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Abstract: The stable operation of sewage treatment is of great significance to controlling regional
water environment pollution. It is also important to forecast the inlet water quality accurately,
which may ensure the purification efficiency of sewage treatment at a low cost. In this paper,
a combined kernel principal component analysis (KPCA) and extreme learning machine (ELM)
model is established to forecast the inlet water quality of sewage treatment. Specifically, KPCA is
employed for feature extraction and dimensionality reduction of the inlet wastewater quality and
ELM is utilized for the future inlet water quality forecasting. The experimental results indicated
that the KPCA-ELM model has a higher accuracy than the other comparison PCA-ELM model,
ELM model, and back propagation neural network (BPNN) model for forecasting COD and BOD
concentration of the inlet wastewater, with mean absolute error (MAE) values of 2.322 mg/L and
1.125 mg/L, mean absolute percentage error (MAPE) values of 1.223% and 1.321%, and root mean
square error (RMSE) values of 3.108 and 1.340, respectively. It is recommended from this research
that the method may provide a reliable and effective reference for forecasting the water quality of
sewage treatment.

Keywords: kernel principal component analysis; extreme learning machine; wastewater; quality
forecasting

1. Introduction

The accumulation of high levels of pollutants in water may cause adverse effects on humans
and wildlife [1,2]. It is necessary to purify polluted water by sewage treatment in a timely manner
to meet emission standards. However, the production conditions of the sewage treatment process
are accompanied by random disturbance. It is difficult to deal with water quality in a short time so
that it returns to normal, which will greatly affect the next phase of water quality once the problem
occurs and it may result in serious energy waste. The past observation data for forecasting inlet water
quality helps to adjust the performance parameters and keep the wastewater treatment plant (WWTP)
operating economically and stably. Therefore, inlet water quality forecasting is vital for wastewater
treatment [3], which gives messages in advance for guiding the operations with a high efficiency.

Recently, various models for dealing with this issue have been proposed, e.g., artificial neural
network [4,5], auto-regressive integrated moving average [6], data mining [3], Multiple regression
method [7], adaptive recursive least squares [8], support vector machine [9], partial least squares [10],
and measured hydraulic dynamics [11]. Among these models, machine learning has attracted much
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attention because of its superiorities [12], e.g., high generalization performance, low computational
complexity, fast learning speed, strong generalization ability, and universal approximation property [13].
Many machine learning experts have turned to high-level abstractions, which dramatically simplify
the design and implementation of a restricted class of parallel algorithms [14]. Machine learning is
programming computers to optimize a performance criterion using example data or past experience [15],
and an extreme learning machine (ELM) is a successful representation [16]. A new fast learning neural
algorithm that refers to the ELM with additive hidden nodes and radial basis function kernels has
been developed for single-hidden layer feed forward networks (SLFNs) [17]. It has shown an excellent
predictive performance in various fields because of several salient features: (1) Simple structure:
No parameters need to be manually tuned except for the predefined network architecture [18];
(2) Fast learning speed: It can produce a good generalization performance in most cases and learn
thousands of times faster than conventional popular learning algorithms for feed forward neural
networks [19]; and (3) Wide applicability: Almost all piece wise continuous can be used as activation
functions in ELM and fully complex functions can also be used as activation functions in ELM. Therefore,
it is an active research topic with multiple extensions and improvements proposed over the last
decade [20], e.g., horizontal global solar radiation [21], Landslide hazard [22], electricity price [23],
short-term load forecasting [24], and water quality [25]. The ELM is applied to forecast the inlet
wastewater quality in this paper, and the experimental results have achieved a good effect.

