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Abstract: Integrated environmental modelling requires coupling sub-models at different spatial and
temporal scales, thus accounting for change of support procedures (aggregation and disaggregation).
We introduce the R-package spatio-temporal Uncertainty Propagation across multiple scales,
stUPscales, which constitutes a contribution to state-of-the-art open source tools that support
uncertainty propagation analysis in temporal and spatio-temporal domains. We illustrate the tool
with an uncertainty propagation example in environmental modelling, specifically in the urban water
domain. The functionalities of the class setup and the methods and functions MC.setup, MC.sim,
MC.analysis and Agg.t are explained, which are used for setting up, running and analysing Monte
Carlo uncertainty propagation simulations, and for spatio-temporal aggregation. We also show how
the package can be used to model and predict variables that vary in space and time by using a
spatio-temporal variogram model and space-time ordinary kriging. stUPscales takes uncertainty
characterisation and propagation a step further by including temporal and spatio-temporal auto- and
cross-correlation, resulting in more realistic (spatio-)temporal series of environmental variables.
Due to its modularity, the package allows the implementation of additional methods and functions
for spatio-temporal disaggregation of model inputs and outputs, when linking models across multiple
space-time scales.

Keywords: temporal aggregation; input uncertainty propagation; spatio-temporal uncertainty
characterisation; space-time ordinary kriging

1. Introduction

Integrated environmental modelling (IEM) often requires coupling models at multiple spatial
and temporal scales. This is challenging due to the complexity of the models and differences in
input and output supports between models. Leopold et al. [1] address the need for aggregation and
disaggregation when coupling models. In addition, Bastin et al. [2] point out that spatio-temporal
aggregation and disaggregation are common procedures in modelling chains. This challenge becomes
more difficult if uncertainty propagation (UP) is analysed because uncertainty is support-dependent.
Change of support procedures (i.e., aggregation and disaggregation) are also required when dealing
with integration between models. Accounting for spatio-temporal uncertainty when coupling
models in an integrated layout and when addressing change of support is a key component in the
data—model—simulation—uncertainty quantification—decision-making chain. There is no software
that can do all that is needed for UP analysis in such a complex case. Although important contributions
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have been made, e.g., the UncertWeb framework [2] and the R-package spup [3], there still is a
need for tools for temporal, spatial and spatio-temporal UP accounting for change of support across
multiple scales.

In the environmental and geospatial fields, modelling complex processes accounting for
uncertainties exhibits specific issues. Bastin et al. [2] identified six main challenges. We summarise and
relate these to the availability of tools accounting for uncertainty analysis in specific applications:

1. Lack of tools accounting for reliable uncertainty information of observational and other data.
2. Lack of tools for reliable information on model structural uncertainty.
3. Development of tools accounting for spatial, temporal and spatio-temporal uncertainty is still a

challenge because many environmental variables are measured at diverse spatial and temporal
scales and because there are strong correlations between variables.

4. Large computational budgets are required when modelling spatio-temporal distributed
systems, due to the large number of variables and the correct characterisation of uncertainties
and correlations.

5. Models commonly exhibit complex probability distributions in model output response due to
nonlinear responses to model input, even for simple parametric input probability distributions.

6. The default mechanism to propagate uncertainties is the Monte Carlo method, which is highly
computationally demanding. Therefore, large computational resources and implementations of
computationally efficient tools are required.

Generally, in environmental and geospatial modelling, there are three main sources of
uncertainty [4,5]: (1) Model input uncertainty; (2) Model parameter uncertainty; and (3) Model
structural uncertainty. Proper characterisation and quantification of all three uncertainty sources are
fundamental in the analysis of the propagation of uncertainties through environmental models. It is
also important that practical tools are available to address the characterisation and propagation of
uncertainties through models.

Spatial uncertainty propagation has been addressed in several fields, such as in hydrological
and water quality modelling [6–8], in scenario analysis [9], and in soil pollution and nutrient
modelling [1,10,11]. However, it is recognised that there is not a universal software tool for performing
uncertainty propagation tasks [3].

Regarding software tools developed for uncertainty propagation analysis, Sawicka et al. [3]
list different tools available for spatial and non-spatial uncertainty propagation and uncertainty
assessment. Among the listed tools, there is free software, such as OpenTURNS [12], DACOTA [13],
and DUE [14], commercial software, such as COSSAN [15], and free software written for licensed
software, e.g., SAFE [16] and UQLab [17] toolboxes for MATLAB (MathWorks, Natick, MA, USA).
An extensive review of available UP software tools is presented in [2]. Regarding existing R packages,
there are few that deal with uncertainty propagation explicitly: propagate and errors. However,
neither of these two packages provides functionality for spatial uncertainty analysis.

Widely used techniques for uncertainty assessment in stormwater quality modelling are
the classical Bayesian approach based on Markov Chain Monte Carlo (MCMC) sampling
and the Metropolis Sampler [18], Generalized Likelihood Uncertainty Estimation (GLUE) [19],
the Multi-algorithm Genetically Adaptive Multi-objective method [20], and the Shuffled Complex
Evolution Metropolis algorithm [21]. However, these approaches usually do not take all uncertainty
sources into account [22,23]. Dotto et al. [5] found that the definition of different subjective criteria,
such as user-defined likelihood measures and prior knowledge required in Bayesian techniques,
are important issues that limit the application of these techniques. Wijesiri et al. [23] pointed out
that these limitations could have a significant influence on management and planning decisions for
mitigation of stormwater pollution. In stormwater quality modelling, a poor characterisation of
the source uncertainty (process variability) is the main limitation in accounting for uncertainty [23].
Therefore, provided these uncertainty sources can be captured adequately by probability distributions,
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the use of Monte Carlo (MC) methods for uncertainty propagation is still a suitable option that can
overcome most of these limitations.

The literature review above indicates that there are still gaps in research and development of
tools for temporal, spatial and spatio-temporal UP accounting for change of support across multiple
scales in environmental and geospatial domains. We present the spatio-temporal and Uncertainty
Propagation across multiple scales R-package, “stUPscales”, which provides several R methods
and functions for spatio-temporal uncertainty propagation through MC simulation in environmental
models, while taking space-time aggregation and disaggregation procedures into account.

We recognise that spup [3] addresses spatial UP as well, both for continuous and categorical
variables. Although there are similarities between spup and stUPscales, there are meaningful
differences too. The main difference is that stUPscales can also handle UP in the temporal
and spatio-temporal domain. In addition, in stUPscales, besides sampling from uniform,
normal, log-normal, and normal truncated probability distribution functions (pdfs), it is also possible
to simulate environmental variables as uni- and multi-variate autoregressive models of order one.
Moreover, stUPscales has explicit functionality for spatio-temporal change of support. Additionally,
another important difference between the two packages is the handling of data structure and objects.
In stUPscales, the temporal dimension is handled as xts (eXtensible Time Series) objects from the
xts package [24], while space-time objects are handled by the classes ST (Spatio Temporal) from the
spacetime package [25], especially the class STFDF (Spatio Temporal Full Data Frame) for regular
grids. The spup package makes use of the objects RasterStack from the Raster package [26].

We illustrate the package for temporal aggregation of time series as precipitation and pollutants of
Urban Drainage Models (UDMs). In addition, we illustrate the methods and functions for uncertainty
propagation in an example of a lumped UDM, EmiStatR, via MC simulation to evaluate water quantity
and quality in emissions of Combined Sewer Overflows (CSOs). The example serves for testing the
hypothesis that when characterisation of sewage quality indicators as chemical oxygen demand (COD)
and ammonium (NH4) is considered with the appropriate process variability, uncertainty can be
quantified as an integral part of the total uncertainty in the modelling procedure.

Regarding the spatio-temporal uncertainty propagation domain, we show how the package can be
used to model and predict variables that vary in space and time by using a spatio-temporal variogram
model and space-time ordinary kriging. We emphasize that the spatio-temporal functionality
developed in stUPscales for performing uncertainty propagation studies is an important contribution
to the scientific and practitioner communities by making this open source tool accessible and illustrating
its applicability in the water domain. However, it should be noted that the tool may also be applied to
other domains in environmental modelling.

