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Abstract: Management of water supply systems under shortage conditions due to drought requires
computational tools able to relate the past precipitation regime over different time scales to future
water resources availability. This work proposes a modelling framework to address the occurrence of
shortage for water supply systems whose resource is constituted by natural or artificial reservoirs.
The proposed methodology aims at identifying “management triggers” for possible mitigation
measures. Emphasis is given on the use of standardized indices to promote information sharing.
The implemented tool is structured into five modules: “hydrological” module; “scenarios” module;
“reservoir” module; a module for the evaluation of “indices of shortage”; and a “support to
early-warning” module. The whole procedure has been applied to three Italian reservoirs. For each
water body, a case specific shortage early-warning system, based on standardized precipitation
indices has been identified, allowing the implementation of efficient local mitigation measures.

Keywords: water supply system; drought; water shortage; standardized indices; early-warning
system; early-warning uncertainty

1. Introduction

According to the guidelines from the European Expert Network on Water Scarcity and
Droughts [1], water scarcity is defined as “a situation where insufficient water resources are available to
satisfy long-term average requirements. It refers to long-term water imbalances, where the availability
is low compared to the demand for water”. It can be triggered by a drought condition, defined as a
natural event characterized by a significant decrease in precipitation lasting for a limited period of time
(from few months to few years). Therefore, water scarcity can be determined both by natural force
and by man-made actions [2]. These two strongly interconnected components can lead to shortage
conditions in water supply systems (WSS), assumed as a temporary imbalance between availability of
water resources and the demands associated with them.

From a climatological point of view, drought can be characterized in terms of frequency, duration,
severity, and the extent of precipitation anomaly. However, with respect to other natural phenomena,
impacts of drought unfold far beyond the precipitation negative anomalies and with different modes
and times. For this reason, it is generally accepted (e.g., [3,4]) that there is a distinction between:
meteorological, agricultural, hydrological, and socio-economic drought. Typically, these four types
occur in successive steps and for different periods, possibly overlapping. Moreover, due to the
complexity of drought phenomena, it is very difficult to recognize the numerous factors affecting
the causal chain that propagates from meteorological to socio-economical droughts and, even more,
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to assess each single “weight” on the overall impact [1,5]. Such a complexity poses serious issues of
characterization that makes it difficult to discover unique solutions in both adaptation and mitigation
measures. One crucial aspect in the assessment of drought mitigation measures, as pointed out
in the Drought Management Plan Report [1], is to establish an appropriate link between a basin
drought state and possible management actions [6,7]. As stated by Gustard et al. [8] “the basis of any
drought management plan is a robust system of indicators that can identify and diagnose anomalies in
water availability and can provide the basis for early detection of drought episodes”. In this context,
drought monitoring and early warning indicators are fundamental components of a drought risk
management approach [9–12], which enable a system of analysis to detect the unique characteristics
of drought in terms of both precipitation anomalies and conditions of shortage. Such an analysis
should lead to the identification of “triggers” for the implementation of specific mitigation measures,
recognized among stakeholders [13,14]. However, as the interdependence of all users increases due to
the ramified network of direct and indirect drought impacts [15], management of water systems can
be very difficult due to the potential conflict of interests among users, affecting the social acceptance
of drought management measures [16–18]. In this context, it is crucial that “triggers” based on
specific indicators are objectively defined and able to clarify the relation between drought severity
(in meteorological terms) and possible impacts [19–21]. This relationship must be assessed considering
that impacts can be very different and can be deployed on very different time scales depending on the
different users. For this reason, some authors have proposed drought indices based on the combination
of several meteorological and/or hydrological variables in a multivariate analysis framework [22,23].
In order to be useful to support drought management, indicators should be capable to meet the actual
information needs of the different decision-makers [24]. Moreover, one has to consider indicators
defined at the basin scale, in order to take into account the WSS as a whole, including natural and
human factors [25–28]. Finally, indicators should take into account the related uncertainty. It is worth
noting that according to Zare et al. [29], the keyword “uncertainty” is the least mentioned in the field of
Integrated Water Assessment and Modelling (IWAM), despite its fundamental importance (conversely,
the keyword “management” is the most cited).

