploitation and soil
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salinization). If yes, output the results, if no, adjust the value of groundwater supply, and repeat steps 3
and 4.

Step 6: Give different violating probabilities corresponding to different kinds of CCP, and solve
the framework by repeating steps from 2 to 5 to analyze the sensitivity of the model.

3. Case Study

3.1. Description of the Study Area

The Yingke irrigation district (38◦50′–38◦58′ N, 100◦17′–100◦34′ E), located in the middle reaches
of Heihe River basin, Northwest China, was chosen as the study area to test the developed model.
The Yingke irrigation district is the third largest irrigation district in the middle reaches, and it belongs
to a semi-arid area with a water shortage problem. The climate is typically a cold, arid continental
climate with an annual average precipitation and a reference evapotranspiration of around 125 mm
and 1200 mm, respectively. More than 90% of the water supply for Yingke irrigation district is used for
irrigating crops. The other 10% of the water supply is used for forestry and grass irrigation, and human
and livestock drinking. The major crops are corn, including grain corn and forage corn, and spring
wheat, with their cropped areas accounting for 83% of the total crop area. Commercial crops such as
vegetables and melons take up a 15% proportion of the area [23]. The irrigation season is usually from
April to September. Because of water shortage, groundwater is also exploited as supplemental water
supply source. However, the poor irrigation management has led to an imbalanced distribution of
various crops in different time periods, and a lower irrigation efficiency. This leads to the necessity for
exploring optimal irrigation corresponding to different flow levels, considering field water resources
transformation processes and allocation uncertainties to improve the present water use situations and
economic benefits.

3.2. Data Collection

There are two pieces of data: data for the optimization model, and data for the T-M model.
For the optimization model, water supply, water target, irrigation quota, and socioeconomic factors
including benefit coefficient, penalty coefficient, population, food demand standard, irrigation area,
and maximum irrigation amount, and engineering elements such as water use efficiency for canal
and field.

Surface water supply for Yingke irrigation district is taken from Heihe river. In this study,
it was assumed that the monthly variation of surface water supply for Yingke irrigation district was
consistent with that of the runoff of Heihe River at Yingluoxia hydrometric station (the boundary
point of the upper and the middle reaches of Heihe River basin). Therefore, if runoff from Yingluoxia
hydrometric station was known, the surface water supply for Yingke irrigation district could be
obtained, and it was expressed a random variable. The χ2 hypothesis testing shows that the monthly
runoff of Yingluo hydrometric station obeys normal distribution at a 0.1 significance level. Therefore,
the normal distribution can be used to solve the CCP problems. Three flow levels were applied,
and the category of different flow levels was based on the frequency analysis method. Let P express
the frequency for dividing different flow levels, then P ≤ 25% corresponds to a high flow level,
25% < P ≤ 75% corresponds to a middle flow level and P > 75% corresponds to a low flow level.
The mathematical expectation method was used to calculate P [24]. The runoff data of Yingluoxia
was ranked in descending order, and the ranked series was recorded as {x1, x2, · · · , xm, · · · , xn}. Then
P can be expressed as P = (m/(n + 1)× 100%), with m denoting the number of “greater than” and
“equal to” xm, and n denoting the total number of historical data. Using this formula, different flow
levels can be divided, based on the division categories of P. Then, the occurrence probabilities of each
flow level could be obtained by dividing the number of years of each flow level by the total number
of years (from 1944 to 2014). The occurrence probabilities for the high, middle, and low flow levels
were 0.25, 0.5, and 0.25, respectively. The annual surface water supply for Yingke irrigation district
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accounted for approximately 8.7% of the runoff from Yingluoxia hydrometric station. Then, the water
supply during the whole crop growth period (From April to September) could be obtained. Based
on the proportionality coefficient, the monthly water supply of the Yingke irrigation district could
be obtained. The proportionality coefficients were 0.05, 0.09, 0.16, 0.27, 0.25, and 0.18 for April, May,
June, July, August, and September, respectively. The water supply for Yingke irrigation district can be
seen in Table 1. Based on the monthly observation data of runoff from Yingluoxia hydrometric station,
the cumulative probability distributions of each month from April to September (the main irrigation
period) were fitted, as shown in Figure 2. Based on the figure, the surface water supply under the
selected violating probabilities was obtained. In this study, the violating probabilities were selected as
0.01, 0.05, 0.1, 0.15, and 0.2. The initial groundwater supply was from Annual Water Conservation
Report of Zhangye City (AWC Report for short thereafter) from 2010 to 2016, and it was listed in
Table 1. The proportions of agricultural irrigation water supply under high, middle, and low flow
levels were 0.94, 0.92, and 0.9, respectively. The soil type of the Yingke irrigation district was silt loam
and loam. According to the study of Li et al. (2015) [25], the permissible critical groundwater depth
of 2 m was set to avoid salinization. If the groundwater depth is less than 2 m, the optimal water
allocation results should be amended by re-calculating the optimization model with an adjustment of
groundwater supply. The changes of groundwater depth for each time period can be obtained from
the ratio of deep percolation amount and the irrigation area, and the deep percolation amount can be
obtained by the Formula (11).