The objectives of this study are to: (1) Develop a tool for characterising uncertainty in spatial,
temporal and spatio-temporal environmental variables (model inputs) as pdfs and as uni- and
multi-variate autoregressive models; (2) Develop a tool for sampling from these pdfs (to support
MC UP analysis) and to generate realisations of autoregressive models for environmental variables;
(3) Develop functions for aggregation of realisations of environmental variables in space and time;
(4) Illustrate the tool with a few simple examples; (5) Develop a method to propagate model input
uncertainty through environmental models; (6) Develop a function to analyse results of a MC UP.

2. Materials and Methods

This section describes the R-package stUPscales, its main class, methods and functions.

2.1. The R-Package stUPscales

An overview of the conceptual framework is presented in Figure 1. Three steps are distinguished:

1. Definition of the uncertainty model (class setup and method MC.setup). Data in raster or vector
format are retrieved and the uncertainty model defined. This characterises the input uncertainty in
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order to generate realisations from the pdfs or, in the case of time series, from uni- or multi-variate
autoregressive models;

2. Uncertainty propagation (method MC.sim). A routine for automation of the chain model
input—simulation—model output is defined. This routine is model-dependent and the model
input format should match the specific format required by the model. The output format should
match the format required by stUpscales. MC simulation is used for propagating model input
uncertainty through the environmental model;

3. Uncertainty analysis (function MC.analysis). Summary statistics such as the mean, variance,
and quantiles from the ensemble of MC simulations are computed. In addition, several plots
summarising the outcome of the analysis are made.

The main class, methods and functions of stUPscales (version 1.0.3) are presented below.
We describe the class setup and the methods and functions MC.setup, MC.sim and MC.analysis.

Spatio-temporal
vector data

Spatio temporal
raster data

Aggregation

Disaggregation

Realisations
(model input)

Environmental
model

Realisations
(model output)

Aggregation

Disaggregation

Analysis Global statistics

Visualization

Space-time
statistics

Definition uncertainty model Uncertainty propagation Uncertainty analysis

Data format:spacetime

Figure 1. Conceptual framework for uncertainty propagation across multiple scales with the
stUPscales package. Blue rectangular node = process; blue trapezoidal node = input; green trapezoidal
node = output; solid line = path; dashed line = optional path.

2.1.1. The Setup Class

The class setup is used to create objects of signature setup for further use in the Monte Carlo
method. The created object contains eight slots (for more details, see the online user manual available
at https://CRAN.R-project.org/package=stUPscales):

• id: Object of class “character” to identify the current MC simulation.
• nsim: Object of class “numeric” to specify the number of MC runs.
• seed: Object of class “numeric” to specify the seed of the random number generator.
• mcCores: Object of class “numeric” to specify the number of cores (CPUs) to be used in the

MC simulation.
• st.input: Object of class “character” that defines the name of the file or url of the web service to

retrieve the spatio-temporal input data.
• rng: Object of class “list” that contains the names and values of the variables to be used in the MC

simulation. Five modes are available: (1) constant value; (2) a variable sampled from a uniform
(uni) probability distribution function (pdf); (3) a variable sampled from a normal (nor) pdf;
(4) a variable sampled from an autoregressive (AR) model and normal (nor) pdf; (5) a variable

https://CRAN.R-project.org/package=stUPscales
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sampled from a vector autoregressive (VAR) model and normal (nor) pdf; (6) a variable sampled
from discrete values (dis); and (7) a variable sampled from a truncated normal (tnor) pdf.

• ar.model: Object of class “list” containing the coefficients of the AR model as vectors, the name of
which is the variable to be modelled and the length of which refers to the order of the model as
required by function arima.sim from the base package stats.

• var.model: Object of class “list” containing the vector of intercept terms w, the matrix of AR
coefficients A, and the noise covariance matrix C of the VAR model, the name of which is the
variable to be modelled and the length of which refers to the order of the model as required by
function mAr.sim from the package mAr. For mathematical details, see [27].

2.1.2. The MC.setup Method

Given an object of class setup, the method can be invoked for setting-up the MC simulation.
The variables are sampled according to their parameters specified in the slot rng of the setup object.
If ar.model is defined in slot ar.model, then the specified variables are sampled from the pdf or as
an autoregressive (AR) model via the function arima.sim. If var.model is defined in slot var.model,
then the specified variables are sampled from the pdf or as a vector autoregressive (VAR) model via
the function mAr.sim (see [27,28] for details).

There are seven different cases considered in stUPscales (for more details see the online user
manual available at https://CRAN.R-project.org/package=stUPscales). We developed specific cases
accounting for autocorrelation of variables. An extract from the method MC.setup for selecting the
sampling probability distribution function, case 2 of the method MC.setup, i.e., a normally distributed
autocorrelated time series (AR1 model), is presented in Appendix A. Additionally, case 5 of the
method, a normally distributed auto- and cross-correlated time series (var.model) in parallel code,
is also presented in Appendix A.

2.1.3. The MC.sim Method

The method MC.sim is used to invoke a MC simulation. This method can be modified to work
with another simulator. The method has two arguments:

• x: Object of class “list” as defined by method MC.setup.
• EmiStatR.cores: a numeric value for specifying the number of cores (CPUs) to be used in the

EmiStatR method. Use zero for no use of parallel computation.

The value of the method is a list of length two. The first element of the list, mc, is a list that
contains the MC.setup, timing and lap objects. The second element of the list, sim1, is a list that
contains the Monte Carlo matrices of the simulator output.

2.1.4. The MC.analysis Function

The MC.analysis function is available for performing the statistical analysis of the MC simulation
results. This function requires nine arguments:

• x: A list from the output of the method MC.sim.
• delta: A numeric value that specifies the level of temporal aggregation required in minutes.
• qUpper: A character string that defines the upper percentile to plot the prediction band of the

results. Several options are possible: “q999” the 99.9th percentile, “q995” the 99.5th percentile,
“q99” the 99th percentile, “q95” the 95th percentile, and “q50” the 50th percentile. The lower
boundary of the prediction band (shown in grey in the output plots) is the 5th percentile in
all cases.

• p1.det: A data.frame that contains the time series of the main driving force of the system
to be simulated deterministically, e.g., precipitation. This data.frame should have only two

https://CRAN.R-project.org/package=stUPscales
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columns: the first containing Time [y-m-d h:m:s], the second containing the (numeric) value of
the environmental variable.

• sim.det: A list that contains the results of the deterministic simulation, here the output of EmiStatR
given p1.det. See the method EmiStatR from the homonym package for details.

• event.ini: A time-date string in POSIXct format that defines the initial time for the event analysis.
• event.end: A time-date string in POSIXct format that defines the final time for the event analysis.
• ntick: A numeric value to specify the number of ticks in the x-axis for the event time-window plots.
• summ: A list provided as MC.analysis output, by default NULL. If provided, the list should

contain an output of a previous MC.analysis function, so that the analysis is done again without
the calculation of some of the internal variables, thus reducing computation time.

2.1.5. The Agg.t Function

The Agg.t function is used for temporal aggregation of environmental variables. Agg.t is a
wrapper function of aggregate from the stats package. It requires five arguments:

• data: A data.frame that contains the time series of the environmental variable to be aggregated,
e.g., precipitation. This data.frame should have two columns: the first is Time [y-m-d h:m:s];
the second the value of the environmental variable. If the environmental variable is different from
precipitation, then the column name of the values can be any character string.

• nameData: A character string that defines the name of the environmental variable to be aggregated
or an empty string (“ ”).

• delta: A numeric value that specifies the aggregation level required in minutes.
• func: The name of the aggregation function, e.g., mean, sum.
• namePlot: A character string that defines the title of the plot generated.

3. Example 1: Application of stUPscales to Temporal Uncertainty Propagation and Aggregation
with the EmiStatR Model

We present a UP example using an environmental model with application in urban water
modelling, the EmiStatR model, coded as R-package. Its input class and main method EmiStatR
are presented as well.

