
water

Article

An Optimal Model for Water Resources Risk Hedging
Based on Water Option Trading

Haibin Yan 1, Ping-An Zhong 1,2,*, Juan Chen 1,3, Bin Xu 1, Yenan Wu 1 and Feilin Zhu 1

1 College of Hydrology and Water Resources, Hohai University, No.1 Xikang Road, Nanjing 210098, China;
yanhaibin@hhu.edu.cn (H.Y.); chenjuanhhu@163.com (J.C.); xubin_hhu@hhu.edu.cn (B.X.);
wuyenan1992@163.com (Y.W.); zhufeilin@hhu.edu.cn (F.Z.)

2 National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety,
Hohai University, No.1 Xikang Road, Nanjing 210098, China

3 School of Earth Sciences and Engineering, Hohai University, No.1 Xikang Road, Nanjing 210098, China
* Correspondence: zpahhu@126.com; Tel.: +86-025-8378-7493

Received: 18 June 2018; Accepted: 31 July 2018; Published: 3 August 2018
����������
�������

Abstract: The uncertainty of forecasted runoffs brings risks of water shortages to water users in
the intake area of long-distance water transfer projects, and the uncertainty of spot market prices
may cause them to buy water at high prices. In order to hedge these risks, this paper proposes a
risk hedging model for decision-making in water option trading from the viewpoint of water users.
With the objective of maximizing the expected revenue of water users, the proposed model was
solved by an analytical method and an optimal water option strategy was obtained for the users.
The proposed model is applied to an intake area of an inter-basin water transfer project in China.
The results show that the proposed water option trading model can provide water users with an
optimal option strategy. The optimal options trading strategy can effectively reduce the risk caused
by the uncertainties of forecasted runoffs and water prices. We also explored the influence of the
uncertainty degree of the forecasted runoffs and water price on the option trading strategy. The results
show that the expected revenue of water users increases as the variances of the errors of forecasted
runoffs and water prices increase.
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1. Introduction

To alleviate the regional water scarcity caused by climate change [1] and the uneven spatial and
temporal distribution of water resources, many countries and regions have built long-distance water
transfer projects. In the intake area of long-distance water transfer projects, the water supply sources
of water users include local water and transferred water [2]. In order to purchase the transferred
water at a lower price, water users usually sign a contract with the water supply company in advance.
The optimal water purchase strategy for water users is to use the local water first, and then water
shortages will be overcome by a contract of transferred water [3]. However, this simple decision
process becomes complex due to the uncertainty of local water runoffs [4,5] and the fluctuation of
spot market prices. These uncertainties bring risks into the decision-making for the water users.
For example, the water users may be at risk of water scarcity and of high prices to buy water from
the spot market if they buy less transferred water through the contracts than the demanded water.
The water users will also be at risk of extra economic cost if they purchase too much transferred water
through the contracts. To address the problem of water scarcity and economic loss, there is a need for
more effective and flexible institutional arrangements and allocation mechanisms [6–8]. Water trade
can help water users meet the water demand and reduce the economic loss caused by water scarcity [9].
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Water trade tools, such as water banks [10,11], spot market transactions [12], virtual water [13,14]
and option contracts [15,16], have been introduced by many researchers to increase water supply
flexibility and reliability. Among these instruments, an option contract is the most efficient for the
city water supply system. The option contract has attracted more and more interest within several
water markets [15,17–19]. Option contracts allow the holders to delay water purchase decisions until
more information is available [20] and offer protection against spot price volatility [21]. By granting
users the right to buy an additional amount of water during drought periods, water option contracts
are potential cost-minimizing strategies for hedging water supply risks [19]. Thus, we can use water
options to hedge the risks of the contracts of transferred water. The hedging strategy for water users is
to buy water options while signing a contract for transferred water. If the actual runoffs are less than
the expected runoffs, the users can use the profit from the water option to make up for the loss caused
by the shortage of transferred water. If the actual runoffs are more than the expected runoffs, then the
users do not exercise the option and lose the premiums, but they can get compensation from the return
of transferred water.

Currently, water market and option contracts are becoming more and more popular in the research
field of water resources, and the water options market has wide application prospects. Research on
water options has been carried out by many scholars. For instance, Holburt et al. [22] introduced
the concept of options into water resources and proposed the concept of a water option contract
(WSOC). Michelsen et al. [23] compared the cost of an option contract with the cost of water supply
alternatives, and then proposed an economic benefit evaluation model for water supply operation.
In 1994, the United States government first applied water option trading to guarantee city water
supplies. The government bought water option contracts from the electric power company and paid
premiums to take an option on the execution of water rights [24]. On the basis of the Black–Scholes
option pricing theory, Villinski [25] constructed a multi-usage water option pricing model through
numerical integration. Garrido et al. [26] developed a dynamic, stochastic, and discrete time model to
characterize the contract from the viewpoint of the sellers. The model was applied to an urban water
supply system in Seville to simulate city water option trading. Ranjan et al. [27] proposed a stylized
mathematical simulation model which can be used to evaluate the influence of some key variables on
the participation of farmers in spot and options markets. The results show that appropriate option
contracts can help farmers reduce the purchase cost of water. A stochastic recursive mathematical
programming model is applied to simulate the water procurement decisions of an irrigation district’s
board operating in the context of water supply uncertainty in south-eastern Spain. The results suggest
that the contract premium and quantity have large impacts on the decision variables [19].