To enhance the forecasting accuracy, many data preprocess methods are proposed in forecasting
models, e.g., principal component analysis (PCA) [26], kernel principal component analysis (KPCA) [27],
wavelet transform [28], cluster analysis [29], mode decomposition [30], linear discriminant analysis [31],
independent component correlation algorithm [32], and factor analysis [33]. Among these techniques,
the PCA and the KPCA are widely used in classification, feature extraction, and de-noising applications [34],
which can help reduce the dimensionality of the data and determine the key variables in a multidimensional
data set [35,36]. Furthermore, compared with the PCA [37], the KPCA can effectively capture
data nonlinear characteristics without requirements for the spatial distribution of the original data.
The method has been successfully applied in many fields, e.g., process monitoring and fault diagnosis [38],
intrusion detection [39], formation drill ability prediction [40], and displacement prediction in colluvial
landslides [41]. However, the KPCA is rarely applied to inlet wastewater quality forecasting, so the KPCA
is thus introduced in this paper.

Therefore, the ELM model combining the KPCA is proposed for inlet wastewater forecasting.
The frameworks of the approach can be divided into two parts: (1) Principal components extraction:
Describes the feature extraction case, in which KPCA is introduced as a tool for eliminating linear
correlation among data and for extracting the principal components; and (2) Forecasting model
performance: Performs the ELM to learn and forecast the inlet wastewater quality factors. In this
paper, chemical oxygen demand (COD) and biochemical oxygen demand (BOD) are taken as examples,
which are representative parameters for sewer water quality [42–44], and the oxygen consumption
from the degradation of organic material is normally measured as BOD and COD. So, the BOD and
the COD are selected as forecasting quality factors in this paper. Furthermore, to validate performance,
the investigated results are compared with the PCA-ELM, the ELM, and the back propagation neural
network (BPNN) in this study.

The remainder of this paper is structured as follows. Section 2 describes the modeling methods of
the KPCA, ELM, and proposed KPCA-ELM models. Section 3 illustrates the datasets, the process of
sewage treatment, the experimental design, and the performance criteria of the forecasting models.
Section 4 presents the search results and discussion. Section 5 provides conclusions.
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2. Materials and Methods

2.1. Extracting Principal Components Based on KPCA

The KPCA has successfully extended the PCA to nonlinear cases by mapping the data in the original
space into a higher or even infinite dimensional feature space [45]. This mapping technique can increase
the amount of information in the data set, particularly if the number of data is small [46]. The KPCA
has already proven to be powerful as a preprocessing step for identification algorithms [47–49]. In this
section, a brief description of KPCA for feature extraction is provided.

A sample composed of n particles is represented as xk (k = 1, 2, 3, . . . , n). Assuming φ is nonlinear
mapping, the sample covariance matrix C in F space should fit the formula [50],

C =
1
n

n

∑
k=1

φ(xk)φ(xk)
T. (1)

where φ(xk) is the kth sample in the feature space with zero-mean and unit-variance. Let [φ(x1),
· · · , φ(xn)] be the data matrix in the feature space, where φ is usually hard to obtain. To avoid
eigenvalue-decomposing C directly, a Gram kernel matrix K is determined as follows:

Kcd = K(xc, xd) = φ(xc)φ(xd). (2)

The mean centered kernel matrix can be calculated from

K = K−UK−KU + UKU, (3)

where U ∈ Rn×n, U(c, d) = 1/n, and K = [K(xc, xd)]n×n. By applying eigenvalue decomposition to the
kernel function matrix K, as shown,

λα = Kα. (4)

One can obtain the orthonormal eigenvectors α1, α2, · · · , αn and the associated corresponding
eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn. The dimension reduction can be achieved by retaining the first p
eigenvectors. The score vector of the kth observation in the testing sample data set can be obtained by
projecting φ(x) onto the eigenvectors Vk in F, where k = 1, . . . , p. In the feature space, the nonlinear
principal components of the testing sample x can be extracted by [51]:

Vkφ(x) =
n

∑
c=1

αk
cφ(xc)φ(x) =

n

∑
c=1

αk
cK(xc, x). (5)

The general rules for selecting the main elements are

p
∑

i=1
λi

n
∑

j=1
λj

> E, (6)

where p is the number of principal components and E is the threshold of principal components.
Then, the principal component vector in feature space can be calculated by Equation (5), and the
feature information can be obtained and analyzed.