The example is an application in temporal UP for simulation of the water volume and water
quality dynamics in combined sewer systems (CSSs). CSSs are designed to convey wastewater
during precipitation events and also directly to the wastewater treatment facility in dry weather
flow conditions. In CSSs, two types of discharge are distinguished: (1) the pass forward
flow, which transports the sewage discharge directly to the wastewater treatment facility [29];
(2) the combined sewer overflow (CSO), which is the sewage diverted from the treatment facility
and discharged, untreated, into a local receiving water body during heavy precipitation events [30].
CSOs, when released to the environment, can have an important damaging impact on the water
quality status of receiving waters (streams, rivers, ponds, lakes, wetlands, and oceans). About 50%
of pollutants in stormwater are metals, nutrients, organic toxins, and bacteria, and are associated
with particulate matter. The other 50% are soluble [30], and therefore these pollutants can be more
persistent in the water and the environment itself. Minimisation of the CSO spill volume is therefore
important for the preservation of good water quality status of receiving waters. The goal of this
example is to quantify model output uncertainty when model input uncertainties are propagated
through a simplified lumped urban drainage model.

3.1. The Model EmiStatR

The R-package EmiStatR version 1.2.0.4 is used to perform the simulations and to propagate model
input uncertainty in the example with the R-package stUPscales. Details regarding the EmiStatR
model are found in [31].
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The main components of the EmiStatR model are: (1) Dry Weather Flow (DWF) including
Infiltration Flow (IF); (2) Pollution of DWF; (3) Rain Weather Flow (RWF); (4) Pollution of RWF;
(5) Combined Sewer Flow (CSF) and pollution; and (6) Combined Sewer Overflow (CSO) and pollution.

Basically, the total dry weather flow, Qt [L · s−1] is calculated as:

Qt = Qs + Q f , (1)

where Qs [L · s−1] is the dry weather flow estimated as the flow of the residential wastewater in
the catchment, calculated as 86,400−1 · pe · qs (where 86,400 = 24× 60× 60 is a measurement unit
conversion factor), with pe [PE] the population equivalents of the connected CSO structure, and qs
[L · PE−1 · d−1] the individual water consumption of households. Q f [L · s−1] is the infiltration flow
that enters the pipes from groundwater flow through cracks and joints, calculated as Aimp · q f , where
Aimp [ha] is the impervious area of the catchment, and q f [L · s−1 · ha−1] is the infiltration water inflow
flux (specific infiltration discharge from groundwater flow). Variables qs and pe are dynamic and can
be defined as time series with daily, weekly and seasonal patterns.

The contribution of rain water to the combined sewage volume is given by Vr [m3]. This is a
vector whose length is equal to that of the input precipitation time series. Vr is computed as:

Vr = 10 · P1 · [Cimp · Aimp + Cper(Atotal − Aimp)], (2)

where P1 is a time series of rainfall depth [mm]; Aimp is the impervious area of the catchment [ha];
Atotal is the total area of the catchment [ha]; Cimp is the run-off coefficient for impervious areas [-]; and
Cper is the run-off coefficient for pervious areas [-].

The load, Bx,Sv [kg], of a specific water quality variable x (e.g., Chemical Oxygen Demand,
COD, or Ammonium, NH4) in the overflow is calculated as a function of the CSO spill volume,
VSv [m3], a combined sewer mixing ratio, csmr [-], the mean dry weather pollutant concentration,
Cx,DWF [mg · L−1], and the concentration due to rainwater pollution, Cx,Rw [mg · L−1].

Bx,Sv = 10−3 (csmr + 1)−1 VSv (csmr · Cx,DWF + Cx,Rw) (3)

where DWF refers to dry weather flow and Rw to rainwater. VSv, csmr and Cx,DWF are vectors of length
equal to the input precipitation time series, P1. Cx,Rw can be a vector of length equal to P1 or a unique
value constant in time. Two indicators of water pollution are simulated: COD and NH4. Table 1
presents the main components and input variables of the EmiStatR model. The main model outputs
are listed in Table 2.

An object of class input can be defined to contain all required input data for running the model
in deterministic mode. An object of class input can be created by invoking the command input()
or new(“input”). The content details of an object of class input can be found in the user manual
of the EmiStatR package available in CRAN (https://cran.r-project.org/web/packages/EmiStatR/).
This object has 20 slots. For this example, the model input variables considered in the simulations and
used to compute the output uncertainty are presented in Table 1.

If calibration data are available, EmiStatR parameters may be calibrated prior to simulation.
If calibration is not feasible, the model can be run using parameter values taken from the reference
literature and guidelines. Table 3 provides reference values and calibration ranges for the most
important EmiStatR parameters.

https://cran.r-project.org/web/packages/EmiStatR/
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Table 1. General input data and combined sewer overflow (CSO) data to be defined by the input object.

General Input Units CSO Input Units

Wastewater Catchment data
Water consumption, qs [L · PE−1 · d−1] a Total area, Atotal [ha]

Pollution COD b, CCOD,s [g · PE−1 · d−1] Impervious area, Aimp [ha]
Pollution NH4

c, CNH4,s [g · PE−1 · d−1] Run-off coefficient for impervious area, Cimp [-]
Run-off coefficient for pervious area, Cper [-]

Infiltration water Theoretical largest flow time structure, t f s [time step]
Inflow, q f [L· s−1 · ha−1] Population equivalents, pe [PE]

Pollution COD, COD f [g · PE−1 · d−1]

Pollution NH4, NH4 f [g · PE−1 · d−1] CSO structure data
Volume, V [m3]

Rainwater Curve level—volume, lev2vol [m], [m3]
Precipitation time series, P [mm] Initial water level, Levini [m]

Pollution COD, CODr [mg · L−1] Maximum throttled outflow, Qd,max [L· s−1]
Pollution NH4, NH4r [mg · L−1] Orifice diameter, Dd [m]

Orifice coefficient of discharge, Cd [-]
a PE = population equivalents; b COD = chemical oxygen demand; c NH4 = ammonium.

Table 2. Output variables of the EmiStatR method.

Variable Unit

CSO a summary Period, p [day]
Total CSO chamber volume, VCSOC [m3]

Duration CSO spill volume, dSv [h]
Frequency CSO spill volume, fSv [events]

Total CSO spill volume, VSv [m3]
Average CSO flow, QSv [L/s]

95th percentile CSO spill volume, VSv,95 [m3]
Maximum CSO spill volume, VSv,max [m3]

COD b in spill volume Total CCOD c, CCOD,Sv [mg/L]
Average CCOD, CCOD,Sv,av [mg/L]

95th percentile CCOD, CCOD,Sv,95 [mg/L]
Maximum CCOD, CCOD,Sv,max [mg/L]

Total BCOD d, BCOD,Sv [kg]
Average BCOD, BCOD,Sv,av [kg]

95th percentile BCOD, BCOD,Sv,95 [kg]
Maximum BCOD, BCOD,Sv,max [kg]

NH4
e in spill volume Total CNH4, CNH4,Sv [mg/L]

Average CNH4 f, CNH4,Sv,av [mg/L]
95th percentile CNH4, CNH4,Sv,95 [mg/L]

Maximum CNH4, CNH4,Sv,max [mg/L]
Total BNH4 g, BNH4,Sv [kg]

Average BNH4, BNH4,Sv,av [kg]
95th percentile BNH4, BNH4,Sv,95 [kg]

Maximum BNH4, BNH4,Sv,95 [kg]
a CSO = combined sewer overflow; b COD = chemical oxygen demand; c CCOD = COD concentration; d BCOD
= COD load; e NH4 = ammonium; f CNH4 = NH4 concentration; g BNH4 = NH4 load.

The output value of the EmiStatR method is described in the manual. Here, we are interested in
propagating model input uncertainties through the simplified lumped urban drainage model.
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Table 3. Default values for input data of EmiStatR.

Input Units Reference Literature Range
Value Source (This Study)

Wastewater
Water consumption, qs [L · PE−1 · d−1] a 150 b [32] [130, 170]

Pollution COD c, CCOD,s [g · PE−1 · d−1] 120 [33] [90, 150]
Pollution TKN d [g · PE−1 · d−1] 11 [33] [7, 15]
Pollution NH4

e [g · PE−1 · d−1] 4.7 [31] [1, 8]

Infiltration water
Inflow, q f [L· s−1 · ha−1] 0.05 [34] [0.001, 0.1]

Catchment data
Run-off coefficient for impervious area, Cimp [-] See [35] [35] [0.20, 0.95]

Run-off coefficient for pervious area, Cper [-] See [35] [35] [0.05, 0.50]
Flow time structure, t f s [time step] 2 [31] [0, 12]

CSO structure data
Initial water level, Levini [m] Lmax

f/2 [31] [0, Lmax]
Orifice coefficient of discharge, Cd [-] 1.25 [31] [0.01, 2]

a PE = population equivalent units; b Mean value for European countries; c COD= Chemical Oxygen Demand;
d TKN = Total Kjeldahl Nitrogen; e NH4 = Ammonium; f Lmax = Maximum water level in the CSOC.