However, as we can see from the above literature, research has mainly concentrated on the urban
and agricultural water supply from the perspective of water management departments. The research
on the combination of the spot market, contract market and options market has been limited. Therefore,
based on the comparison of the expected cost of the option trading and the expected cost of the spot
trading, this paper establishes a water option trading model to hedge water supply risks with the
objective of maximizing the expected revenue of water users from their own perspective. The proposed
model is a combined trading model of the option market, the contract market and the spot market.
It is capable of exploiting the hedging of the option market, the stability of the contract market and the
flexibility of the spot market. The rest of the paper is organized as follows: in Section 2, the methodology
of water option trading is elaborated and the water option trading model is established. In Section 3,
a case study and a discussion of the results are provided to illustrate the efficiency of the model.
In Section 4, a conclusion is drawn.
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2. Methodology

2.1. Concept of Water Option Contracts

The water option gives the buyer the right, but not an obligation, to purchase a certain amount
of water at an agreed price in a specified future period after the buyer pays a premium to the
seller [21]. The buyer has the option to exercise this right, and the seller has to follow the buyer’s choice
unconditionally and sells a certain amount of water at the agreed price according to the signed contract.

A water option contract generally contains the following four elements: (1) the exercise price:
The price for purchasing water specified in the option contract; (2) the premium: The fee paid by the
buyer to the seller in order to get the option; (3) the water volume: The maximum amount of water
that the buyer has the right to buy in the future period; and (4) the maturity date: A time or date before
which the option contract must be finished or done.

The option allows the buyer to buy additional water at the maturity date at the exercise price if the
actual runoffs are less than the demanded water and the spot market price is higher than the exercise
price; otherwise, the buyer waives the option and loses the premium. It follows that the execution
condition of water options is stricter than that of the ordinary financial options. Therefore, it is of great
significance for the users to research the optimal water options trading strategies.

2.2. Two-Stage Water Option Trading Decision Model

The decision-making process of water options trading is divided into two stages, as shown
in Figure 1:
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Figure 1. Two-stage water option trading decision model flow chart. Figure 1. Two-stage water option trading decision model flow chart.

In the first stage, the water users should determine the volume of transferred water to be
purchased through a contract based on the relation between demanded water and forecasted runoffs
and get the probability distribution of water shortage. Then, the water users shall judge whether
there is a water scarcity risk. If there is a water shortage risk, the users choose to buy an option
contract defined as (β1, β2) from the options market, where β1 is the exercise price, and where β2 is the
premium. The deposit is β2Q, which is calculated according to the quantity of water (Q) pre-purchased
through the option contract and the exercise price.

In the second stage, in order to meet the water demand, water users will determine whether to
execute the option at the maturity date and the water amount to buy from the spot market according
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to the local actual runoffs and the spot market price. Specifically, it is supposed that the spot market
price at the maturity date is θ, and the actual water shortage for the water user is x. The option is
exercised if the water user is short of water and the exercise price is lower than the spot market price
(x > 0 and θ > β1). In the case of 0 ≤ x ≤ Q, the water users purchase water amount x at an exercise
price of β1. In the case of x > Q, the users purchase water amount Q at the exercise price of β1 and
purchase the amount of x− Q from the spot market. In the case of θ < β1, the water deficit will be
completely bought from the spot market.

2.3. Description of the Uncertainties

2.3.1. Uncertainty of Water Runoffs

Figure 2 shows the method for deriving the relative error distribution of forecasted runoffs. As
shown in Figure 2, the method consists of three components: The acquisition of forecast relative
error samples, the analysis of statistical parameters, and the fitting of the distribution function of
relative error.
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(a) Scatter plot of relative error; (b) frequency histogram of relative error; (c) principle of maximum
entropy distribution curve.

The forecasted runoffs can be obtained by a mid-term and long-term hydrological forecast model,
using the long series of historical measured runoffs data in the intake area.

However, the structure and parameter error of the hydrological prediction model lead to the error
of forecasted runoffs. The relative error (δ) of the forecasted runoffs is expressed as follows:

δi =
yi − y′i

yi
(1)

where yi refers to the measured runoffs and yi
′ refers to the forecasted runoffs.

Therefore, the samples (δ1, δ2, . . . , δn) of the relative errors of the forecasted runoffs can be obtained
by Equation (1).

The principle of maximum entropy (POME) is a good method to solve the problem of uncertainty.
POME states that the solution of maximum entropy should be chosen from all feasible solutions.
The advantages of POME are theoretical perfection and high precision. Therefore, POME is used to
derive the probability density function of the relative error. According to the maximum entropy theory,
the entropy of the relative error is defined as

S = −
∫

Ω
f (δ) ln[ f (δ)]dδ (2)
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The corresponding maximum entropy model is expressed as

maxS = −max
∫

Ω
f (δ) ln[ f (δ)]dδ (3)

s.t.
∫

Ω
f (δ)dδ = 1 (4)∫

Ω
δi f (δ)dδ = mi, (i = 1, 2, . . . , m) (5)

δ ≤ b or δ ≥ b (6)

where δ = G(δ0, δ1, . . . , δn), and Ω is the feasible set of the relative errors; m is the order of the origin
moment of δ; b is the value that makes δ meaningful; mi is the ith order origin moment of δ; and f (δ)
is the probability density function of δ.