2.2. Forecasting Water Quality Based on Extreme Learning Machine

The ELM is different from the general algorithm of feed forward neural networks, which overcomes
the problems caused by gradient descent-based algorithms such as BP applied in ANNs [52]. This method
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is supported by the learning speed and generalization ability, which represent outstanding advantages in
the data set and the actual application [53].

The ELM is a very simple and fast neural network learning algorithm. A single hidden layer feed
forward network with L hidden layer nodes using activation function g(·) for these N training data is
given by:

oj =
L

∑
i=1

βig(wi·xj + bi), i = 1, . . . , N, (7)

where wi ∈ Rq is the input weight vector connecting the input layer nodes to the ith hidden node,
bi ∈ Rh is the bias of the kth hidden node, βi ∈ Rh is the link connecting the ith hidden node to the
output nodes, G(wi,bi,xj) is the output function of the ith hidden node with respect to the input sample
xj, and wi·xj denotes the inner product of column vectors wi and xj. The standard SFLNs can be forced
by these samples with zero error means, as follows:

N

∑
j=1
‖oj − tj‖ = 0, (8)

and there βi, wi, and bi apply to the formula:

N

∑
i=1

βig(wixj + bi) = tj. (9)

The above equation can be expressed as a matrix:

Hβ = T, (10)

where

H(w1, . . . , wN , b1, . . . , bN , x1, . . . , xN) =

 g(w1 · x1 + b1) . . . g(w1 · x1 + bN)

. . . . . . . . .
g(w1 · xN + b1) . . . g(w1 · xN + bN)


N×N

, (11)

β =

 βT
1
...

βT
N

, T =

 tT
1
...

tT
N

, (12)

H is called the hidden layer output matrix of the neural network [54], and T is the desired output
matrix. The formula can be adjusted by solving the minimization problem as follows:

min‖Hβ− T‖. (13)

For fixed weights wi and bias bi, one can seek β to train SLFNs by the least squares linear system.
Conventional SLFNs need to find a set of optimal ŵi, b̂i, β̂ (i = 1, . . . , N), and bring

‖H(w1, . . . , wN , b1, . . . , bN)β− T‖ = min
wi ,bi ,βi

‖H(ŵ1, . . . , ŵN , b̂1, . . . , b̂N)β̂− T‖. (14)

The above equation can be expressed as a matrix:

β̂ = H+T, (15)

where H+ is the Moore-Penrose generalized inverse of the hidden layer output matrix H.
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2.3. Overview of the Proposed KPCA-ELM Model

The proposed KPCA-ELM modeling procedure, which is illustrated in Figure 1, can be summarized
as follows:

Step 1. Collect the modeling data, i.e., historical inlet wastewater quality factors.
Step 2. Normalize the historical data into [0, 1].
Step 3. Perform the KPCA for feature extraction.
Step 4. Employ the ELM to forecast the inlet wastewater quality.
Step 5. Output the forecasting result using the inverse normalization. End.Water 2018, 10, x FOR PEER REVIEW  5 of 17 
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Figure 1. Procedure of the KPCA-ELM model.

3. Case Study

3.1. Data Sets

The original data for sewage treatment monitoring during 1/1/2015–31/12/2015 are used in
this study, and include COD (mg/L), BOD (mg/L), NH3-N (mg/L), SS (mg/L), TP (mg/L), and TN
(mg/L). There are a total of 365 × 6 samples, which are divided into two categories, i.e., the former
300 × 6 samples for model training, and the rest (65 × 6 samples) for model testing. Each index’s daily
mean values nonlinear change trend is shown in Figure 2.