3.2. Temporal Aggregation and Model Input Uncertainty Propagation

We used the Agg.t function, described in Section 2.1.5, to perform a temporal aggregation of the
model input data to the time step required. The model input uncertainty propagation is done in a
two-step process. First, a model input uncertainty definition is done by setting up the MC simulation.
For this, we apply the setup class and the MC.setup method. Second, the MC simulation is performed
by applying the MC.sim method, after which the UP analysis is done through the application of the
MC.analysis function.

3.3. Results

In this section, we first present the input time series as the main driving force of the system
modelled. This input is important because the other input time series definition depends on it to
achieve the same model input support. Second, the results of input time series aggregation are shown.
Finally, the results of the model input uncertainty propagation with stUPscales are presented.

3.3.1. Model Input

EmiStatR includes an example of a precipitation dataset called P1, used as main input data.
This dataset is a list that contains a data.frame with two columns: “Time [y-m-d h:m:s]” and
precipitation depth in millimetres “P [mm]”. The rain gauge station where the measurements
were recorded (in this case Dahl) is located close to the catchment of the combined sewer overflow
chamber at Goesdorf, Grand-Duchy of Luxembourg. The dataset contains records from 1 January until
2 February 2016. The recording time step is 10 min. We used this dataset as precipitation input.

3.3.2. Temporal Aggregation and Model Input Uncertainty Propagation

As an illustration of the Agg.t function, we aggregated the time series of precipitation P1
from 10 to 30 min. We took the sum as aggregation function. Following the two-step process,
we performed the model input uncertainty propagation. First, an illustration of the model input
uncertainty definition is presented by setting up the MC simulation. Second, the MC simulation is
executed followed by its respective analysis.
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3.3.3. Model Input Uncertainty and Monte Carlo Simulation Set-Up

For setting up the MC simulation, we applied the setup class and the MC.setup method.
Appendix A.6.4 shows the R-code for the settings of the setup class. Upon the definition of the setup
object, we proceeded to invoke the MC.setup to create the sampled variables from their corresponding
probability distributions.

The water quantity input variables chosen for the uncertainty propagation analysis are water
consumption (qs), infiltration inflow water (q f ), run-off coefficient for impervious area (Cimp), run-off
coefficient for pervious area (Cper), population equivalents (pe), orifice coefficient of discharge (Cd) and
the initial water level in the chamber (Levini).

The precipitation input time series and the water quality input variables chosen for the uncertainty
propagation analysis are plotted in Figure 2. A time window was chosen for illustration purposes.
The sewage COD pollution per capita [PE] load per day (CCOD,s) was modelled as an autoregressive
order one (AR1) model with autoregressive coefficient equal to 0.7 (Figure 2). The sewage NH4

pollution per capita [PE] load per day (CNH4,s) was also modelled as an AR1 model with autoregressive
coefficient equal to 0.7 (Figure 2).
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Figure 2. Series of precipitation, sewage COD pollution and sewage NH4 pollution for the time window.

3.3.4. Monte Carlo Simulation and Analysis

The MC simulation was performed by invoking the MC.sim method. The analysis of the MC
simulations was done by invoking the MC.analysis function. In order to proceed with the MC analysis,
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a deterministic simulation was defined and computed. First, we defined structure 1, named “E1”.
Second, the input.user object of class input was defined. Next, we invoked the method EmiStatR
with the deterministic input (input.user) defined before. Finally, the additional arguments of the
MC.analysis function were defined. Upon definition of the additional arguments, the function
MC.analysis was invoked. Appendix A.6.5 presents the R-code of the MC.sim method and the
MC.analysis function.

Only part of the outputs of the analysis are presented here. Figure 3 presents the time series of
the deterministic simulation, as well as the mean and 95% prediction band of the MC simulations at
a 30-min time step, for simulation and analysis of the water volume. Figure 4 shows the time series
window for COD load and concentration in spill water volume in the CSO and NH4 load concentration
in spill water volume in the CSO, at a 30-min time step.
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Figure 3. January 2016 time series of deterministic simulation (continuous black line), mean (dotted
blue line), and 95% prediction band (grey band) of the Monte Carlo simulation at 30-min time step for
simulation and analysis of water volume. Time series window for precipitation (top), water volume in
the combined sewer overflow (CSO) chamber (second), detailed snapshots for water volume in the
CSO chamber (third), and spill water volume of CSO (bottom).
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Figure 4. Time series for chemical oxygen demand (COD) load and concentration in spill water volume
in the combined sewer overflow (CSO) and ammonium (NH4) load concentration in spill water volume
in the CSO at 30-min time step for simulation and analysis of Monte Carlo simulation. Deterministic
simulation (continuous black line), mean (dotted blue line), and 95% prediction band (grey band) of
the Monte Carlo simulation.

4. Example 2: Application of stUPscales to Spatio-Temporal Uncertainty Characterisation of
Precipitation for the Grand-Duchy of Luxembourg

This example illustrates the capability of stUPscales to address UP in the spatio-temporal domain.
We illustrate how to characterise the spatio-temporal uncertainty of precipitation for the entire country
of the Grand-Duchy of Luxembourg. We use observations of a precipitation time series measured at 25
rain gauges for the period January 2010 to December 2011, recorded at 10-min time steps. The set of
time series was provided by the Luxemburgish Administration des Services Techniques de l’Agriculture
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(ASTA), and verified for consistency by the Observatory for Climate and Environment (OCE) of the
Luxembourg Institute of Science and Technology (LIST).

We prepared the data to predict space-time precipitation fields at 500 m and 10-min time step.
This space-time uncertainty information can, for instance, be used to feed a distributed rainfall–runoff
model coupled with an urban drainage model. We only demonstrate the precipitation uncertainty
characterisation, since an entire UP study of a rainfall–runoff model is out of the scope of this paper
and will be addressed in subsequent papers.

4.1. Selection of Event

We selected a 10-h period where the cumulative precipitation of the time series is maximal,
assuring to retrieve a precipitation event in all stations. The selected period of the event was
16 December 2011 from 12:00 a.m. to 10:00 a.m. A total of 32 stations were available. Seven stations
were not taken into account because of no measurement in the selected period. For illustration purpose,
Figure 5 presents eight out of the 25 selected time series, and Figure 6 illustrates 18 snapshots of the
event every 30 min and shows how this event is distributed in space. It also shows the precipitation
magnitude in the 25 rain gauges.
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16Figure 5. Observed time series for event 16 December 2011, eight out of 25 stations. The experimental
variogram was calculated in the interval from 12:00 a.m. to 10:00 a.m. including the 25 stations.
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Figure 6. Distribution of observations for event 16 December 2011 over the country of the Grand-Duchy
of Luxembourg, 18 snapshots for illustration purpose only. Every dot represents a rain gauge
observation. The units of the x and y scales are meters. The scale bar represents precipitation
in millimeters.

4.2. Ordinary Kriging in the Space-Time Domain

To model precipitation fields in the spatio-temporal domain, we used the concept of the
spatio-temporal variogram for spatio-temporal ordinary Kriging [36]. Following Snepvangers et al. [37],
the aim of space-time geostatistical modelling is to predict or simulate an attribute z given by:

z = {z(s, t)|s ∈ S, t ∈ T}, (4)

where s ∈ R2 refers to space, t ∈ T to time. The prediction or simulation of z is made at a space–time
point (s0, t0), where z was not measured.