The above maximum entropy model can be solved by the Lagrange multiplier method and
variational method [28]. The maximum entropy probability density function of δ is expressed as

f (δ) = exp

(
λ0 +

m

∑
i=1

λiδ
i

)
, (δ ⊂ (δ0, δ1)) (7)

where λ0, λi(i = 1, 2, . . . , m) denotes Lagrange multipliers.
The forecasted runoffs in a future period are represented by W. The actual runoffs are W f . Thus,

the absolute error of is defined as ε = W f −W, which can be derived from Equation (1), expressed as

ε =
δ

1− δ
·W (8)

Based on Equations (7) and (8), the probability density function (p(ε)) of the runoffs’ absolute
error is expressed as

p(ε) =
W

(W + ε)2 f
(

ε

W + ε

)
,
(

ε ⊂
(

δ0

1− δ0
W,

δ1

1− δ1
W
))

(9)

The total water demand of a region is affected by population size, economy of scale, planting scale
and other factors. For a particular area, the changes of these elements are quite slow. Therefore, it is
assumed that the total water demand (M) of a water user during a certain period is certain, and the
water supply to the user consists of the local water, a contract of transferred water and the water
purchased by options.

Based on the absolute error distribution of the forecasted runoffs, the expectation of the error is
µε, and the expectation of the local runoffs is W + µε. Therefore, the water users can sign a contract
with the supply company of water transfer project and set the amount of water purchased through the
contract as C = M− (W + µε).

However, the water users are still likely to be short of water after signing the contract due to the
forecast errors of the local runoffs. The water deficit (x) is expressed as

x = M− C−W f = W −W f + µε = −ε + µε,
(

x ⊂
(

δ1

δ1 − 1
W + µε,

δ0

δ0 − 1
W + µε

))
(10)

Thus, the probability density function (g(x)) of x is as follows:

g(x) = p(−x + µε) (11)



Water 2018, 10, 1026 6 of 15

2.3.2. Uncertainty of Spot Market Price

The spot market price is complexly related to the supply–demand relationship, the development
conditions of water resources, the quality and quantity of water resources, and owners’ equity [29].
Therefore, the spot market price is also uncertain [30]. The spot market price is affected by a
combination of factors. According to the central limit theorem, when a random variable is influenced
by a number of mutually independent random factors, the overall influence can be considered as being
distributed in a normal state if the influence produced by each factor is not too large. Therefore, it is
supposed that θ follows a normal distribution of θ~N(µ, σ2). The probability density function of θ is
as follows:

h(θ) =
1√
2πσ

e−
(θ−µ)2

2σ2 (12)

2.4. Option Trading Model Establishment and Solution

2.4.1. Optimization Model

It is assumed that there is only one option in the water market, and the option contract is provided
only by one water supply company. To meet the water demand requirement, users can buy water from
the spot market or buy water from the options market to hedge the risk of a high price caused by the
fluctuation of the spot market. The amount of water pre-purchased by the users through the option
contract provided by the water company is Q. Based on the two-stage water option trading decision
model in Section 2.2, the objective function of option trading model is to maximize the expected
revenue of the water user:

MaxN(Q) = N1 − N2(Q) (13)

where N1 =
∫ +∞

0

∫ δ0
δ0−1 W+µε

0 θxh(θ)g(x)dxdθ

N2(Q) =
∫ β1

0

(∫ δ0
δ0−1 W+µεε

−∞ β2Qg(x)dx +
∫ δ0

δ0−1 W+µεε

0 θxg(x)dx

)
h(θ)dθ

+
∫ +∞

β1

∫ 0
−∞ β2Qg(x)h(θ)dxdθ

+
∫ +∞

β1

∫ Q
0 (β2Q + β1x)g(x)h(θ)dxdθ

+
∫ +∞

β1

∫ δ0
δ0−1 W+µε

Q [(β1 + β2)Q + θ(x−Q)]g(x)h(θ)dxdθ

where N(Q) is the expected revenue of the option trading for water users; N1 means the expected cost
under the condition that the water user does not buy the option and the water shortage is completely
purchased from the spot market; and N2(Q) refers to the expected cost of the option trading scheme.
N2(Q) is composed of four parts:

(1)
∫ β1

0

(∫ δ0
δ0−1 W+µε

−∞ β2Qg(x)dx +
∫ δ0

δ0−1 W+µε

0 θxg(x)dx

)
h(θ)dθ represents the expected cost when

the spot market price is lower than the exercise price, i.e., 0 ≤ θ ≤ β1, and the option is not
executed. Thus, the users need to pay the premium (β2Q) and the cost (θx) of buying water from
the spot market.

(2)
∫ +∞

β1

∫ 0
−∞ β2Qg(x)h(θ)dxdθ indicates the expected cost when the spot market price is higher than

the option price and there is no shortage of water, i.e., θ ≥ β1 and x ≤ 0. Thus, the users do not
exercise the option and just need to pay the premium (β2Q).