Table 1. Water supply.

Month
Surface Water Supply (104 m3) Groundwater

Supply (104 m3)High Flow Level Middle Flow Level Low Flow Level

April 1002.45 751.20 585.90 961.87
May 1813.80 1242.94 822.54 1001.84
June 3260.92 2169.82 1367.87 1031.62
July 5265.86 3796.17 2672.32 1049.64

August 5080.22 3482.88 2516.90 1005.45
September 3902.22 2456.99 1618.69 949.58

Figure 2. Cumulative probability distribution (CDF) for monthly runoff from Yingluoxia
hydrometric station.

Water target per unit area in this study was considered as crop demand and it was the numerical
equivalent of crop evapotranspiration, which was estimated by multiplying the crop coefficient
(Kc) with the reference evapotranspiration (ET0). ET0 was calculated by the PM-ET0 method on
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the basis of meteorological data from 1956 to 2014, and the monthly changes of ET0 is shown
in Figure 3. The values of Kc and the calculated ET0 were listed in Table 2. The water targets
corresponding to different water sources were obtained by the proportionality coefficients of the
surface water supply and the groundwater supply. The proportionality coefficients were obtained
based on long-term statistical information. For surface water (groundwater), the proportionality
coefficients were 0.44 (0.56), 0.55 (0.45), 0.68 (0.32), 0.78 (0.22), 0.78 (0.22), and 0.72 (0.28) for April, May,
June, July, August, and September, respectively. Then the irrigation area was used to transform the
water target per unit area into the volume. In this study, the climate change effects were considered.
According to previous studies [26], when the temperature increased by 1 ◦C, 2 ◦C, 3 ◦C, and 4 ◦C,
water demand for crops increased 1.03–1.04-fold, 1.06–1.07-fold, 1.09–1.10-fold, and 1.13–1.14-fold over
the current situation, respectively. Therefore, the calculated water target was re-defined considering
this rise. A temperature rise of 2 ◦C was considered, based on the study of Wang and Chen (2014) [27].
The water target was listed in Table 3.

Figure 3. Monthly changes of ET0. Note: 0.25P represents the upper quartile and 0.75P represents the
lower quartile.

Table 2. Kc and ET0.