It must be stressed that issues related to quantitative water management in drought and scarcity
conditions can be strongly related to quality problems, due to possible increased concentrations of
contaminants. This aspect is explicitly mentioned, for example, in the Guidelines for drinking-water
quality of the World Health Organization [30]: Water Safety Plans should include a risk analysis of
possible shortages to estimate the risk of not reaching quantity and quality targets. Scarcity is only one
of the possible hazards that define risk for WSSs. In this paper, other factors such as infrastructure
vulnerability, exposure to contamination, loss costs (e.g., [31–34]), are not taken into account.

To cope with drought and scarcity from a management perspective, it is possible to adopt support
tools, such as AQUATOOL [35], MODSIM [36–38], WEAP [39], RIBASIM [40], WARGI-SIM [41] or
SimBaT-DSS [42], or a set of interacting models such as the Netherland Hydrological Instrument
NHI [43], which basically computes the transient water budget of integrated WSSs. A comparison of
generic simulation models for water resource systems can be found in [44]. However, these kinds of
tools do not adopt or partially adopt indicators to characterize drought, scarcity and related impacts
and the links among them, as required in the framework of the Drought Management Plan [1].

To quantitatively address drought characterization, in this paper we propose a stakeholder
oriented modelling framework for the early shortage detection when the water resource is constituted
by a reservoir fed by surface waters. Our focus is placed on the quantitative characterization of
water shortage events and we aim to provide a robust and sharable basis for water basin policies,
intended as a catalogue of management actions based on the allocation of water under scarcity
conditions. In this regard, the use of standardized indices to characterize both meteo-hydrological
drought and shortage conditions is extensively exploited, according to the EU standards [1]. From this
perspective, the proposed methodology constitutes a novelty with respect to the numerical codes
mentioned above. The developed procedure has been implemented in a single code, named INOPIA,
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experimented by the National Civil Protection Department as a pre-operative analysis tool. In order to
explore the potentialities and limits of the whole procedure, three case studies having different features
such as precipitation regime, climate, catchment size and reservoir capacity, seasonal demand, etc.,
are analyzed: Lake Maggiore (Switzerland and Northern Italy), the Ridracoli reservoir (Central Italy),
and the Occhito reservoir (Southern Italy).

2. Materials and Methods

2.1. Methodological Framework

The methodological procedure proposed in this paper results from a deep consultation with the
National Civil Protection Department, as a principal stakeholder, and with the water managers of
several reservoirs, as final users. The initial consultation aimed at defining the decision-makers’
information needs. Some guidelines have been agreed upon, beginning with the results of the
stakeholders’ consultation, that aim to obtain an operational system according to the European
standards [1] and, at the same time, to pursue the goal of “facilitation and transparency” as a pillar for
stakeholders’ involvement [14]. In the following, the main outcomes of this consultation are reported:

• Variables of interest and results, for climate, hydrological and water management analysis
should be expressed in terms of normalized indices, easily understandable by stakeholders
and policy-makers to allow for comparisons among different the basins and WSSs or sub-systems.
Among them, the Standardized Precipitation Index (SPI, [45]) to characterize the meteorological
drought is preferred [46,47].

• The whole procedure must relate directly to meteorological drought indices and severity indices
(i.e., ability to meet demands) as impact metrics.

• Simple basin scale rainfall-discharge models are necessary where a climate monitoring network
is poor, especially in the upper part of a river basin, provided that such models are able to
reproduce the dynamic of the system due to climate variability. Model simplicity (both in
operative handling and in calibration procedures) enables the implementation and comprehension
of the hydrological tools required for non-expert users. This is a key point in a participatory
management framework [14].

• The precipitation and hydrological time series used to estimate water resource availability must be
representative of the characteristic return periods of shortage events. For this reason, a stochastic
approach should be preferred.

Taking into account the agreed upon guidelines, the following specific tools have been developed:

1. A multilinear regression model, named SPI-Q, to simulate the relationships between the
precipitation regime, represented by SPIs computed over different time scales and the monthly
inflow to the reservoir (Section 2.1.1).

2. A stochastic model for the monthly SPI based on a zero-mean autoregressive (AR) model to
generate a long-enough time series (Section 2.1.2).

3. A monthly water balance model of the reservoir that accounts for the storage of the reservoir,
the inflows and outflows connected to the water demands, environmental flows, and flood control
spillages (Section 2.1.3).