(3)
∫ +∞

β1

∫ Q
0 (β2Q + β1x)g(x)h(θ)dxdθ represents the expected cost when the spot market price is

higher than the option price and the water deficit is less than Q, i.e., θ ≥ β1 and 0 ≤ x ≤ Q. Thus,
the users need to pay the premium (β2Q) and the cost of water purchased through the option
market β1x.



Water 2018, 10, 1026 7 of 15

(4)
∫ +∞

β1

∫ δ0
δ0−1 W+µε

Q [(β1 + β2)Q + θ(x−Q)]g(x)h(θ)dxdθ refers to the expected cost when the spot
market price is higher than the option price and the water deficit is more than Q, i.e., θ ≥ β1

and Q ≤ x ≤ δ0
δ0−1 W + µε. Thus, the users need to pay the premium (β2Q), the cost (β1Q) of

water purchased through the option market, and the cost (θ(x−Q)) of buying water from the
spot market.

The constraint conditions are
0 ≤ Q ≤ δ0

δ0 − 1
W + µε (14)

2.4.2. Model Solution

In this section, we proposed an analytical method to solve the above model. Assume that the
objective function in Equation (13) obtains the maximum value at a point of Q∗; thus, Q∗ should satisfy
the following formula according to the first-order optimality condition:

f (Q) =
dN(Q)

dQ
= 0 (15)

The first-order derivative of N(Q) to Q is obtained:

dN(Q)
dQ = − dN2(Q)

dQ = −
∫ β1

0

∫W+
δ0

δ0−1 W+µεµε

−∞ β2g(x)h(θ)dxdθ −
∫ +∞

β1

∫ 0
−∞ β2g(x)h(θ)dxdθ

−
∫ +∞

β1

∫ Q
0 β2g(x)h(θ)dxdθ −Q

∫ +∞
β1

β2g(Q)h(θ)dθ

−
∫ +∞

β1
β1Qg(Q)h(θ)dθ −

∫ +∞
β1

∫ δ0
δ0−1 W+µε

Q (β1 + β2 − θ)g(x)h(θ)dxdθ

+Q
∫ +∞

β1
(β1 + β2 − θ)g(Q)h(θ)dθ +

∫ +∞
β1

θQg(Q)h(θ)dθ

(16)

Rearrange (16) and obtain:

dN(Q)

dQ
= −

∫ +∞

0

∫ δ0
δ0−1 W+µε

−∞
β2g(x)h(θ)dxdθ +

∫ +∞

β1

∫ δ0
δ0−1 W+µε

Q
(θ − β1)g(x)h(θ)dxdθ (17)

Similarity, the two-order derivative of N(Q) to Q is obtained:

d2N(Q)

dQ2 = −
∫ +∞

β1

(θ − β1)g(Q)h(θ)dθ (18)

From Equation (18), it can be seen that d2 N(Q)
dQ2 < 0 when 0 ≤ Q ≤ δ0

δ0−1 W + µε,

and so Q∗ is the maximum value point. Since
∫ +∞

0

∫ δ0
δ0−1 W+µε

−∞ β2 p(x)p(θ)dxdθ is a constant

and
∫ +∞

β1

∫ δ0
δ0−1 W+µε

Q (θ − β1)p(x)p(θ)dxdθ is a monotone decreasing function, f (Q) is a monotone
decreasing function. Therefore, the optimal solution (Q∗) can be solved by the dichotomy method
according to Equation (15).

3. Case Study

3.1. Case Description

A case is provided in this section to implement the water options trading model and demonstrate
the applicability of the proposed method.
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3.1.1. Description of the Uncertainties

In this section, the probability density function of the relative error of forecasted runoffs is
obtained based on the maximum entropy model in Section 2.3. The model is applied to an intake area
of an inter-basin water transfer project in China. We apply the periodic mean superposition method
to predict the monthly runoffs. The basic principle of the periodic mean superposition method is
to separate the hydrological elements sequence that changes with time into several periodic waves,
extend the periodic waves, and then carry out the linear superposition, so as to obtain the prediction
results. The key point of this method is conducting a periodic analysis of measured data. When the
periodic is identified from the sample sequence, the sequence is divided into groups according to
different conditions. Calculate the ratio (Fc) of the variance between groups to the variance in group,
then determine whether it is greater than the variance ratio (Fα) at a given reliability (α). If Fc is
greater than Fα, it proves that this periodic is reliable, and it can be a periodic wave of superposition.
The reliability (α) should not be too small or too large. If α is too small, it is difficult to figure out
the periodic; if α is too large, credibility will be reduced, and the identified periodic may not even
exist. The reliability of this paper is set as 0.10. There are 61 years (from 1955 to 2015) of measured
monthly runoffs data in the region, and 240 monthly runoffs from 1996 to 2015 were simulated and
predicted. In order to make full use of the existing data, the periodic of each forecast year is identified
by changing the sample sequence. For example, the measured runoffs data from 1995 to 1995 were
used as a sample sequence for forecasted monthly runoffs in 1996; the measured runoffs data from
1995 to 1996 were used as a sample sequence for forecasted monthly runoffs in 1997. The mathematical
model is summarized as

y(t) =
l

∑
i=1

pi(t) + ε(t) (19)

where y(t) is the forecasted runoffs series, pi(t) is the periodic wave series, ε(t) is the error series,
and l is the period number.