Month
ET0 Kc

(mm) Grain Corn Forage Corn Wheat Vegetables

April 119.61 0.22 0.20 0.30 0.44
May 146.23 0.50 0.44 1.15 0.8
June 150.85 1.16 0.53 1.15 1
July 154.11 1.20 1.46 0.93 0.99

August 144.20 1.20 1.14 - 0.565
September 109.52 0.60 1.22 - 0.55

In this study, irrigation quota was a random variable on the left-hand side of the CCP constraint,
and it was assumed to obey a normal distribution. Based on the statistical data from the AWC Report
from 2000 to 2015, the mean value and the standard deviation of each crop were calculated (see
Table 4). The violating probabilities of 0.01, 0.05, 0.1, 0.15, and 0.2 were also applied to the irrigation
quota when transforming the CCP with left-hand-side randomness into the corresponding linear
form. The values of some socioeconomic parameters in the optimization model varied with different
crops, and they are listed in Table 4. The penalty coefficient was related to the degree of the water
demand besides the crop types (see Table 5). The acquisition of these parameters was based on the
AWC report, the year book of Zhangye City, field investigations, and relative references. Among them,
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the maximum irrigation amount was obtained by calculating the extremum of the quadratic water
production function (WPF). The WPF for each crop was fitted by [2]. The population of the Yingke
irrigation district was 16.44 × 104 people. The average water use efficiency for the canal was 0.68
based on data from 2000 to 2015 of the AWC report, and the average water use efficiency for the field
referred to [23].

Table 3. Water targets.

Crops Water Sources
Water Target (104 m3)

April May June July August September

Grain corn
Surface water 79.60 276.96 804.14 974.94 904.11 320.34
Groundwater 94.80 207.62 355.57 250.71 242.74 115.15

Forage corn Surface water 53.43 179.96 271.29 875.87 634.21 480.96
Groundwater 63.63 134.91 119.96 225.24 170.28 172.88

Wheat
Surface water 14.98 87.92 110.03 104.29 0.00 0.00
Groundwater 17.84 65.91 48.65 26.82 0.00 0.00

Vegetables Surface water 55.98 155.82 243.76 282.83 149.69 103.26
Groundwater 66.67 116.81 107.79 72.73 40.19 37.12

Table 4. Parameters for crops.

Parameter Unit Grain Corn Forage Corn Wheat Vegetables

Irrigation quota (mean) m3/ha 4534.33 5001.09 5240.02 7604.99
Irrigation quota (standard deviation) m3/ha 382.23 421.57 308.65 447.95

Benefit coefficient RMB/kg 3.00 2.31 2.28 3.45
Water productivity kg/m3 1.84 1.67 1.63 7.99

Planting area ha 6025.00 4448.82 831.57 2118.60
Yield per unit area kg/ha 8343.30 8340.30 8554.65 60746.7

Maximum irrigation amount 104m3 4397.29 3718.66 462.90 1302.40

Table 5. Penalty coefficient.

Crops
Penalty Coefficient (RMB/m3)

April May June July August September

Grain corn 6.07 6.68 7.89 8.50 8.50 7.29
Forage corn 4.05 4.46 4.86 6.08 5.27 5.67

Wheat 3.90 4.68 4.68 4.29 - -
Vegetables 31.69 41.20 47.54 44.37 38.03 34.86

Data for the field water cycle process mainly included effective precipitation, reference
evapotranspiration, and soil-relevant parameters. According to the empirical formulae derived
from the USDA Soil Conservation Service, the effective precipitation for each month from April to
September were calculated and they were 3.72 mm, 3.95 mm, 19.49 mm, 23.06 mm, 28.52 mm, and
19.9 mm respectively. The reference evapotranspiration was calculated by the PM-ET0 method, and the
results can be seen in Figure 3 and Table 2. The initial soil moisture content was set to 25%, the field
capacity was 35% and the permanent wilting point was 10%. The root zone was set to 1 m with loamy
soil. The average groundwater level depths for each month during the irrigation period were 3.25 m
for April, 3.38 m for May, 3.48 m for June, 3.55 m for July, 3.40 m for August, and 3.21 m for September,
according to observation data from 12 stations in the Yingke irrigation district.
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4. Results and Discussion