A space-time random function model Z can be defined to predict z(s0, t0) [37]:

Z(s, t) = m(s, t) + ε(s, t) s ∈ R2, t ∈ T, (5)

where m is the trend component of the model and ε is a zero-mean stochastic residual component.
The prediction is based at measurements in n space-time points (si, ti). In space-time ordinary kriging
(ST-OK), the trend component is assumed to be an unknown constant mean. The stochastic residual
component is characterised by a space-time variogram, that, under second-order stationarity, can be
computed from the measurements [37]:

γ̂(hS, hT) =
1

2N(hS, hT)

N(hS ,hT)

∑
i=1

[z(si, ti)− z(si + hS, ti + hT)]
2, (6)

where hS and hT are the space and time lags, and N(hS, hT) is the number of pairs in the space-time lag.
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To fit a model to the space-time experimental variogram (Equation 6), we need to overcome
some additional problems as we have space and time variation. In this example, we used a model
that considers the definition of one covariance model (or variogram) for the space domain and
one covariance model (or variogram) for the time domain, including an anisotropy parameter κ,
as described by Bilonick [38] and revisited by Snepvangers et al. [37] and Graeler et al. [36]. This is the
sum-metric covariance model:

Csm(hS, hT) = Cs(hS) + Ct(hT) + Cjoint

(√
h2

S + (κ · hT)2
)

. (7)

The variogram is derived similar to the covariance [36,37] as:

γsm(hS, hT) = γS(hS) + γT(hT) + γST

(√
h2

S + (κ · hT)2
)

. (8)

stUPscales implements routines of the R package gstat [39] for representing the spatio-temporal
covariance models. Besides the sum-metric model, four additional models are available in gstat:
Separable; Product-sum; Metric; and Simplified sum-metric.

4.3. Results

The commands used to produce the results explained next are presented in Appendix A.7.

4.3.1. Events Selected and Space-Time Full Grid Object

stUPscales has a dataset with the selected events per station as an xts object in space-wide
format for easy visualisation of the 25 stations in the object event.subset.xts. The spatial locations
of the 25 rain gauge stations are provided as a dataset in SpatialPointsDataFrame format from the sp
package [40]. The boundary of the country of the Grand-Duchy of Luxembourg is given as a dataset
in sp format SpatialPolygonsDataFrame. The data were converted to a space-time full data.frame
(STFDF) of the package spacetime [25], through the function stConstruct from the same package.
The object is visualised in Figure 6.

4.3.2. Space-Time Variograms

Once the observation period was defined, we computed the experimental spatio-temporal
variogram according to Equation (6) using the function variogramST of the gstat package, with time
lags of 50 min and space lags of 5000 m. The spatio-temporal anisotropy was estimated by the
estiStAni function (gstat). Before proceeding to the fit of the parameters, the experimental variogram
and the anisotropy were scaled to have distances in kilometers.

The sum-metric variogram model (Equations (7) and (8)) was defined in gstat by using the
vgmST function. The model was fitted using the fit.StVariogram gstat function with the L-BFGS-B
optimisation algorithm described in Byrd et al. [41], which allows box constraints with lower and upper
bounds. All space-time variogram parameters (spatial, temporal and joint nugget, range and partial
sill) were estimated by minimising the mean squared error (MSE). The MSE of the best model fitted is
0.00013. Figure 7 shows the experimental spatio-temporal variogram (a), the fitted spatio-temporal
variogram (b) and the residuals of the spatio-temporal variogram model for the sum-metric model (c).
The fitted parameters of the sum-metric model are given in Table 4.
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Figure 7. Spatio-temporal variograms. (a) empirical (sample) variogram; (b) theoretical sum-metric
model; (c) difference between sample and best fitting theoretical sum-metric model.

4.3.3. Space-Time Ordinary Kriging

Upon definition of the space-time variogram, we proceeded to create prediction maps using
space-time ordinary kriging. For this, a prediction grid over Luxembourg was created and predictions
were made by the function krigeST from gstat. The prediction maps are shown in Figure 8.
Finally, we computed the lower and upper boundary of the 90 percent prediction interval as shown in
Figures 9 and 10.

With this, the stUPscales package is ready to characterise space-time uncertainties of
environmental variables. The next steps for subsequent work are to simulate realisations of such
variables and analyse the uncertainty propagation.
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Figure 8. Prediction maps obtained with the spatio-temporal sum-metric model.
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Figure 9. Predictions obtained with the spatio-temporal sum-metric model (lower boundary of the
90 percent prediction interval).
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Figure 10. Predictions obtained with the spatio-temporal sum-metric model (upper boundary of the
90 percent prediction interval).



Water 2018, 10, 837 18 of 30

Table 4. Space-time variogram model.

Partial Sill Range

Spatial component
Nugget 0 0

Spherical 0.021 10

Time component
Nugget 0 0

Exponential 0.129 201.9

Joint component
Nugget 0.016 0

5. Discussion

We developed the stUPscales R package as a contribution to state-of-the-art software tools
designed to perform spatio-temporal uncertainty characterisation and uncertainty propagation analysis
of environmental models across different scales. We applied the tool in two examples where the class,
methods and functions were tested satisfactorily as an illustration of the capabilities of the package.
In this section, we highlight and discuss the main results obtained and put these in perspective with
other studies.

5.1. Temporal and Spatio-Temporal Model Inputs

In Example 1, we used a simplified urban drainage model, EmiStatR, for testing purposes. We used
this model because of its simplification and parallel computing coding, allowing a seamless uncertainty
propagation in the R environment.

The main input variable of the modelling framework developed in the example corresponded to a
time series of precipitation included as a dataset into the R-package EmiStatR. This time series includes
records from 1 January to 2 February 2016 (4462 observations). The total precipitation in the time
series is 89.6 mm, with a mean value for non-zero data of 0.18 mm and maximum value of 0.90 mm.
While the recording time step is 10 min, we aggregated the precipitation to 30 min to illustrate the
aggregation capabilities of stUPscales. We characterised the uncertainty of the temporal input by
invoking the temporal autocorrelation function.

For Example 2, we used time series of precipitation for 25 rain gauges distributed over the country
of Luxembourg as an input dataset. The event selected was a period of 10 h from 12:00 a.m. to
10:00 a.m. on 16 December 2011. Next, we characterised the spatio-temporal uncertainty by inferring
the experimental space-time variogram from the observations for the entire spatial domain and
time period.

5.2. Temporal Aggregation of Model Input

In Example 1, we illustrated the temporal aggregation function Agg.t of the stUPscales
package. The level of aggregation was a 30-min time step. The resulting time series is composed of
1488 observations, summing up to a total precipitation of 89.6 mm, with a mean value for non-zero
data of 0.33 mm and maximum value of 2.00 mm. This level of aggregation is useful when a large time
series is used as input in the uncertainty propagation procedure, reducing the computational burden
required for the MC simulation.

5.3. Model Input Uncertainty Propagation

In Example 1, we used the MC method for model input uncertainty propagation through the
environmental model. In so doing, we accounted for temporal and cross-correlations when defining
model input uncertainty and performing uncertainty propagation.
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5.3.1. Model Input Uncertainty and Monte Carlo Simulation Set-Up

Moret at al. [42] present a literature review about characterisation of input uncertainties in
strategic energy planning models. They found that, in the context of strategic design problems, Tock
and Maréchal [43] use normal, uniform and beta distributions to define uncertainty of economic
parameters with lower and upper limits defined from institutional reports. In addition, in the context
of energy systems design under uncertainty, Dubuis [44] proposes a methodology based on statistical
theory, i.e., on definition of probability distribution functions. However, uncertainty characterisation
using pdfs is not always possible when data are unavailable. In the absence of data for defining
future uncertainties in the UK energy transition pathways, Pye et al. [45] propose using triangular
distributions for representing uncertainty between upper and lower limits, defined from the literature.
To account for uncertainty in the assessment of biomass-to-fuel strategies in wastewater treatment
applications, Sin et al. [46] assign different levels of cost uncertainty (low, medium, high), taking
into account maturity and complexity. In addition, upper and lower limits to all model parameters
were defined by expert knowledge and establishing uniform distributions. In the design of flexible
multi-generation systems, Lythcke-Jorgensen et al. [47] assume variations of ±25% and uniform
distributions for parameters of investment and operating cost.

In the urban drainage modelling domain, Wijesiri et al. [23] quantified uncertainty by uncertainty
limits associated with predicted build-up and wash-off processes. Zoppou [48] states that “providing
the uncertainty associated with model outcomes in terms of uncertainty limits is an effective way to enhance
management and planning decisions".

Most of the reviewed literature highlighted that, regarding parameter uncertainty characterisation,
there is a difficulty to define pdfs based on data at proper quantity and quality. In this sense,
Moret et al. [42] present a method to characterise input uncertainty for strategic energy planning
models. This method proposes the definition of a set of criteria for the establishment of variation
ranges for uncertain parameters, instead of the definition of pdfs. For some techniques, such as robust
optimization, full pdfs are not needed and specification of uncertainty ranges is enough [49].