Next, the statistical properties, including the maximum, minimum, mean, and standard deviation
(SD), are calculated for further analysis to get a deeper understanding. Table 1 illustrates the statistical
properties of COD and BOD in respect of the divided training and testing sets, and Table 2 details the
statistical properties of the variables. According to Table 1, the training and testing sets have different
statistical properties, so it can better explain the performance of the predicted results. From Table 2
and Figure 2, it can be found that the data has the characteristics of violent fluctuation, and the
magnitudes of the variables clearly display a big difference. In fact, the effect of the variables with
a large magnitude on the modeling is larger than the one with a small magnitude, and thus it is not
appropriate to directly take the data to establish the model [55]. Thus, all the data are normalized to
(0, 1) with the same magnitude to eliminate the influence of the dimension among variables before
applying them in the experiments.

Figure 2 and Tables 1–3 indicate that each index value of inlet water quality is outside the
standard range. Hence, it is important for the sewage treatment to build a reasonable process plan
for disposing of the inlet wastewater, to meet the nation discharge standard of sewage. Establishing
a reliable forecasting model not only helps to adjust the performance parameters, such as the balance
of carbon source, aeration rates, and reflux ratio, but also to minimize the operation costs and
energy consumption.
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Figure 2. The figures of the collected water quality parameters: (a) COD; (b) BOD; (c) NH3-N; (d) SS;
(e) TP; (f) TN.

Table 1. Statistical properties of COD and BOD in terms of divided training and testing sets.

Set Maximum Minimum Mean SD

Train 293 125 204.967 33.339
Test 216 147 188.2 14.271

Train 118 52.6 82.796 12.945
Test 90.8 61 79.978 6.613
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Table 2. Statistical properties of the variables.

Pattern No. Variable Maximum Minimum Mean SD

Input

1 COD 293 125 201.980 31.479
2 BOD 118 52.6 81.760 12.260
3 NH3-N 31.6 10 20.348 4.093
4 SS 199 74 166.5 29.143
5 TP 3.99 1.59 3.619 0.423
6 TN 38.4 18.9 29.248 3.582

Output 1 COD 293 125 201.980 31.479
2 BOD 118 52.6 81.760 12.260

Table 3. The comprehensive wastewater discharge standard (GB8978—2002).

Assessment Factor Unit Judgment

Classes

I
II III

A B

COD mg/L ≤ 50 60 100 120
BOD mg/L ≤ 10 20 30 60

NH3-N mg/L ≤ 5 8 25 -
SS mg/L ≤ 10 20 30 50
TN mg/L ≤ 15 20 - -
TP mg/L ≤ 0.5 1 3 5

3.2. Process of Sewage Treatment

A traditional Anaerobic/Anoxic/Oxic (A/A/O) process is applied to treat domestic sewage in
WWTP, which exhibits a good performance for nutrient removal. However, the performance parameter
of any WWTP must be modified according to the actual condition of the A/A/O process. Otherwise,
the efficiency of the WWTP cannot meet the initial design properties and it may result in serious energy
waste [56]. Better control of a WWTP can be achieved by developing robust models for forecasting
the plant performance based on the past observation of certain water quality factors. This study uses
a combination of the KPCA and ELM to extract the principal components from past observation data
for forecasting inlet COD and BOD concentration, which helps to adjust the performance parameters,
such as the balance of carbon source, aeration rates, and reflux ratio. The A/A/O process flow is
shown in Figure 3.
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3.3. Experimental Design

The experimental design processing of the KPCA-ELM model is shown in Figure 4.Water 2018, 10, x FOR PEER REVIEW  8 of 17 
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The KPCA experimental influences related to choosing the first p eigenvectors will have a direct
effect, specifically:

(a) Choose p eigenvectors by trial and error, which corresponds to the first p biggest eigenvalues to
form the sub-eigenspace.

(b) As shown in Equation (6), if the starting p eigenvalues are over 95% of the total eigenvalues,
then the information can be presented by p principle components in practical applications.