4.1. Irrigation Water Allocation

Irrigation water allocation results (both surface water and groundwater) for each crop in each
time period under each flow level were obtained by solving the optimization model, considering
the different terms of the water balance. The Irrigation water for all crops in the Yingke irrigation
district is shown in Figure 4. It was obvious that water allocation amount under a high flow level
(9545 × 104 m3) was larger than under a middle flow level (9023 × 104 m3), and the last one was under
a low flow level (7359 × 104 m3), attributing to the surface water supply. June, July, and August were
the months in which the peaks of water demand were concentrated. Water allocation in this period
was 74% (high flow level), 70% (middle flow level), and 66% (low flow level), for the whole irrigation
period. Surface water allocations for the three flow levels were 7029 × 104 m3 for the high flow level,
6344 × 104 m3 for the middle flow level, and 4605 × 104 m3 for the low flow level. In order to alleviate
water resources shortage as well as improve system economic benefits in unfavorable cases (middle
and low flow levels), groundwater allocation increased from a higher flow level to a lower flow level,
i.e., 2516 × 104 m3 for a high flow level, 2680 × 104 m3 for a middle flow level, and 2754 × 104 m3

for a low flow level. It indicated that groundwater could be regarded as a regulative water source at
a reasonable range to improve irrigation water allocation patterns in the Yingke irrigation district.

Figure 5 shows the total irrigation water allocation amount (the sum of surface water and
groundwater irrigation amounts) for each crop in each month under the three flow levels. Corn,
including grain corn and forage corn, occupied 80% of the total irrigation water allocation amount,
reflecting the superiority in planting corn in the Yingke irrigation district. Corn was the major food crop
in Yingke irrigation district, and the demand for corn was 376 kg per capita per year, with grain corn
accounting for 53%, and forage corn accounting for 47%. The demand for wheat was only 23.3 kg per
capita per year for its lower benefit and higher water consumption. It can be seen from the figure that
the water demand for the vegetables was given precedence for its higher economic benefit and higher
penalty coefficient. In other words, if the water shortage for vegetables was larger, then the system
benefit would be decreased as the current optimal results. From the figure, water allocation law for
grain corn and forage corn was different. For grain corn, water allocation from June to August was the
irrigation peak, while for forage corn, water allocation from July to September was the irrigation peak.
This was because of the crop coefficient Kc (see Table 2), which directly affected the water demand.
The results indicated that the water allocation amount was sensitive to Kc, leading to the necessity of
amending the parameter regularly for a specific area when optimizing irrigation water allocation.

Figure 4. Cont.
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Figure 4. Total irrigation water allocation under different flow levels.

Figure 5. Irrigation water allocation for each crop. (Note: WA-H, WA-M, and WA-L indicate water
allocation in high flow level, middle flow level, and low flow level, respectively.)