Taking 2003 as an example, according to the prediction model, the calculated periodic wave is
extended and linearly superposed to obtain the simulated and predicted values. The comparison
of forecasted runoffs results and measured values in 2003 is shown in Figure 3. Table 1 shows the
forecasted runoff results in 2003.
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Table 1. Statistical analysis table of forecasted runoff results in 2003.

Forecast Period Forecasting
Runoffs (m3/s)

Measured
Runoffs (m3/s)

Absolute
Error (m3/s) Relative Error

January 3.6 3 −0.6 −0.2
February 3.8 4 0.2 0.05

March 6 6.4 0.4 0.06
April 5.8 7 1.2 0.17
May 11.4 13.4 2 0.15
June 19.4 18.8 −0.6 −0.03
July 37.2 39.6 2.4 0.06

August 22.2 25.4 3.2 0.13
September 19.2 14 −5.2 −0.37

October 9.6 8.2 −1.4 −0.17
November 1 2.1 1.1 0.52
December 5.8 3.9 −1.9 −0.49
Average 12.1 12.2 0.1 0.20

Figure 3 and Table 1 indicate that the total forecasted value and measured value are almost the
same and the average relative error is 0.20. The application of the periodic mean superposition method
in forecasting monthly runoff is effective. In this way, 240 relative error samples of forecasted runoff
are obtained. The origin moments of the relative errors are obtained as follows: The first-order origin
moment is m1 = 0.006098, the second-order origin moment is m2 = 0.086606, and the third-order
origin moment is m3 = −0.00167. The forecasted runoff (W) in March is 3000× 104 m3.

For general engineering problems, the first three order moments can satisfy the precision
requirement, so we take m as 3 in the maximum entropy model. The Lagrange multipliers can
be obtained based on POME: λ0 = 0.3133, λ1 = −0.0326, λ2 = −5.8790, λ3 = −0.0136. Therefore,
the probability density function of the relative error of forecasted runoffs is

f (δ) = exp
(

0.3133− 0.0326x− 5.8790x2 − 0.0136x3
)

The curve of the f (δ) is shown in Figure 4, and we also plotted the sample distribution curve.
Figure 4 indicates that the distribution curve obtained by POME and the sample distribution are
almost the same, and it is reasonable to deduce the probability density function of the relative errors of
forecasted runoffs by POME.Water 2018, 10, x FOR PEER REVIEW  10 of 16 
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Therefore, the probability density function of absolute error of the forecasted runoffs from
Equation (9) is

p(ε) = 3×103

(3×103+ε)
2 exp

(
0.3133− 0.0326 ε

3×103+ε
− 5.879

(
ε

3×103+ε

)2
− 0.0136

(
ε

3×103+ε

)3
)

,

ε ⊂
[
−1.42× 103, 2.7× 104]

The expected value of the absolute error is µε, and so the expected runoff (W + µε) is calculated to
be 3343× 104 m3.

The total water demand (M) of the water user in March is 5000× 104 m3, and the user chooses to
sign a contract with the supply company of the water transfer project; the amount of water purchased
through the contract (C) is 1657× 104 m3. The probability density function of the water deficit from
Equation (11) is

g(x) = 3×103

(3.343×103−x)2 exp
(

0.3133− 0.0326 3.43×102−x
3.343×103−x − 5.879

(
3.43×102−x

3.343×103−x

)2
− 0.0136

(
3.43×102−x

3.343×103−x

)3
)

,

x ⊂
[
−2.6657× 104, 1.743× 103]

It is supposed that θ follows a normal distribution of θ~N(2.5, 0.32). The probability density
function of θ is as follows:

h(θ) =
1√

2π × 0.3
e−

(θ−2.5)2

2×0.32

3.1.2. Option Trading Model Application and Solution

There is an option contract (2, 0.1) in the options market. We use the calculation method of
Section 2.4 to discern Q with a mesh accuracy of 104 m3 into Equation (13) and calculate the series of
the expected revenue of the water user (N(Q)). The graph of the relation between Q and N(Q) is as
shown in Figure 5: it can be derived from Figure 5 that the expected revenue (N(Q)) is increased first
and then decreases as Q increases. When the pre-purchase volume is Q = 940× 104 m3, the expected
revenue of the option is at a maximum of N(Q) = 110× 104 RMB. Therefore, the optimal options
trading strategy can help the water users effectively reduce the risk of water shortage caused by the
uncertainties of forecasted runoffs and water price.
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The optimal solution obtained by the dichotomy method is Q∗ = 937× 104 m3, and accordingly
the expected revenue is N(Q∗) = 110× 104 RMB. The result is consistent with the simulation result
described above. Compared with the simulation method, the dichotomy method with the theoretical
basis is better, as the simulation method has to discrete the Q to a certain precision, which will greatly
increase the computation time.