4. Suitable indices of shortage able to represent not only the mean failure conditions, but also the
“extreme” failures (i.e., with longer return periods), less likely, but potentially more dangerous
(Section 2.1.4).

5. Statistical methods for a quantitative analysis of the past precipitation regime, represented by
the SPIs and the future conditions of shortage, assessed over different forecast time scales
(Section 2.1.5).

The overall five-modules framework is presented in Figure 1, where each module is indicated by
ellipses: (1) Calibration, (2) Scenarios, (3) Reservoir, (4) Indices of shortage, (5) Support to early-warning.
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Figure 1. Methodology flowchart. Colored ellipses refer to the steps of analysis of the tool INOPIA,
described in details in Sections 2.1.1–2.1.5.

2.1.1. CALIBRATION Module

The relation between precipitation and inflow to the reservoir is simulated by a multilinear
regression model called SPI-Q model [48–51], computed at the monthly scale:

Q(m, i) = aSPI1(m)·SPI1(m, i) + aSPI3(m)·SPI3(m, i) + aSPI6(m)·SPI6(m, i) + a0(m) (1)

where Q(m, i) is the inflow to the reservoir for the month m, year i, and SPI1(m, i), SPI3(m, i),
and SPI6(m, i) are the means over all the available stations of the Standardized Precipitation
Indices [45] computed for the month m, year i on the precipitations cumulated over 1, 3, and 6 months.
To compute the SPI values, a gamma distribution has been adopted [52,53]. As such, the data
requirement for SPI-Q model application is limited to the monthly time series of precipitation,
representative of the analyzed watershed basin and contemporary monthly inflows to the reservoir.

aSPI1(m), aSPI3(m), aSPI6(m) and a0(m) are the coefficients from the multilinear regression of
SPI1, SPI3, SPI6 and the known term, respectively. These coefficients are calibrated for each month m
adopting the least-square method.

It is worth noting that the regression coefficients (having the units of a discharge) can be
interpreted in a physical perspective, as they express the relative weights that hydrological processes
developing over different time scales have on the monthly discharge. a0(m) represents the mean
discharge under mean conditions of precipitation, as the latter correspond to null values of SPI1, SPI3,
and SPI6; aSPI1(m), aSPI3(m), aSPI6(m) represent the weights that the precipitation anomalies over a
certain time scale have on the discharge (inflow to the reservoir). Moreover, the ratio between each
coefficient and the known term a0(m) can be regarded as the impact that cumulated precipitation has
on the discharge anomalies. Low values of the coefficients with respect to a0(m) indicate a stability of
the discharge regime with respect to the precipitation anomalies, whereas high values indicate that
discharge variability is explained by precipitation cumulated over a given time scale.

The choice of the aggregation time scale (1, 3, and 6 months) and the related physical meaning of
the regression coefficients reflect the typical time scales of the different hydrological processes that can
contribute to the total inflow to the reservoir: SPI1 is representative of the processes with fast response
time (i.e., surface run-off). SPI3 can be considered representative of the mean actual conditions of soil
moisture, which in general are influenced by the precipitation aggregated over a time series longer than
one month. Moreover, this time aggregation is recognized as the most representative for agricultural
drought, thus having a strong correlation with the vegetation response [54–56]. Finally, SPI6 represents
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slow hydrologic processes, such as snow melting and subsurface flow. Such aspects will be discussed
in details in Section 3.1.

2.1.2. SCENARIOS Module

Once calibrated, the SPI-Q model is adopted to design different scenarios of inflow to the reservoir
from assigned precipitation time series through the SCENARIOS module. The basic assumption is
that the response of the catchment to the precipitation regime is time-invariant. Such a hypothesis
is assumed adopting the constant values of the regression coefficients in Equation (1) to generate
scenarios of inflow from precipitation scenarios. From a physical perspective, this means that the land
use of the watershed basin as well as the infrastructure (i.e., possible connections to external basins or
caption works) remain unchanged in time and independent from the precipitation regime.