4.2. System Benefit under Different Scenarios

The above results were obtained without considering the CCP constraints. However, two types
of CCP constraints (Equations (8b) and (8d)) were incorporated into the optimization model, and
the violating probabilities for each CCP constraint were 0.01, 0.05, 0.1, 0.15, and 0.2. Therefore,
three scenarios were generated: Scenario 1, where the violating probabilities of the surface water
supply constraint (surface water supply was the random variable in the right-hand side of the CCP
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constraint) were changed from 0.01 to 0.2, while the violating probability of the food security constraint
(irrigation quota was the random variable in the left-hand side of the CCP constraint) was fixed at 0;
Scenario 2, where the violating probabilities of the food security constraint were changed from 0.01 to
0.2, while the violating probability of the water supply constraint was fixed at 0; Scenario 3, where
the violating probabilities of both the two constraints were changed from 0.01 to 0.2 simultaneously.
Different violating probabilities affected the decision strategies for irrigation, and thus affected the
system economic benefit, as illustrated in Figure 6. In Scenario 1, the system benefit increased as the
violating probabilities increased. This was because a larger violating probability indicated a larger
water supply that would contribute to a higher system benefit, because the objective function was
linear. However, due to the uncertainty associated with the probability of occurrence of a certain water
supply, a risk would be generated. Larger probabilities meant larger risks. Therefore, whether the
violating probabilities should be considered and which one could be selected were largely dependent
on the preference of the decision makers. In Scenario 2, the system benefit decreased as the violating
probabilities increased, but the reduction was not dramatic. This was related to the property of the
CCP constraints. Scenario 2 focused on the CCP with the left-hand-side randomness, i.e., the irrigation
quota. According to the transformation method for solving such a kind of CCP, the inverse function of
the cumulative distribution function of a parameter that obeys the standardized normal distribution
should be calculated first. Larger violating probabilities corresponded to lower inverse function values.
As the reciprocal of irrigation quota was used in the left-hand-side of food security constraint, larger
violating probabilities led to larger reciprocal values, resulting in a lower water allocation amount in
the case of the fixed right-hand-side values. Hence, the system benefit values under different violation
probabilities showed a decreased trend. Because there was little changes of the annual variation of
irrigation quota, the decline range of the system benefit was slight. Scenario 3 was the combined effect
of Scenario 1 and Scenario 2, and it was obvious that the changing trend of system benefit in Scenario
3 was the same as Scenario 1 with different change extents. Compared with the two constraints,
the results indicated that the optimization model was sensitive to surface water supply. Therefore,
broadening water sources might be more efficient than reducing the water use in terms of decreasing
irrigation quota to improve system benefits.

4.3. Soil Moisture and Deep Percolation

The field water cycle process was considered for adjusting the irrigation water allocation results.
The outputs of the optimization model were input into the T-M model, and the average soil moisture
and deep percolation were obtained, with the changes of groundwater level being considered as the
correction condition. Taking Scenario 3 as an example, which could represent the combined effect
of Scenario 1 and Scenario 2, the changes of soil water content and the ratio of deep percolation
to the total irrigation amount was shown in Figure 7. It can be seen that soil moisture content
presented an increase trend with an increase in violating probabilities. The reason was that larger
violating probability corresponded to a larger irrigation water amount, and then this would lead to
a larger soil moisture content until the value of the soil moisture content achieved the maximum soil
moisture holding capacity, i.e., equal to the difference of soil water content between the field capacity
and the permanent wilting point. If the soil moisture content exceeded the holding capacity, the
deep percolation would be generated. For this study, the soil water content ranged from 23.78% to
27.71%, and the deep percolation rate ranged from 20.81% to 31.54%, with an increase in the violating
probabilities. It should be noted that although a larger irrigation water amount would result in a higher
system benefit based on the above results analysis, the irrigation water allocation amount would be
restricted by two aspects, even if the water supply was sufficient. One restriction was the maximum
irrigation amount, which was the upper threshold of the optimization model. If water allocation to
a certain crop exceeded this threshold, a waste of water would be generated. This was attributed
to the quadratic WPF (a convex quadratic function) for the whole growth period. The maximum
irrigation amount corresponded to the maximum yield; in other words, if water continued to be
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allocated when the amount exceeded this value, the yield was expected to shrink, and the consequent
system benefit would decrease. Another restriction was the groundwater level. Larger irrigation
water amounts caused greater deep percolation. As the groundwater level depth in the Yinke district
was fairly shallow, larger irrigation amounts might cause the groundwater level to rise, then give
rise to soil salinization. This would affect crop growth, which is disadvantageous for improving the
system economic benefit. Therefore, considering the field water resources transformation process was
significant for adjusting the optimal irrigation water patterns.

Figure 6. System benefit under different scenarios.
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Figure 7. Changes of soil water content and deep percolation under different violating probabilities.