The stUPscales package includes both pdf and range characterisations for input uncertainty
quantification. The pdf option allows the definition of normal, log-normal and truncated normal pdfs.
The range option consists of the definition of a uniform pdf where the lower bound (minimum value)
and the upper bound (maximum value) are defined as function arguments. Additionally, two more
options are available for the characterisation of model input uncertainty: (1) discrete, where a uniform
discrete sampling is defined; and (2) constant, where a unique constant value is defined in time and
space, i.e., suitable for representing model inputs that are not uncertain. With all these possibilities, we
cover an important range of characterisations for model input uncertainty used in practice.

5.3.2. Monte Carlo Simulation and Analysis

In Example 1, the selected water quantity input variables for the uncertainty propagation
analysis (water consumption, qs, infiltration inflow water, q f , impervious area, Aimp, run-off
coefficient for impervious area, Cimp, run-off coefficient for pervious area, Cper, population equivalents,
pe, orifice coefficient of discharge, Cd and the initial water level in the chamber, Levini), had been
defined to quantify input uncertainty and analyse how it propagates through the environmental
model, EmiStatR, to the different model outputs related to water quantity (‘CSO summary’ in Table 2,
and Figure 3).

Regarding the selected water quality input variables for the uncertainty propagation analysis
(sewage COD pollution per capita [PE] load per day, CCOD,s, sewage NH4 pollution per capita [PE]
load per day, CNH4,s, and rain COD pollution, CODr), these reflect how the variability in the input
uncertainty definition is translated to the model output (‘COD in spill volume’ and ‘NH4 in spill
volume’, as shown in Table 2 and Figure 4).

In the case of total concentration of COD (CCOD) in the spill volume, a mean value of 145 mg·L−1

and a maximum value of 190 mg·L−1 were simulated in the deterministic run. In the Monte Carlo
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simulation, a mean value of 255 mg·L−1 and a maximum value of 511 mg·L−1 in the 95 percentile
band were obtained. These large differences indicate a large uncertainty in this variable. The relative
increase of the mean and maximum are 1.8 and 2.7, respectively.

In the case of total concentration of NH4 (CNH4) in the spill volume, a mean value of 4.1 mg·L−1

and a maximum value of 6.5 mg·L−1 were simulated in the deterministic run. In the Monte Carlo
simulation, a mean value of 5.5 mg·L−1 and a maximum value of 12.6 mg·L−1 in the 95 percentile
band were obtained. While the means are similar, the large increase in the maximum indicates that
uncertainty in this variable is also substantial, as already indicated by the wide prediction bands (grey
area) shown in Figure 4.

These results demonstrate the usefulness of performing model input uncertainty propagation
through the environmental model, which is an important goal in the evaluation and communication of
uncertainties in environmental modelling.

In order to further validate model accuracy, a complete uncertainty propagation analysis would
have to involve (cross-)validation using independent observations. This was beyond the scope of the
paper and is currently done in a subsequent paper on a full uncertainty propagation analysis of the
EmiStatR model, including a stochastic sensitivity analysis to analyse the contribution of each source
of uncertainty to the overall uncertainty of the model results.

5.4. Space-Time Characterisation of Model Input Uncertainty

In Example 2, we showed how space-time model input uncertainty is modelled in stUPscales.
We used space-time ordinary kriging, with a space-time unknown constant mean of the process and
a space-time stochastic residual for which the literature proposes different covariance models [36].
However, in the space-time domain, the fitting of the covariance model is not trivial compared to that
in spatial kriging. We used the sum-metric model [36,37], which gave satisfactory results. We showed
space-time prediction maps of the precipitation for a 10 h time period on 16 December 2011 for the
Grand-Duchy of Luxembourg.

5.5. Data Format for Uncertainties

We have coded stUPscales to be compatible with standard spatio-temporal data concepts and
formats in R, such as the spatio-temporal classes ST of the spacetime package [50]. This allows for
seamless linkage of geospatial and spatio-temporal models and sub-models across multiple scales.

In addition, despite an attempt to create the Uncertainty Markup Language (UncertML) [51]
as an Open Geospatial Consortium (OGC) standard to store metadata for uncertainty propagation
applications [6], there is still an open question about the suitability of this data format to hold,
visualise and communicate uncertainties together with the space-time ST classes in R. Furthermore,
there is a potential to develop a new class or extend the ST classes to embed the uncertainty
information regarding data uncertainty, input uncertainty characterisation, output uncertainty and
summary statistics.

6. Conclusions and Future Research

We presented the R package spatio-temporal and Uncertainty Propagation across multiple scales,
stUPscales. This package constitutes a contribution to the state-of-the-art of open source tools that
aim to support uncertainty propagation in the spatio-temporal domain. The main class, methods and
functions of the package were presented and illustrated with an example of temporal model input
uncertainty propagation through a simplified lumped urban drainage model accounting for water
quality modelling. We also showed how the package can be used to model and predict environmental
variables that vary in time and space. Using simulations of these types of variables in MC uncertainty
propagation will be done in subsequent work.

The main contribution of stUPscales compared to existing uncertainty propagation tools is
that it is not restricted to uncertainty analysis of purely spatial applications but can also handle
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uncertain temporal and spatio-temporal variables. In addition, it is designed to handle aggregation
and disaggregation of uncertain temporal, spatial and spatio-temporal variables. Through two
examples, we demonstrated that stUPscales is suitable for characterising uncertainty in spatial,
temporal and spatio-temporal environmental variables (model inputs) as probability distribution
functions (pdfs) and as uni- and multi-variate autoregressive models. Moreover, it is possible to
sample from these pdfs (to support MC UP analysis) and to generate realisations of autoregressive
models. We illustrated the aggregation functionality of stUPscales by averaging realisations of
precipitation in time. We propagated model input uncertainty through a simplified urban water model
and analysed the results of an MC UP. Finally, we showed how space-time geostatistical interpolation
is done in stUPscales.

It is worthwhile to explore the development of a new class or to extend the ST classes so that these
incorporate uncertainty information regarding data uncertainty, input uncertainty characterisation,
output uncertainty and summary statistics. We recommend that future implementations take this
matter into account.

Further extension of the package will allow for implementing new methods and functions
for spatio-temporal disaggregation of model inputs and outputs, giving more flexibility to the
proposed workflow when linking models with different spatio-temporal support or across multiple
space-time scales.
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Appendix A

Appendix A.1. The setup Class

A default setup object can be created and checked as follows:

> library(stUPscales)
> new_setup <- setup()
> str(new_setup)

Formal class 'setup' [package "stUPscales"] with 8 slots
..@ id : chr "MC_sim_1"
..@ nsim : num 1
..@ seed : num 0.701
..@ mcCores : num 1
..@ st.input : NULL
..@ rng : NULL
..@ ar.model :List of 1
.. ..$ : NULL
..@ var.model :List of 1
.. ..$ : NULL

Appendix A.2. The MC.setup Method

An extract from the method MC.setup for selecting the sampling probability distribution function, in case 2 of the
method MC.setup:
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# case 2: normal autocorrelated time series (AR1 model)
{requireNamespace("lmom")
r <- matrix(NA, nrow=nsim, ncol = nrow(st.input))
j <- 1
for(j in 1:nsim){
# r[j,] <- quanor(runif(nrow(st.input)), c(as.numeric(rng[[i]]["mu"]),
as.numeric(rng[[i]]["sigma"])))

y1 <- arima.sim(n = nrow(st.input) , list(order=c(1,0,0),
ar=ar.model[[names(rng)[[i]]]])) # ar =.5
m1 <- mean(y1); s1 <- sd(y1)
m2 <- as.numeric(rng[[i]]["mu"])
s2 <- as.numeric(rng[[i]]["sigma"])
y2 <- m2 +(y1-m1)*s2/s1

r[j,] <- y2
}
par[[i]] <- r
npar <- npar+1
}

Similar as above but now for case 5 of the method MC.setup:

# case 5: normal auto- and cross-correlated time series (var.model), parallel code
{
var1 <- (matrix(NA, nrow=1, ncol = nrow(st.input)) )
var2 <- (matrix(NA, nrow=1, ncol = nrow(st.input)) )

obj1 <- 1:nsim

requireNamespace("parallel")
requireNamespace("doParallel")
requireNamespace("foreach")
cl <- makeCluster(mcCores, outfile="")
registerDoParallel(cl, cores=mcCores)
numCores <- detectCores()

rp <- foreach(obj1 = obj1, .packages = c("lmom", "mAr", "parallel", "doParallel",
"foreach"), .export=c("obj1"), .errorhandling = "pass", .verbose=TRUE,
.combine = "rbind") %dopar% {

j <- obj1
print(paste(j, ", ", mcCores, " of ", numCores, " cores for creating
VAR model", sep=""))

y1 <- mAr.sim(w = var.model[["w"]], A = var.model[["A"]],
C = var.model[["C"]], N = nrow(st.input))

# code for only bivariate case
m1 <- mean(y1[,1]); s1 <- sd(y1[,1])
m2 <- as.numeric(rng[[indexVAR[1]]]["mu"])
s2 <- as.numeric(rng[[indexVAR[1]]]["sigma"])
y2 <- m2 +(y1[,1]-m1)*s2/s1
var1[1,] <- y2

m1 <- mean(y1[,2]); s1 <- sd(y1[,2])
m2 <- as.numeric(rng[[indexVAR[2]]]["mu"])
s2 <- as.numeric(rng[[indexVAR[2]]]["sigma"])
y2 <- t(as.data.frame(m2 +(y1[,2]-m1)*s2/s1))
var2[1,] <- y2

return(c(var1, var2))
}

stopCluster(cl)
# closeAllConnections()

# asignation only for bivariate case:
par[[indexVAR[1]]] <- rp[,1:nrow(st.input)]
par[[indexVAR[2]]] <- rp[,(nrow(st.input)+1):(nrow(st.input)*2)]
npar <- npar+2
}
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The method is invoked as follows:

> new_mc_setup <- MC.setup(new_setup)

Appendix A.3. The MC.sim Method

The method MC.sim is invoked as follows:

> new_sim <- MC.sim(new_mc_setup)

Appendix A.4. The MC.Analysis Function

The function MC.Analysis is invoked as follows:

> new_analysis <- MC.analysis(new_sim, delta, qUpper, P1.det, sim.det,
+ event.ini, event.end, ntick)

Appendix A.5. The Agg.t Function

The function Agg.t is invoked as follows:

> library(stUPscales)
> new_aggregated <- Agg.t(data, nameData, delta, func, namePlot)

Appendix A.6. Example 1: Temporal uNcertainty Propagation and Aggregation

Appendix A.6.1. The Model EmiStatR

An object of class input can be created by invoking the command input() or new("input") as follows:

> library(EmiStatR)
> new_input <- input()
> str(new_input)

A deterministic simulation can be obtained by directly invoking EmiStatR as follows:

> sim_deterministic <- EmiStatR(new_input)

Appendix A.6.2. Model Input

EmiStatR includes an example of a precipitation dataset called P1, used as main input data. The rain gauge
station where the measurements were recorded (in this case Dahl), is located close to the catchment of the combined
sewer overflow chamber at Goesdorf, Grand-Duchy of Luxembourg. The dataset contains records from 1st January
until 2nd February 2016. The recording time step is 10 min.

> library(EmiStatR)
> data("P1")
> summary(P1)

time P [mm]
Min. :2016-01-01 01:00:00 Min. :0.00000
1st Qu.:2016-01-08 18:57:30 1st Qu.:0.00000
Median :2016-01-16 12:55:00 Median :0.00000
Mean :2016-01-16 12:55:00 Mean :0.02007
3rd Qu.:2016-01-24 06:52:30 3rd Qu.:0.00000
Max. :2016-02-01 00:50:00 Max. :0.90000

> sum(P1[,"P [mm]"])

[1] 89.6

Appendix A.6.3. Temporal Aggregation of Model Input

As an illustration of the Agg function, we aggregated time series of precipitation P1 from 10 to 30 min. We took
the sum as aggregation function. We proceed and visualise the results as follows:

> library(stUPscales)
> P1_30min <- Agg(P1, "P1", 30, sum, "")
> summary(P1_30min)
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time Rainfall
Min. :2016-01-01 01:00:00 Min. :0.00000
1st Qu.:2016-01-08 18:52:30 1st Qu.:0.00000
Median :2016-01-16 12:45:00 Median :0.00000
Mean :2016-01-16 12:45:00 Mean :0.06022
3rd Qu.:2016-01-24 06:37:30 3rd Qu.:0.00000
Max. :2016-02-01 00:30:00 Max. :2.00000

> head(P1_30min,3)

time Rainfall
1 2016-01-01 01:00:00 0
2 2016-01-01 01:30:00 0
3 2016-01-01 02:00:00 0

Appendix A.6.4. Model Input Uncertainty and Monte Carlo Simulation Set-Up

For setting up the Monte Carlo simulation we applied the setup class and the MC.setup method. The following
code illustrates the settings of the setup class.

> # defining curve level to volume of the storage chamber
> lev2vol <- list(lev = c(.06, 1.10, 1.30, 3.30), vol = c(0, 31, 45, 190))
> new_setup <- setup(id = "MC_1",
+ nsim = 16,
+ seed = 123,
+ mcCores = 8,
+ ts.input = P1_30min,
+ rng = rng <- list(
+ qs = c(pdf = "uni", min = 130, max = 170), # [l/PE/d]
+ CODs = c(pdf = "nor", mu = 4.378, sigma = 0.751), # log[g/PE/d]
+ NH4s = c(pdf = "nor", mu = 1.473, sigma = 0.410), # log[g/PE/d]
+ qf = c(pdf = "uni", min = 0.001, max = 0.1), # [l/s/ha]
+ CODf = 0, # [g/PE/d]
+ NH4f = 0, # [g/PE/d]
+ CODr = 0, # [mg/l]
+ NH4r = 2, # [mg/l]
+ nameCSO = "E1", # [-]
+ id = 1, # [-]
+ ns = "FBH Goesdorf", # [-]
+ nm = "Goesdorf", # [-]
+ nc = "Obersauer", # [-]
+ numc = 1, # [-]
+ use = "R/I", # [-]
+ Atotal = 46, # [ha]
+ Aimp = 25.2, # [ha]
+ Cimp = c(pdf = "uni", min = 0.25, max = 0.95), # [-]
+ Cper = c(pdf = "uni", min = 0.05, max = 0.60), # [-]
+ tfS = 0, # [time steps]
+ pe = c(pdf = "uni", min = 500, max = 800), # [PE]
+ Qd = 6.5, # [l/s]
+ Dd = .150, # [m]
+ Cd = c(pdf = "uni", min = 0.01, max = 2), # [-]
+ V = 190, # [m3] # 1100
+ lev.ini = c(pdf = "uni", min = 0.1, max = 3.5), # [m]
+ lev2vol = lev2vol), # [m] - [m3]
+ ar.model = ar.model <- list(
+ CODs = 0.7, # [-]
+ NH4s = 0.7), # [-]
+ var.model = var.model <- list(inp = c("", "")))

Upon definition of the setup object, we proceeded to invoke the MC.setup to create sampled variables from their
corresponding probability distributions.