3.2. Discussions

Furthermore, different scenarios are set up to explore the effect of the uncertainty degree of
local runoff prediction and the spot market price on the optimal options trading volume Q∗ and the
expected revenue of the optimal options N(Q∗).

3.2.1. The Influence of the Uncertainty of the Local Runoff Forecast on the Model

The second-order origin moment of the relative error sample of the forecasted runoffs reflects the
uncertainty degree of the forecast runoffs. In order to study the influence of the uncertainty degree of
the local runoff forecast on the optimal options trading volume and the expected return of the optimal
options, we design experiment scheme 1: change the second-order origin moment of the samples and
set other parameters as constants. Table 2 lists the values of other invariant parameters. Then, we use
the dichotomy method to find the optimal options trading volume Q∗ and the expected revenue of the
optimal options N(Q∗). Figure 6 is the diagram of the relationship among the mean square variance of
samples and the optimal options trading volume and the expected revenue of the optimal options.
The results of the experiment scheme 1 are given in Table 3.

Table 2. Model parameters of experiment scheme 1.

W (104 m3) β1 (104 RMB) β2 (104 RMB) µ δ m1 m3

3000 2 0.1 2.5 0.3 0.00116156 0.000219
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Table 3. The results of experiment scheme 1.

m2 0.25 0.26 0.27 0.28 0.29 0.3 0.31 0.32 0.33 0.34

Q* (104 m3) 755 800 849 897 936 1008 1029 1115 1263 1299
N (104 RMB) 83 88 98 101 110 121 127 145 169 178

The mean variances describe the dispersion degree of random variables around the mean, and the
sample mean square variance also reflects the accuracy of the forecast. The smaller the mean square
variance is, the more accurate the forecast is; and the larger the mean square variance is, the lower the
prediction accuracy is. As shown in Figure 6 and Table 3, the larger the mean deviation is, the larger the
optimal options trading volume is. That is because the larger the mean square variance is, the larger
the water deficit is, and the more water needs to be purchased through the water option contract to
hedge the risk of water shortage due to the shortage of the contract of transferred water. When the
mean square variance is small (the forecast accuracy is high), the risk of water shortage is also small,
and water users do not need to buy water in large quantities through water options. On the other
hand, the larger the mean variance, the greater the revenue the water users can obtain through the
optimal water option trading strategy. As a result, the water users are allowed to put a part of the fund
into the water option market, and the optimal water option trading strategy can protect the users from
the risk of water shortage caused by the uncertainty of local water runoffs.

3.2.2. The Influence of the Fluctuation of Spot Market Price on the Model

In the same way, to study the effect of the fluctuation of the spot market price on the optimal
options trading volume and the expected return of the optimal options, we design experiment scheme
2: vary the values of δ from 0.3 to 1.0 and set other parameters as constants. Table 4 lists the values of
other invariant parameters. Then, we use the dichotomy method to find the optimal options trading
volume Q∗ and the expected return of the optimal options N(Q∗). Figure 7 is the diagram of the
relationship among parameter (δ), the optimal options trading volume and the expected return of the
optimal options. Table 5 shows the results of experiment scheme 2.
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Table 4. Model parameters of experiment scheme 2.

W (104 m3) β1 (104 RMB) β2 (104 RMB) µ λ0 λ1 λ2 λ3

3000 2 0.1 2.5 0.3133 −0.0326 −5.879 −0.0136

Table 5. The results of experiment scheme 2.

m2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Q* (104 m3) 1008 1026 1044 1063 1081 1099 1118 1136
N (104 RMB) 124 131 140 152 165 180 195 211

Parameter (δ) reflects the fluctuation of the spot market price. The greater the value of δ is,
the greater the fluctuation of the spot market price is. It can be concluded from Figure 7 and Table 5
that the optimal option trading volume and the revenue increase with the increase of the value of
δ. That is because the biggest loss of the option is not more than the premium paid for the option,
but the water users can yield significant benefits from the sharp fluctuations in the spot market price.
Therefore, the water options are purchased with less money, and the optimal water option trading
strategy can effectively reduce the risk of high prices caused by the fluctuation of the spot market price.

3.2.3. Application of the Proposed Method

The proposed water option trading model for the uncertainties of water runoff forecasts and
the spot market price from the viewpoint of the water users can be applied to the intake area of
long-distance water transfer projects. However, this paper only considers a single option and a
single user. In future research, we will discuss the decision-making model of water options trading
under the coexistence of multi-stakeholders and multiple options. As discussed in Sections 2.3
and 2.4, the information required to apply the proposed method to the intake area of long-distance
water transfer projects include the user’s water demand, forecasted runoffs, forecasted runoff error
distribution, the spot market price distribution and option information.

4. Conclusions

In order to solve the risk of water shortages and buying water at high prices caused by the
forecasted runoff error and the fluctuation of water price, this paper establishes a water option trading
mode, and explores the influence of the water runoff uncertainty and the fluctuation of water price on
the water option trading strategy. The main points and conclusions are summarized as follows:

(1) We derived the relative error distribution of forecasted runoffs based on the principle of maximum
entropy (POME), and then described the uncertainty of water deficit.