4.4. Discussion

The aim of this paper is to develop a stochastic optimization method for irrigation water allocation,
in which the field water cycle process (including the transformation of crop evapotranspiration,
precipitation, irrigation, soil water content, deep percolation) was considered. By integrating a water
balance model, the developed stochastic optimization method is capable of obtaining more accurate
water allocation plans because the connection between surface water irrigation and groundwater
irrigation was reflected, rather than dealing with the surface water and groundwater supplies as
two individual components. In fact, there are several hydrological models that are able to describe
field water cycle processes, such as the T-M model, the Belgium model, the Xin’anjiang model, the
Guo model, the WatBal model, and the Schaake model. Each model has its own characteristics.
However, this paper only took the T-M model as an example to examine the feasibility of integrating
the field water balance model into the stochastic optimization framework, without comparing and
demonstrating which model is appropriate and how different models affect water allocation strategies.
This may become a major limit of the developed method, and requires future study.

For water-deficient regions, water-saving methods such as regulated deficit irrigation (RDI)
or partial root zone drying (PRZD) are popular for reducing crop water consumption, and thus
increasing irrigation efficiency. Considering different water-saving methods in the developed method is
interesting, and alternative irrigation water allocation schemes in time-space under different scenarios
can be provided. These methods directly affect the irrigation quota for each crop and soil water content,
which are the main components of the optimization model, and thus they change the allocation
strategies. However, how the RDI and PRZD affect the irrigation quota and soil water content is worth
discussing with regards to field trials, and this was not discussed in this paper.

5. Conclusions

A TSCCP model with left/right-hand-side randomness, considering water resources transformation,
has been developed for irrigation water allocation. The model is advantageous in: (1) effectively
allocating limited surface water and groundwater supplies with consideration for field water resource
transformations among irrigation water, precipitation, soil water, and groundwater to avoid unreasonable
allocation schemes, with obtaining the maximum system economic benefit as the final aim; (2) dealing
with randomness both in the right-hand side and left-hand side of constraints, which will help to
generate irrigation water allocation schemes under different levels of water supply and different levels
of constraint-violation risks.

The approach was applied to a real case study in an irrigation district in Northwest China, to
demonstrate its feasibility. The results of irrigation water allocation for different crops in different
months during the crops’ whole growth period under different flow levels, considering different
violating probabilities, were obtained. The results gained insight into the tradeoffs between system
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benefit and economic penalties, with soil moisture content and deep percolation under different
scenarios changing in an appropriate range, which are informative for decision makers. The approach
is applicable for any irrigation district with water shortage issues. Future work will focus on
improving the agro-hydrological model to acquire more accurate data on the field water cycle (actual
evapotranspiration, soil water content, and deep percolation), and thus improving the practicality and
applicability of the model.

Author Contributions: M.L. designed the study, formulated the optimization model, and gave comments
and helped to revise the paper; Z.Y. solved the model, analyzed data and results, and wrote the paper with
the co-author.

Funding: This research was funded by the China Postdoctoral Science Foundation, grant number [2018M630332
and 2018T110264], this research was funded by the Natural Science Foundation of Heilongjiang Province of China,
grant number [E2018004].

Acknowledgments: The authors deeply appreciate the anonymous reviewers for their comments and suggestions
which significantly help to improve the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Galán-Martín, Á.; Vaskan, P.; Antón, A.; Esteller, L.J.; Guillén-Gosálbez, G. Multi-objective optimization of
rainfed and irrigated agricultural areas considering production and environmental criteria: A case study of
wheat production in Spain. J. Clean. Prod. 2017, 140, 816–830. [CrossRef]

2. Jiang, Y.; Xu, X.; Huang, Q.; Huo, Z.; Huang, G. Optimizing regional irrigation water use by integrating
a two-level optimization model and an agro-hydrological model. Agric. Water Manag. 2016, 178, 76–88.
[CrossRef]

3. Singh, A. An overview of the optimization modelling applications. J. Hydrol. 2012, 466, 167–182. [CrossRef]
4. Davijani, M.H.; Banihabib, M.E.; Anvar, A.N.; Hashemi, S.R. Optimization model for the allocation of water

resources based on maximization of employment in the agriculture and industry sectors. J. Hydrol. 2016, 533,
430–438. [CrossRef]