The principle components are extracted by the KPCA algorithm as the input of the ELM. In the
ELM experimental section, there are the two important parameters (hidden layer nodes and activation
function). The specific operation of the selection steps is established as follows:

(a) The trial and error method is used to select the optimal activation function with root mean square
error (RMSE) as the criteria.

(b) The sigmoid function is selected as the activation function [57], and the sigmoid function is
expressed as follows:

g(·) = 1

1 + e−(wixj+bi)
. (16)
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3.4. Assessing the Performance of the Forecasting Model

Bulleted lists look like this: To assess the performance of the proposed model, three criteria, mean
absolute error (MAE), mean absolute percentage error (MAPE), and root mean square error (RMSE),
are applied in this paper.

Mean absolute error (MAE)

MAE =
1
N

N

∑
i
|y− ŷi|, (17)

Mean absolute percentage error (MAPE)

MAPE =
100
N

N

∑
i

∣∣∣∣y− ŷi
y

∣∣∣∣, (18)

Root mean square error (RMSE)

RMSE =

√√√√ 1
N

N

∑
i=1

(y− ŷi)
2, (19)

where y represents the observed values, ŷi represents the forecasting values, and N is the length of the
output data series.

4. Results and Discussion

4.1. Assessing the Performance of the Forecasting Model

The COD, BOD, NH3-N, SS, TP, and TN provided by the sewage treatment plant are used
as the input parameters of the water quality forecasting. After the KPCA processing, the principal
components are extracted. As shown in Figure 5, the contribution rate of the three principal components
is up to 98.20%. Therefore, one can employ these three principal components as the input in the next
forecasting process.
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The parameters in the algorithms are determined by trial and error. In this study, the hidden layer
nodes for the model are gradually increased from 5 to 250 with the interval 5. In addition, the model
forecasts the values of the COD and BOD concentrations at time t using the three principal components
in the input structure with different time lags (up to seven prior days) [58].
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In this paper, the RMSE, defined as Equation (18), is used to evaluate the regression accuracy for
forecasting inlet COD and BOD under the different number of hidden layer nodes and different time
lags, as in Figure 6a,b, respectively.Water 2018, 10, x FOR PEER REVIEW  10 of 17 
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Figure 6a demonstrates that the RMSE values of the COD forecasting with an increasing the
number of hidden layer nodes decreased and then increased for the different lags. The best performance
of the COD forecasting is achieve when the number of the hidden layer nodes is 100 with three days
ahead, and the lowest RMSE value is 3.108. As shown in Figure 6b, for the proposed model to forecast
BOD with an increasing number of hidden layer nodes, the RMSE values are decreased, and then
gradually stabilized. The lowest RMSE value of the BOD is 1.340 with 90 hidden layer nodes and three
days ahead.

Under the best performance structure, the comparison between the forecasting value and true
value of inlet COD and BOD concentration is as seen in Figure 6.

From Figure 7, one can find that the forecasting results of the KPCA-ELM can follow the changes in
the testing data successfully, and the forecasting curve is consistent with the testing curve, both for the
COD and the BOD. The model has a sufficient ability to forecast peak data both the forecasting value
of inlet COD and BOD concentration. The experimental results show that the proposed approach has
some good attributes, e.g., a superior accuracy and higher stability, which can meet the requirements
of the water quality forecasting of wastewater treatment.
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4.2. Comparisons

To validate the prediction capacity of the proposed model, three methods are compared with
the KPCA-ELM model using the same dataset: PCA-ELM, ELM, and BPNN. A comparison of the
dimension reduction ability of the PCA method and KPCA method can be seen in Table 4. It shows
that the PCA accumulation is only 89.923%, and the KPCA accumulation is up to 98.200% for three
principal components extraction (i = 3). It illustrates that the KPCA retains much more information
than that of the PCA with the same principal components.

Table 4. Comparison of the PCA and the KPCA of the principal components extraction.