In this paper, a synthetic time series of monthly precipitation has been used to generate a discharge
time series. Adopting a synthetic time series of precipitation and/or discharge to simulate the
impacts of drought events on WSSs is a widely acknowledged method, as it allows for combining
several conditions of precipitation (or discharge) to the actual storage in the reservoir [57–61].
Here, we preferred to generate a precipitation time series with respect to discharge, as usually historical
records of precipitation are longer than discharge records, which allowed us to compute more robust
statistics. The generation method adopted in this research is based on a zero-mean autoregressive
(AR) model [50] that allows generating SPI1 time series statistically equivalent to the observed ones,
thus reproducing the natural variability along a wide range of time scales. Synthetic SPI1 time series
are transformed into monthly precipitation by inverting the cumulated density functions fitted in
the CALIBRATION module to compute the SPI1 and finally turned out into monthly inflow time
series through the SPI-Q model. It is worth it to stress that the inflow scenarios can be developed
from both time series of precipitation (i.e., from medium term weather forecast) or directly from
Standardized Precipitation Indices time series. The latter approach can be particularly useful when
implementing climate change scenarios from General Circulation Models (GCMs) output. In fact,
as the SPI is normalized (by construction), no statistical downscaling is required when implementing
precipitation scenarios from GCM.

2.1.3. RESERVOIR Module

In this module, the water balance of the reservoir is computed at a monthly scale considering
as budget terms the inflow from the SPI-Q model and the monthly water demand addressed to the
reservoir (including possible environmental flow). The quantitative status of the reservoir is computed
as stored volume, taking into account maximum and dead capacities. Conditions of failure occur
when the stored volume reaches the dead capacity; accordingly, the water demand not satisfied is
considered as a water deficit. Conversely, overflow conditions occur when the monthly inflow exceeds
the maximum reservoir capacity.

2.1.4. Indices of Shortage (IOS) Module

This analysis allows for the statistical quantification of the exposure of the water system to
failures by estimating the probability of occurrence, duration, and intensity of the water deficit
(Reliability-Resilience-Vulnerability metrics) based on the output from the RESERVOIR module.
A classical approach based on the Reliability, Resilience, and Vulnerability (R-R-V) metrics (e.g., [62,63])
has been adopted, although slightly modified to also take into account extreme events [49]. Such kind
of metrics have been recognized as the most important objectives for water utilities and for stakeholders
in general [64].

Reliability is defined as the probability of the system to perform in a satisfactory way during a
defined operation period [65]:

Rel =
ns

T
(2)
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where ns is the number of satisfactory time steps (i.e., a time step during which the demand is
fully satisfied) and T is the number of time steps in the whole operation period, thus 0 ≤ Rel ≤ 1
(dimensionless), assuming monthly time resolution throughout the analysis [66].

With regard to the water reservoir, resilience is commonly associated to the ability of the water
system to recover from adverse events such as prolonged droughts. Two indices, Resmed and Resext,
are adopted to quantify Resilience. These are computed on the data set of the simulated storage failure
durations in the operation period T, considering the median (perc50) and extreme (perc90) duration of
the failures, normalized by the number of months per year (12):

Resmed = 1− 1
12

perc50{m f (i)}i=1,...,N f
; Resext = 1− 1

12
perc90{m f (i)}i=1,...,N f

(3)

where Nf is the total number of failures during the operation period, mf(i) is the duration of the i-th
failure, perc50 and perc90 are the 50th and 90th percentile (positive tail) of the frequency distribution of
the failure durations. Splitting the Resilience metric into the median and 90th percentile also allows for
the consideration of events with a long return period, as suggested in the Drought Management Plan
Report from the EU Commission [1].

Similarly to reliability, two indices are adopted to measure vulnerability: median vulnerability
Vulmed and extreme vulnerability Vulext:

Vulmed = perc50

∑
m f (i)
j=1 WDj(i)

∑
m f (i)
j=1 Wdj(i)


i=1,...,N f

Vulext = perc90

∑
m f (i)
j=1 WDj(i)

∑
m f (i)
j=1 Wdj(i)


i=1,...,N f

(4)

where Nf is the total number of failures during the operation period, WDj(i) is the deficit in the month
j of the failure i and Wdj(i) is the corresponding water demand of month j(i).

It is worth noting that the proposed metric for Reliability is based on the number of computed
failure episodes with respect to the whole operation period. Similarly, Resilience and Vulnerability
metrics are based on the “experimental” cumulative density functions (i.e., on the cumulative density
function of duration and deficit for Res and Vul, respectively). Therefore, no theoretical distribution
is assumed in advance. Such an approach is justified by using a stochastic approach to estimate the
indices of shortage (Section 2.1.2). Possible uncertainties on the computed shortage indices related to
the modelling uncertainty are analyzed in Section 3.4.