5. Nguyen, D.C.H.; Dandy, G.C.; Maier, H.R.; Ascoug, J.C. Improved ant colony optimization for optimal crop
and irrigation water allocation by incorporating domain knowledge. J. Water. Resour. Plan. Manag. 2016, 142,
04016025. [CrossRef]

6. Xu, Y.; Li, W.; Ding, X. A stochastic multi-objective chance-constrained programming model for water supply
management in Xiaoqing River watershed. Water 2017, 9, 378. [CrossRef]

7. Guo, P.; Chen, X.; Li, M.; Li, J. Fuzzy chance-constrained linear fractional programming approach for optimal
water allocation. Stoch. Environ. Res. Risk Assess. 2014, 28, 1601–1612. [CrossRef]

8. Zhang, C.; Li, M.; Guo, P. An interval multistage joint-probabilistic chance-constrained programming model
with left-hand-side randomness for crop area planning under uncertainty. J. Clean. Prod. 2017, 167, 1276–1289.
[CrossRef]

9. Maqsood, I.; Huang, G.; Yeomans, J.S. An interval-parameter fuzzy two-stage stochastic program for water
resources management under uncertainty. Eur. J. Oper. Res. 2005, 167, 208–225. [CrossRef]

10. Moghaddam, K.S.; DePuy, G.W. Farm management optimization using chance constrained programming
method. Comput. Electron. Agric. 2011, 77, 229–237. [CrossRef]

11. Li, M.; Guo, P. A coupled random fuzzy two-stage programming model for crop area optimization—A case
study of the middle Heihe River Basin, China. Agric. Water Manag. 2015, 155, 53–66. [CrossRef]

12. Karamouz, M.; Kerachian, R.; Zahraie, B. Monthly water resources and irrigation planning: Case study of
conjunctive use of surface and groundwater resources. J. Irrig. Drain. Eng. 2004, 130, 93–98. [CrossRef]

13. Wu, X.; Zheng, Y.; Wu, B.; Tian, Y.; Han, F.; Zheng, C. Optimizing conjunctive use of surface water and
groundwater for irrigation to address human-nature water conflicts: A surrogate modeling approach.
Agric. Water Manag. 2016, 163, 380–392. [CrossRef]

14. Li, X.; Huo, Z.; Xu, B. Optimal allocation method of irrigation water from river and lake by considering the
field water cycle process. Water 2017, 9, 911. [CrossRef]

http://dx.doi.org/10.1016/j.jclepro.2016.06.099
http://dx.doi.org/10.1016/j.agwat.2016.08.035
http://dx.doi.org/10.1016/j.jhydrol.2012.08.004
http://dx.doi.org/10.1016/j.jhydrol.2015.12.025
http://dx.doi.org/10.1061/(ASCE)WR.1943-5452.0000662
http://dx.doi.org/10.3390/w9060378
http://dx.doi.org/10.1007/s00477-013-0810-2
http://dx.doi.org/10.1016/j.jclepro.2017.05.191
http://dx.doi.org/10.1016/j.ejor.2003.08.068
http://dx.doi.org/10.1016/j.compag.2011.05.006
http://dx.doi.org/10.1016/j.agwat.2015.03.013
http://dx.doi.org/10.1061/(ASCE)0733-9437(2004)130:5(391)
http://dx.doi.org/10.1016/j.agwat.2015.08.022
http://dx.doi.org/10.3390/w9120911


Water 2018, 10, 1031 19 of 19

15. Li, Y.; Huang, G. Two-stage planning for sustainable water-quality management under uncertainty. J. Environ.
Manag. 2009, 90, 2402–2413. [CrossRef] [PubMed]

16. Li, W.; Li, Y.; Li, C.; Huang, G. An inexact two-stage water management model for planning agricultural
irrigation under uncertainty. Agric. Water Manag. 2010, 97, 1905–1914. [CrossRef]

17. Charnes, A.; Cooper, W.W. Response to decision problems under risk and chance constrained programming:
Dilemmas in the transitions. Manag. Sci. 1983, 29, 750–753. [CrossRef]

18. Thornthwaite, C.W.; Mather, J.R. The Water Balance; Publications in Climatology; Laboratory of Climatology,
Drexel Instatute of Technology: Centerton, NJ, USA, 1995; Volume 8, pp. 1–104.