(2) From the perspective of water users, the model of water scarcity risk hedging based on water
option trading is established. The dichotomy method was employed to solve the model and to
find the optimal water option trading strategy.

(3) The proposed methodology was applied to an intake area of an inter-basin water transfer project
in China. Additionally, different scenarios are set up to explore the effect of the uncertainty degree
of local runoffs prediction and the spot market price on the optimal options trading volume Q∗

and the expected revenue of the optimal options N(Q∗).

The results from the case study indicated that the expected revenue (N(Q)) is increased first and
then decreases as Q increases, meaning that there a unique solution to the target function. Therefore,
the optimal options trading strategy can help the water users to reduce the risk of water shortage
caused by the uncertainties of forecasted runoffs and water price effectively. The optimal options
trading volume Q∗ and the expected revenue (N(Q)) are closely related to the uncertainty degree of
local runoff prediction and the spot market price. The optimal options trading volume Q∗ and the
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expected revenue (N(Q)) are proportional to the mean square variance of the relative error of the
water runoff forecast. As the mean square variance increases, the optimal options trading volume Q∗

and the expected revenue (N(Q)) increase accordingly. In addition, the greater the fluctuation of the
spot market price is, the greater the optimal options trading volume Q∗ and the expected revenue
(N(Q)) are. The proposed model can provide water users with the optimal option strategy and help
them to reduce the risk of water shortage caused by the uncertainties of forecasted runoffs and water
price effectively.

Author Contributions: This study was carried out through collaboration among all authors. H.Y. and P.Z.
conceived and designed the experiments; H.Y. and J.C. performed the experiments; B.X. and Y.W. contributed to
the results and discussion; Y.W. and F.Z. analyzed the data. H.Y. and J.C. wrote the paper. All authors read and
approved the final manuscript.

Funding: This research was funded by the National Key R&D Program of China under Grant No. 2017YFC0405606,
the National Natural Science Foundation of China under Grant No. 51579068, the Fundamental Funds for the
Central Universities under Grant No. 2018B18214 and the China Postdoctoral Science Foundation under Grant
No. 2017M621612.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kumar, A.; Sharma, M.P. Assessment of risk of GHG emissions from Tehri hydropower reservoir, India.
Hum. Ecol. Risk Assess. Int. J. 2016, 22, 71–85. [CrossRef]

2. You, J.J.; Wang, Z.J.; Gan, H.; Jiang, Y.Z. Current status and prospect of study in china on water allocation of
inter-basin diversion projects. South North Water Transf. Water Sci. Technol. 2008, 3, 6.

3. Zhong, P.; Wang, H.; Liu, J.; Chen, X.; Chen, K. Optimal dispatching model for Shenzhen water resources
system. J. Hehai Univ. 2003, 31, 616–620.

4. Chen, J.; Zhong, P.A.; Xu, B.; Zhao, Y.F. Risk analysis for real-time flood control operation of a reservoir.
J. Water Resour. Plan. Manag. 2015, 141, 04014092. [CrossRef]

5. Zhu, F.; Zhong, P.A.; Sun, Y.; Yeh, W.W.G. Real-time optimal flood control decision making and risk
propagation under multiple uncertainties. Water Resour. Res. 2017, 53, 10635–10654. [CrossRef]

6. Antonelli, M.; Tamea, S. Food-water security and virtual water trade in the middle east and North Africa.
Int. J. Water Resour. Dev. 2015, 31, 326–342. [CrossRef]

7. Grafton, R.Q.; Landry, C.; Libecap, G.D.; Mcglennon, S.; O’Brien, R. An integrated assessment of water
markets: Australia, Chile, China, South Africa and the USA. Cent. Water Econ. Environ. Policy Pap. 2010, 5.
[CrossRef]

8. Fu, J.; Zhong, P.A.; Zhu, F.; Chen, J.; Wu, Y.N.; Xu, B. Water resources allocation in transboundary river based
on asymmetric Nash–Harsanyi Leader–Follower game model. Water 2018, 10, 270. [CrossRef]

9. Ha, M.; Gao, Z. Optimization of water allocation decisions under uncertainty: The case of option contracts.
J. Ambient. Intell. Humaniz. Comput. 2017, 8, 809–818. [CrossRef]

10. Brookshire, D.S.; Ganderton, P.T. Introduction to special section on water markets and banking: Institutional
evolution and empirical perspectives. Water Resour. Res. 2004, 40, 547. [CrossRef]

11. Jercich, S.A. California’s 1995 water bank program: Purchasing water supply options. J. Water Resour.
Plan. Manag. 1997, 123, 59–65. [CrossRef]

12. Calatrava, J.; Garrido, A. Spot water markets and risk in water supply. Agric. Econ. 2015, 33, 131–143.
[CrossRef]

13. Porkka, M.; Kummu, M.; Siebert, S.; Florke, M. The role of virtual water flows in physical water scarcity:
The case of central Asia. Int. J. Water Resour. Dev. 2012, 28, 453–474. [CrossRef]

14. Wichelns, D. Virtual water and water footprints offer limited insight regarding important policy questions.
Int. J. Water Resour. Dev. 2010, 26, 639–651. [CrossRef]