2.1.5. Support to Early-Warning (SEW) Module

This module aims at giving quantitative information to answer the following question: giving the
precipitation of the last n months, what is the probability of occurrence of deficit during the following
M months? It is worth it to stress the importance of defining a specified time window of analysis
in order to assess the capability of failure forecast for a given reservoir [59]. To this goal, the SEW
analysis graphically links the precipitation regime, represented by the SPI computed at different time
scales, to the deficit volumes computed over the M following months. Once chosen the month of
analysis, the SPI time scale, and the forecast window (in the example of Figure 2 March, SPI5 and
6 months, respectively), the occurrence of failure (Figure 2a) and the correspondent cumulated deficit
(Figure 2b) are plotted for different classes of antecedent precipitation anomalies, represented by the
SPI at a given time scale. Similarly to Figure 2b, Figure 2c relates the actual volume in the month of
analysis to the cumulative deficit occurred in the following m months (6 in the example). It must be
stressed that that usually the actual water stored in a reservoir is adopted to forecast future conditions
of shortage over a given time window [6,41]. However, linking the SPI to future possible failures, as in
panel (b), provides the possibility to associate the probability features of the precipitation regime to the
probability of occurrence and the intensity of shortage.
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Figure 2. Support-to-early warning graphical analysis. (a) Occurrence of deficit (colored bars, principal
y axis) and median cumulated deficit (stems, secondary y axis) for each class of Standardized
Precipitation Index (SPI). (b) Cumulated deficit for each shortage episode as a function of the
correspondent SPI. Color code refers to the cumulated deficit. (c) Cumulated deficit over 6 months as a
function of the volume stored in March. Color code refers to the SPI value. The example refers to the
Ridracoli case study (month of analysis: March; predictor: SPI6; forecast time window: 5 months).

In addition to the analysis presented in Figure 2, where the month of analysis, the antecedent SPI
time scale and the forecast window are assigned, an overview of all the combinations of SPIs with
a failure forecast time window for a given month of analysis is also analyzed. Such a visualization,
discussed in details in Section 3.5, allows for a quantitative assessment of the relationships aiming to
find out the best predictor in terms of antecedent precipitation (SPI) and for which forecast time scale.
Such an analysis permits the getting information on both possible thresholds to trigger mitigation
measures and on possible management actions in case of forecasted shortage episodes. To this goal,
for each SPI and deficit aggregation scale, the following procedure has been adopted.

A linear regression (red lines in the example of Figure 3) is equipped to the subset of failure
events associated to a negative SPI. If the intersection of the resulting regression line with the x-axis
(SPI values) is lower than zero (Figure 3b), the value of the intersection is assumed as the management
threshold SPImt (mitigation measures trigger); otherwise, the linear regression is forced to pass through
the axes-origin (i.e., the management threshold cannot correspond to a positive SPI, as it would imply
the occurrence of the reservoir deficit even when the precipitation index is above average).

Figure 3. Example of quantitative analysis of the SUPPORT TO EARLY-WARNING plots.
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All pairs having a positive deficit associated with a SPI lower or equal to the estimated management
threshold are considered as “true positives”. Events having a null deficit and associated SPI lower or
equal to the estimated management threshold are considered as “false positive”. Similarly, all events
having a positive (null) deficit associated with an SPI higher than the estimated management threshold
are considered as “true (false) negatives”. This classifier matrix is analyzed through the Cohen’s k
coefficient, a scalar metric for accuracy that compensates for success due to mere chance [67]. The strong
relationship between the Cohen’s k and the Receiver Operating Characteristic (ROC) curves has been
demonstrated as a tool to measure classifiers’ accuracy in binary-class problems [68], widely adopted
in a water management framework (e.g., [69,70]). In the proposed procedure, the Cohen’s k has been
preferred with respect to the ROC curve as the interpretation of the latter could be quite difficult,
mainly in multi-class problems. The Cohen’s k coefficient is defined as follows:

k =
TP− FP− P·(1− 2N)

P− P·(1− 2N)
(5)

where P, TP, and FP are the total number of failure events, the number of true positives, and the
number of false positives, respectively. P = TP + FP and N = FP + TN (where TN is the true
negative). The higher the Cohen’s k, the better the performance of the forecast. It is possible to find out
the best predictor in terms of antecedent precipitation (SPI) and time scale of the forecast. Cohen’s k
ranges from 0 to 1. If Cohen’s k > 0.4, the concordance is defined as fair to good [71].