19. Alley, W.M. On the treatment of evapotranspiration, soil moisture accounting and aquifer recharge in
monthly water balance models. Water Resour. Res. 1984, 20, 1137–1149. [CrossRef]

20. Jiang, T.; Chen, Y.; Xu, C.; Cheng, X.; Chen, X.; Singh, V.P. Comparison of hydrological impacts of climate
change simulated by six hydrological models in the Dongjiang Basin, South China. J. Hydrol. 2007, 336,
316–333. [CrossRef]

21. Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water
Requirements; FAO Irrigation and Drainage Paper 56; Food and Agriculture Organization: Rome, Italy, 1998;
ISBN 92-5-104219-5.

22. USDA. Irrigation Water Requirement—Volume 21; United States Department of Agriculture Soil Conservation
Service (USDA-SCS): Washington, DC, USA, 1967.

23. Jiang, Y.; Xu, X.; Huang, Q.; Huo, Z.; Huang, G. Assessment of irrigation performance and water productivity
in irrigated areas of the middle Heihe River basin using a distributed agro-hydrological model. Agric. Water
Manag. 2015, 147, 67–81. [CrossRef]

24. Li, M.; Guo, P.; Singh, V.P.; Zhao, J. Irrigation water allocation using an inexact two-stage quadratic
programming with fuzzy input under climate change. J. Am. Water Resour. Assoc. 2016, 52, 667–684.
[CrossRef]

25. Li, M.; Ning, L.; Lu, T. Determination and the control of critical groundwater table in soil salinization area.
J. Irrig. Drain. 2015, 34, 46–50.

26. Wang, H.; Wang, R.; Zhang, Q.; Yi, N.; Dong, L. Impact of warming climate on crop water requirement in
Gansu Province. Chin. J. Eco-Agric. 2011, 19, 866–871. (In Chinese) [CrossRef]

27. Wang, L.; Chen, W. A CMIP5 multimodel projection of future temperature precipitation, and climatological
drought in China. Int. J. Climatol. 2014, 34, 2059–2078. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.jenvman.2008.11.007
http://www.ncbi.nlm.nih.gov/pubmed/19264389
http://dx.doi.org/10.1016/j.agwat.2010.07.005
http://dx.doi.org/10.1287/mnsc.29.6.750
http://dx.doi.org/10.1029/WR020i008p01137
http://dx.doi.org/10.1016/j.jhydrol.2007.01.010
http://dx.doi.org/10.1016/j.agwat.2014.08.003
http://dx.doi.org/10.1111/1752-1688.12415
http://dx.doi.org/10.3724/SP.J.1011.2011.00866
http://dx.doi.org/10.1002/joc.3822
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Overview of the Problem 
	Two-Stage Chance-Constrained Programming (TSCCP) with Left/Right-Hand-Side Randomness 
	Two-Stage Stochastic Programming 
	Chance-Constrained Programming 
	Model Structure of TSCCP with Left/Right-Hand-Side Randomness 

	TSCCP for Irrigation Allocation Considering Water Resources Transformation 
	Optimization Model for Irrigation Water Allocation 
	Field Water Cycle Process 
	Solution Method 


	Case Study 
	Description of the Study Area 
	Data Collection 

	Results and Discussion 
	Irrigation Water Allocation 
	System Benefit under Different Scenarios 
	Soil Moisture and Deep Percolation 
	Discussion 

	Conclusions 
	References