Component PCA Accumulation % KPCA Accumulation %

1 54.300 80.487
2 73.313 90.573
3 89.923 98.200

The parameters of the PCA-ELM model, ELM model, and BPNN model of the inlet COD and
BOD forecasting are determined by trial and error. For the BPNN model, the hidden layer nodes are
trained by the empirical formula (nl =

√
q + s + a, where nl represents the hidden nodes, q represents

input layer nodes, s represents the output layer nodes, and is equal to [0, 10]). The comparison model
settings with the optimal structures are detailed in Table 5.

Table 5. Optimal structures of the comparison models.

Model
Modeling Setting

COD BOD

PCA-ELM
Input = 3, hidden = 85, output = 1, layer = 1,
activation function: Sigmoid, time lags: two
days ahead

Input = 3, hidden = 75, output = 1, layer = 1,
activation function: Sigmoid, time lags: three
days ahead

ELM
Input = 6, hidden = 80, output = 1, layer = 1,
activation function: Sigmoid, time lags: four
days ahead

Input = 6, hidden = 80, output = 1, layer = 1,
activation function: Sigmoid, time lags: three
days ahead

BPNN

Input = 6, hidden = 10, Output = 1, layers = 3,
training: Trainlm, hidden transfer:
Log-Sigmoid, output transfer: Log-Sigmoid,
time lags: three days ahead

Input = 6, hidden = 10, Output = 1, layers = 3,
training: Trainlm, hidden transfer:
Log-Sigmoid, output transfer: Log-Sigmoid,
time lags: four days ahead

For comparison, the forecasting results of the PCA-ELM model, ELM model, and BPNN model
with the best performance structures are shown in Figures 8–10, respectively.

From Figure 8, one can find that the forecasting results of the PCA-ELM can follow the trends of
the testing data, but fail the peak data (the 55th day) in terms of both the forecasting values of inlet
COD and BOD concentration. To explore the uncertainty from different nodes of KPCA-ELM and
PCA-ELM, RMSE, MAE, and MAPE variations are analyzed in each trial case. As shown in Figure 9,
the forecasting results of the ELM can follow the fluctuation of the testing data, but fail the detail value
of both COD and BOD concentration forecasting. The results of the BPNN model are illustrated in
Figure 10, which shows the great error between the forecasted value and true value and fails to follow
the fluctuation of the testing data of both COD and BOD concentration forecasting.
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4.3. Statistical Analysis

To further compare the performance and effectiveness of the models, the correlation between the
predicted values of the different approaches and observed values is demonstrated in Figure 11.
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Figure 11. Correlogram analysis of the predicted and observed values of comparison models: (a) COD
and (b) BOD.

As observed from Figure 11, most of the predicted values of the KPCA-ELM and PCA are closer
to y = x than ELM, but a few predicted values of PCA-ELM are far away from y = x for both the COD
prediction and BOD prediction. Simultaneously, the correlation coefficient of COD forecasting of the
BPNN, ELM, PCA-ELM, and KPCA-ELM is equal to 0.4527, 0.7164, 0.9544, and 0.9844, respectively;
and the correlation coefficient of BOD forecasting of the BPNN, ELM, PCA-ELM, and KPCA-ELM is
equal to 0.5494, 0.7928, 0.9593, and 0.9864, respectively. This further illustrates the superior performance
of the proposed approach.