The goodness-of-fit for the predictor (linear regression) is quantified through the correlation
coefficient (r) computed on the associated subset. This descriptor assesses the performances of the
SEW application (i.e., its capacity to quantify the expected deficit). The correlation coefficient r has
been preferred to the root mean squared error or mean absolute error, as it is easier to compare among
the aggregation scales and the different case studies.

2.2. Case Studies

The methodology described in the previous sections has been applied and tested on three Italian
reservoirs: Lake Maggiore (Switzerland and Northern Italy), Ridracoli (Central Italy), and Occhito
(Southern Italy) reservoirs. The locations of the three reservoirs are shown in Figure 4, while the
main characteristics of each case-study are reported in Table 1. Mean monthly precipitation of one
representative station located within the watershed basin and related inflow to the reservoir are shown
in Figure 5 to describe the mean hydrologic regimes.

1. Lake Maggiore natural reservoir is located in the Alpine region between Switzerland and Italy.
Its level is regulated by law through hydraulic infrastructures that make the total amount of
water usable for irrigation and industrial purposes equal to 420 mm3 from March to October
and to 315 Mm3 from November to February. The total demand ranges from approximately
250 Mm3/month in winter to 650 Mm3/month in summer (irrigation season). The monthly
precipitation regime presents two peaks: the spring’s peak is due to both rainfall and snowmelt,
while the autumn’s peak appears to be related only to precipitation. Moreover, the base-flow
ensures a consistent discharge also during the summer months.

2. Ridracoli artificial reservoir. Located in the Tosco-Emilian Apennine chain (central Italy), it can
be considered a small size reservoir (28 Mm3). The mean monthly demand (only for human
consumption) is about 5 Mm3/month. The strong increase due to the touristic season is usually
supplied by other water resources (in particular, coastal aquifers). In this basin, most of the
precipitation occurs in late autumn, winter, and early spring. The inflow to the reservoir shares
approximately the same regime and almost nullifies during the summer months.

3. Occhito artificial reservoir, located in the Molise region (south of Italy) can be considered a
big-size reservoir, with a maximum storage capacity of 250 Mm3. The mean annual withdrawal
from the Occhito dam for the irrigation supply of the Fortore irrigation district is about 95.9 Mm3
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(varying seasonally), while the annual demand for human and industrial consumption are
respectively about 55 and 10 Mm3 [49,51]. The precipitation regime is similar to the one observed
in Ridracoli, with most of the rainfall concentrated in late autumn, winter, and early spring.
Such a precipitation regime appears to drive the inflow to the reservoir regime.

Figure 4. (a) Location of the case studies. (b) Lake Maggiore. (c) Ridracoli. (d) Occhito.

Table 1. Main characteristics of the three case studies.

RESERVOIR

Lake Maggiore Ridracoli Occhito

Koppen-Geiger climate classification Alpine
(Temperate cold) temperate cool Mediterranean

(temperate hot)
Mean altitude of the watershed basin (m asl) 1314 893 583

Watershed basin (km2) 6660 36 1008
Number of rain gauges stations 9 4 2

Rainfall data availability 1951–2012 1946–2010 1950–2010
Inflow data availability 1995–2014 1987–2010 1982–2007

Mean Annual Inflow MAI (Mm3) 8536.8 64.1 162.4
Reservoir maximum storage capacity RMC (Mm3) 250 28 250

Mean Annual Demand MAD (Mm3) 5096 61.7 158.2
MAI/MAD [-] 1.68 1.04 1.03
RMC/MAI [-] 0.03 0.44 1.54
RMC/MAD [-] 0.05 0.45 1.58

Figure 5. Precipitation (left y-axis) and standardized inflow to the three reservoirs (right y-axis).
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3. Results and Discussion

3.1. Calibration

To evaluate the results of the CALIBRATION module, the regression coefficients (Equation (1))
for the three case studies are shown in Figure 6. The goodness-of-fit metrics are presented in Table 2.

Figure 6. Regression coefficients from the SPI-Q model calibration. (a) Lake Maggiore. (b) Ridracoli.
(c) Occhito.