> new_mc_setup <- MC.setup(new_setup)

Appendix A.6.5. Monte Carlo Simulation and Analysis

The Monte Carlo simulation is performed by invoking the MC.sim method:

> new_sim <- MC.sim(new_mc_setup, EmiStatR.cores = 0)

The deterministic simulation is defined and computed. First, we define structure 1, named "E1" :
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> E1 <- list(id = 1, ns = "FBH Goesdorf", nm = "Goesdorf",
+ nc = "Obersauer", numc = 1, use = "R/I",
+ Atotal = 46, Aimp = 25.2, Cimp = 0.86, Cper = 0.55,
+ tfS = -1, pe = 650, Qd = 6.5,
+ Dd = 0.15, Cd = 1.25,
+ V = 190,
+ lev.ini = 0.89,
+ lev2vol = lev2vol)

Second, the input.user object of class input is defined:

> input.user <- input(spatial = 0, zero = 1e-5,
+ folder = system.file("shiny", package = "EmiStatR"),
+ cores = 0,
+ ww = list(qs = 150, CODs = 104, NH4s = 4.7),
+ inf = list(qf= 0.05, CODf = 0, NH4f = 0),
+ rw = list(CODr = 0, NH4r = 0, stat = "Dahl"),
+ P1 = P1_30min, st = list(E1=E1),
+ export = 1)

Next, we invoke the method EmiStatR with the deterministic input (input.user) defined before:

> sim.det <- EmiStatR(input.user)

Finally, the additional arguments of the MC.analysis function are defined:

> delta <- 30 # minutes
> qUpper <- "q95"
> event.ini <- as.POSIXct("2016-01-12 12:00:00")
> event.end <- as.POSIXct("2016-01-16 05:00:00")

Upon definition of the additional arguments, the function MC.analysis is invoked:

> analysis <- MC.analysis(new_sim, delta, qUpper, P1_30min, sim.det,
+ event.ini, event.end, ntick = 25)

Appendix A.7. Example 2: Spatio-Temporal Uncertainty Characterisation

Appendix A.7.1. Events Selected

stUPscales has a dataset with the selected events per station as an xts object in space-wide format. We can load
the dataset by:

> library(stUPscales)
> data("Lux_precipitation")

and visualise the summary for five out of 25 stations in the loaded object event.subset.xts:

> summary(event.subset.xts[,1:5])

Index Dahl Echternach
Min. :2011-12-16 00:00:00 Min. :0.0000 Min. :0.000
1st Qu.:2011-12-16 02:30:00 1st Qu.:0.2000 1st Qu.:0.300
Median :2011-12-16 05:00:00 Median :0.4000 Median :0.500
Mean :2011-12-16 05:00:00 Mean :0.4361 Mean :0.482
3rd Qu.:2011-12-16 07:30:00 3rd Qu.:0.6000 3rd Qu.:0.600
Max. :2011-12-16 10:00:00 Max. :1.1000 Max. :1.200
Esch-Sure Eschdorf Ettelbruck
Min. :0.0000 Min. :0.0000 Min. :0.0000
1st Qu.:0.3000 1st Qu.:0.2000 1st Qu.:0.3000
Median :0.4000 Median :0.4000 Median :0.5000
Mean :0.4721 Mean :0.4787 Mean :0.5148
3rd Qu.:0.6000 3rd Qu.:0.8000 3rd Qu.:0.7000
Max. :1.1000 Max. :1.1000 Max. :1.3000

The summary for all stations can be computed as well:

> summary(as.vector(coredata(event.subset.xts)))

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0000 0.2000 0.4000 0.4616 0.6000 4.3000
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Appendix A.7.2. Space-Time Full Grid Object

The spatial location of the 25 rain gauge stations are provided in stUPscales as a dataset in
SpatialPointsDataFrame format from the sp package [40], and the boundary of the country of Luxembourg as a dataset
in sp format SpatialPolygonsDataFrame:

> data("Lux_stations")
> data("Lux_boundary")

The data were converted to an STFDF space-time full data.frame of the spacetime package [25], through the
function stConstruct from the same package:

> library(spacetime)
> stfdf <- stConstruct(x = coredata(event.subset.xts),
+ space = list(values=1:ncol(event.subset.xts)),
+ time = index(event.subset.xts),
+ SpatialObj = stations, interval = TRUE)

The object can be visualised through:

> library(RColorBrewer)
> sample <- seq.default(from = 6, to = 57, by = 3)
> stplot(stfdf[, sample],
+ col.regions=colorRampPalette(c("cadetblue1","darkblue"))(60),
+ sp.layout = list("sp.polygons", boundary.Lux), scales=list(draw=T),
+ key.space="right", colorkey=T, par.strip.text=list(cex=1),
+ main="Sample from event for prediction",
+ xlim=c(boundary.Lux@bbox[1,]), ylim=c(boundary.Lux@bbox[2,]), cex=1)

Appendix A.7.3. Space-Time Variograms

The experimental spatio-temporal variogram is computed using:

> library(gstat)
> expVgm <- variogramST(values~1, stfdf, tlags = c(0,1,2,5,10,15,20,25,30),
+ cutoff = 50000, width = 5000)

The spatio-temporal anisotropy is estimated by the estiStAni (gstat) by defining:

> linStAni <- estiStAni(expVgm, c(100,50000))

The experimental variogram and the anisotropy are scaled to have distances in kilometers:

> expVgm$dist <- expVgm$dist/1000
> expVgm$avgDist <- expVgm$avgDist/1000
> expVgm$spacelag <- expVgm$spacelag/1000
> linStAni <- linStAni/1000

The sum-metric variogram model is defined in gstat by:

> smModel <- vgmST("sumMetric",
+ space = vgm(20, "Sph", 15, 1),
+ time = vgm(10, "Exp", 200, 0),
+ joint = vgm(80, "Sph", 1500, 2.5),
+ stAni = linStAni
+ )

> fitSmModel <- fit.StVariogram(expVgm, smModel, fit.method = 7, stAni=linStAni,
+ method = "L-BFGS-B",
+ lower = c(sill.s = 0, range.s = 0, nugget.s = 0,
+ sill.t = 0, range.t = 0, nugget.t = 0,
+ sill.st= 0, range.st = 10, nugget.st = 0,
+ anis = 40),
+ upper = c(sill.s = 300, range.s = 10, nugget.s = 20,
+ sill.t = 300, range.t = 300, nugget.t = 20,
+ sill.st= 300, range.st = 5E3, nugget.st = 20,
+ anis = 500)
+ )

The mean squared error (MSE) of the best model fitted is shown by:

> attr(fitSmModel, "optim.output")["value"]
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\$value
[1] 0.0001309329

The fitted sum-metric model leads to the following parameters:

> fitSmModel

space component:
model psill range
1 Nug 0.00000000 0
2 Sph 0.02091874 10
time component:
model psill range
1 Nug 0.0000000 0.0000
2 Exp 0.1292266 201.8652
joint component:
model psill range
1 Nug 0.01587417 0.000
2 Sph 0.00000000 1506.002
stAni: 40

Appendix A.7.4. Space-Time Ordinary Kriging

To create prediction maps through space-time ordinary kriging, a prediction grid over Luxembourg is created:

> library(sp)
> grid.scale <- 500
> gridLUX <- SpatialGrid(GridTopology(boundary.Lux@bbox[,1]%/%grid.scale*grid.scale,
+ c(grid.scale,grid.scale),
+ cells.dim=ceiling(apply(boundary.Lux@bbox,1,diff)/grid.scale)))

> proj4string(gridLUX) <- stfdf@sp@proj4string
> fullgrid(gridLUX) <- F
> ind <- over(gridLUX, as(boundary.Lux,"SpatialPolygons"))
> gridLUX <- gridLUX[!is.na(ind)]

The parameters are rescaled to meters for prediction:

> fitSmModel$space$range <- fitSmModel$space$range*1000
> fitSmModel$joint$range <- fitSmModel$joint$range*1000
> fitSmModel$stAni <- fitSmModel$stAni*1000

The prediction is made by the function krigeST from gstat:

> LUX_pred <- STF(gridLUX, stfdf@time[sample])
> tIDS <- unique(pmax(1,pmin(as.numeric(outer(-5:5, sample, "+")), nrow(slot(stfdf, "time")))))
> SmPred <- krigeST(values~1, data=stfdf[,tIDS],
+ newdata=LUX_pred, fitSmModel, nmax=50,
+ stAni=fitSmModel[["stAni"]]/10/60,
+ computeVar = T)

Prediction maps are produced by:

> stplot(SmPred, col.regions=colorRampPalette(c("cadetblue1","darkblue"))(60),
+ scales=list(draw=T), main="spatio-temporal sum-metric model",
+ par.strip.text=list(cex=1),
+ sp.layout=list(list(boundary.Lux, fill="transparent")))

Similarly, the prediction error variance maps are produced by:

> SmPred.var <- SmPred
> SmPred.var[["var1.pred"]] <- SmPred.var[["var1.var"]]
> stplot(SmPred.var, col.regions=colorRampPalette(c("cadetblue1","darkblue"))(60),
+ scales=list(draw=T), main="spatio-temporal sum-metric model (variance)",
+ par.strip.text=list(cex=1),
+ sp.layout=list(list(boundary.Lux, fill="transparent")))
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