15. Hansen, K.; Kaplan, J.; Kroll, S. Valuing options in water markets: A laboratory investigation.
Environ. Resour. Econ. 2014, 57, 59–80. [CrossRef]

16. Hansen, K.; Williams, J. Valuing risk: Options in California water markets. Am. J. Agric. Econ. 2010,
90, 1336–1342. [CrossRef]

http://dx.doi.org/10.1080/10807039.2015.1055708
http://dx.doi.org/10.1061/(ASCE)WR.1943-5452.0000490
http://dx.doi.org/10.1002/2017WR021480
http://dx.doi.org/10.1080/07900627.2015.1030496
http://dx.doi.org/10.3386/w16203
http://dx.doi.org/10.3390/w10030270
http://dx.doi.org/10.1007/s12652-017-0551-z
http://dx.doi.org/10.1029/2004WR003394
http://dx.doi.org/10.1061/(ASCE)0733-9496(1997)123:1(59)
http://dx.doi.org/10.1111/j.1574-0864.2005.00402.x
http://dx.doi.org/10.1080/07900627.2012.684310
http://dx.doi.org/10.1080/07900627.2010.519494
http://dx.doi.org/10.1007/s10640-013-9659-6
http://dx.doi.org/10.1111/j.1467-8276.2008.01227.x


Water 2018, 10, 1026 15 of 15

17. Cheng, W.C.; Hsu, N.S.; Cheng, W.M.; Yeh, W.W.G. Optimization of European call options considering
physical delivery network and reservoir operation rules. Water Resour. Res. 2011, 47. [CrossRef]

18. Tomkins, C.D.; Weber, T.A. Option contracting in the California water market. J. Regul. Econ. 2010,
37, 107–141. [CrossRef]

19. Rey, D.; Calatrava, J.; Garrido, A. Optimisation of water procurement decisions in an irrigation district:
The role of option contracts. Aust. J. Agric. Resour. Econ. 2016, 60, 1–25. [CrossRef]

20. Kasprzyk, J.R.; Reed, P.M.; Kirsch, B.R.; Characklis, G.W. Managing population and drought risks using
many-objective water portfolio planning under uncertainty. Water Resour. Res. 2009, 45, 170. [CrossRef]

21. Cui, J.; Schreider, S. Modelling of pricing and market impacts for water options. J. Hydrol. 2009, 371, 31–41.
[CrossRef]

22. Holburt, M.B.; Atwater, R.W.; Quinn, T.H. Water marketing in southern California. J. Am. Water Works Assoc.
1988, 80, 38–45. [CrossRef]

23. Michelsen, A.M.; Young, R.A. Optioning agricultural water rights for urban water supplies during drought.
Am. J. Agric. Econ. 1993, 75, 1010–1020. [CrossRef]

24. Mudança Climática. Climate Change Adaptation: The Pivotal Role of Water; UN-Water: Ginebra, Suiza, 2010.
25. Villinski, M.T. A numerical quadrature approach to option valuation in water markets. Am. Agric. Econ. Assoc.

1999, 81, 1321.
26. Ramos, A.G.; Garrido, A. Formal risk-transfer mechanisms for allocating uncertain water resources: The case

of option contracts. Water Resour. Res. 2004, 40, 73–74.
27. Ranjan, R. Factors affecting participation in spot and options markets for water. J. Water Resour. Plan. Manag.

2004, 136, 454–462. [CrossRef]
28. Diao, Y.F.; Wang, B.D.; Liu, J. Study on distribution of flood forecasting errors by the method based on

maximum entropy. J. Hydraul. Eng. 2007, 38, 591–595.
29. Wheeler, S.; Bjornlund, H.; Shanahan, M.; Zuo, A. Price elasticity of water allocations demand in the

goulburn–murray irrigation district. Aust. J. Agric. Resour. Econ. 2010, 52, 37–55. [CrossRef]
30. Wuab, D.J.; Zhang, J.E. Optimal bidding and contracting strategies for capital-intensive goods. Eur. J.

Oper. Res. 2002, 137, 657–676.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1029/2011WR010423
http://dx.doi.org/10.1007/s11149-009-9107-2
http://dx.doi.org/10.1111/1467-8489.12110
http://dx.doi.org/10.1029/2009WR008121
http://dx.doi.org/10.1016/j.jhydrol.2009.03.013
http://dx.doi.org/10.1002/j.1551-8833.1988.tb03006.x
http://dx.doi.org/10.2307/1243988
http://dx.doi.org/10.1061/(ASCE)WR.1943-5452.0000055
http://dx.doi.org/10.1111/j.1467-8489.2008.00416.x
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methodology 
	Concept of Water Option Contracts 
	Two-Stage Water Option Trading Decision Model 
	Description of the Uncertainties 
	Uncertainty of Water Runoffs 
	Uncertainty of Spot Market Price 

	Option Trading Model Establishment and Solution 
	Optimization Model 
	Model Solution 


	Case Study 
	Case Description 
	Description of the Uncertainties 
	Option Trading Model Application and Solution 

	Discussions 
	The Influence of the Uncertainty of the Local Runoff Forecast on the Model 
	The Influence of the Fluctuation of Spot Market Price on the Model 
	Application of the Proposed Method 


	Conclusions 
	References