In addition to the qualitative comparison using the forecasting results and the residual error
analysis, the RMSE, MAE, and MAPE are used to quantitatively evaluate the forecasting performance
among the KPCA-ELM, the PCA-ELM, and the ELM. The experimental results indicated that the
KPCA-ELM model has a higher accuracy than the others for forecasting COD and BOD concentration
of the inlet wastewater, with MAE values of 2.322 mg/L and 1.125 mg/L, MAPE values of 1.223% and
1.321%, and RMSE values of 3.108 and 1.340, respectively. The PCA-ELM model for forecasting COD
and BOD concentration of the inlet wastewater displayed MAE values of 3.542 mg/L and 1.125 mg/L,
MAPE values of 1.900% and 1.777%, and RMSE values of 4.270 and 1.710, respectively. The ELM
model for forecasting COD and BOD concentration of the inlet wastewater exhibited MAE values
of 9.125 mg/L and 4.399 mg/L, MAPE values of 6.234% and 6.057%, and RMSE values of 14.267
and 5.585, respectively. The BPNN model for forecasting COD and BOD concentration of the inlet
wastewater had MAE values of 15.826 mg/L and 6.950 mg/L, MAPE values of 8.061% and 8.783%,
and RMSE values of 20.126 and 8.817, respectively. Quantitative analysis was employed and the results
are summarized in Table 6. The comparative analyses demonstrate that the proposed model has
a better forecasting performance according to each of the three criteria.

Table 6. Comparison results using different models.

Model
COD BOD

MAE MAPE RMSE MAE MAPE RMSE

BPNN 15.826 8.061 20.126 6.950 8.783 8.817
ELM 9.125 6.234 14.267 4.399 6.057 5.585

PCA-ELM 3.542 1.900 4.270 1.341 1.777 1.710
KPCA-ELM 2.322 1.223 3.108 1.125 1.321 1.340

Additionally, to further validate the performance of the proposed model, an error boxplot is
drawn in Figure 12. The boxplot often helps to indicate the degree of dispersion and skewedness in the
data, and identifies outliers. As indicated in Figure 12, the results generated by the KPCA-ELM and the
PCA-ELM are shorter than those of the ELM and BPNN when observing the length of each box entity,
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indicating that the distributions of the absolute error are relatively concentrated using the KPCA or the
PCA. Nevertheless, the location of the entity for the KPCA-ELM is lower than the PCA-ELM, and the
mean absolute error for the KPCA-ELM is the lowest. Through counting the amount of outliers of
every model, the ELM has the most, followed by the PCA-ELM, and the KPCA-ELM has the least.
In addition, when comparing the distance between the median and the quartiles, the situation of the
KPCA-ELM is relatively symmetrical and has a basically normal distribution. Therefore, the proposed
model also overwhelms the comparison models.
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In terms of the comparison analysis above, all the results sufficiently illustrate that the ELM model
improved by the KPCA for the feature extraction and dimension reduction (KPCA-ELM) exhibits the
best forecasting performance when compared to the application of the PCA-ELM and the ELM.

The KPCA-ELM model has been constructed for forecasting the inlet water quality of sewage
treatment. Combining the fast learning capacity of the ELM with the nonlinear feature extraction
ability of the KPCA, the proposed model exhibits the best forecasting performance among all the
peer methods. In addition, the KPCA-ELM has the same performances for both BOD and COD,
demonstrating that it has better generalization abilities.

5. Conclusions

The inlet COD and BOD concentration forecasting of wastewater treatment based on KPCA and
ELM is proposed in this study. The KPCA-ELM model is can be used to control parameter adjustment
of the sewage treatment system by providing a data reference, which provides a convenient and
economic approach to achieve better control of WWTP. The KPCA is employed for feature extraction
and dimensionality reduction of the inlet wastewater quality from the sewage treatment in 2015.
In each mode, the best outputs of the ELM are determined by selecting the optimal activation function
and the number of hidden layer nodes. In addition, the PCA-ELM, the ELM, and the BPNN are
introduced as contrast approaches. The experimental results indicate that the KPCA-ELM method
has a better forecasting capacity than the peer methods for MAE, MAPE, and RMSE. Simulations
results from a wastewater treatment show that the reliability and accuracy of the KPCA-ELM model
outperform the PCA-ELM model, the ELM model, and the BPNN model.

In this work, it is shown that KPCA can explore higher order information of the original inputs
than the PCA, and the ELM provides a better generalization performance than other popular learning
algorithms and faster speeds. Thus, the presented model can be found to excel in water quality
forecasting of wastewater treatment in ways that are complex, nonlinear, and uncertain.
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