Table 2. Statistics of the residues (observed-simulated monthly inflow) of simulations from the
CALIBRATION module.

RESERVOIR

Lake Maggiore Ridracoli Occhito

r2 0.84 0.93 0.83
Root Mean Square Error (m3/s) 7.2 × 101 5.2 × 10−1 3.4 × 100

Mean Absolute Error (m3/s) 4.6 × 101 3.4 × 10−1 2.0 × 100

Mean Bias (m3/s) 6.3 × 10−1 7.8 × 10−3 2.4 × 10−1

Mean Bias/Reservoir capacity (%) 7.9% 0.2% 3.0%
Mean Bias/Annual Mean Total Inflow (%) 0.2% 0.4% 4.7%

The performance indices (Table 2) show a good agreement between observation and simulation.
Romano et al. [50] demonstrated that the modelling errors do not significantly affect the value of the
shortage risk indices computed from the observed inflow time series; therefore, the SPI-Q model results
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can be acceptable for assessing the exposure to shortage of WSSs. It is worth noting that the mean bias,
computed on an annual basis, is in the worst case (Lake Maggiore), below 10%, with respect to the
reservoir capacity, and below 5% with respect to the total annual mean inflow (Occhito). The modelling
error is higher for higher values of inflow, which usually does not propagate into large volume errors
for small-size reservoirs, as the maximum capacity acts as a cut-off in case of overflow (i.e., for Lake
Maggiore and Ridracoli reservoir, having a total annual inflow significantly higher than the maximum
storage capacity). On the contrary, the modelling error can propagate throughout the simulation
variables in case of reservoirs with a higher ratio between the maximum capacity and mean annual
inflow. Uncertainties on the indices of the shortage related to the uncertainty on the SPI-Q model will
be discussed in Section 3.4.

As shown by the mean monthly inflow (Figure 5) and by a0 coefficients (Figure 6) the three
basins are characterized by different hydrological regimes: the maximum discharge at Ridracoli and
Occhito occurs in winter, whereas in summer the discharge is negligible. This is partially due to the
precipitation regime (rainfall is at a minimum in July, Figure 4) and partially to the highest summer
evapotranspiration, which limits run-off. On the contrary, a discharge regime for Lake Maggiore
presents two peaks, during spring and autumn, related to the maximum precipitation combined with
the snowmelt.

A qualitative inspection of the regression coefficients, suggests that the time variability of the
discharge for a given month at Ridracoli and Occhito is driven by the precipitation of the same month
(SPI1), which can be related to fast hydrological processes: in fact the aSPI1 monthly coefficients are in
both basins higher than aSPI3 and aSPI6. However, during the late-autumn and winter months both at
Ridracoli and Occhito, longer time scales significantly impact the discharge variability: in particular,
the weights of SPI3 in autumn and the weights of SPI6 in winter are significant at Ridracoli and
Occhito, respectively. Such differences in the residence time is due to the difference in size between the
two watershed basins, being climate and land cover similar.

Results for Lake Maggiore look different as aSPI3 and aSPI6 are higher than aSPI1, meaning that
the variability of the inflow to the lake during the spring’s months is driven by seasonal precipitation
aggregated over 3 and 6 months. Such a result can be interpreted as the effect of the snow melting
processes, since the inter-annual variability of discharge during the spring months is significantly
driven by winter precipitation, represented by the SPI3 and SPI6 computed in May, June, and July.
Conversely, in autumn (particularly in October and November) the weight of the SPI3 on the discharge
variability is significant compared to that of SPI6. These findings can have a double explanation: on the
one hand, summer precipitation does not impact the discharge due to the strong evapotranspiration
and therefore the SPI6, that includes also July and August rainfall does not add any supplementary
information on the autumn discharge amount with respect to SPI3. On the other hand, discharge during
the autumn months is affected not only by precipitation of the same month (SPI1), but also by the soil
moisture and groundwater conditions, that are determined, in turn, by precipitation cumulated over
longer period (SPI3).

Finally, as suggested by the values of the regression coefficients, the precipitation’s variability
affects the variability of the monthly discharge at Ridracoli and Occhito more than at Lake Maggiore,
where aSPI1, aSPI3 and aSPI6 are generally much lower than aSPI0, except for the autumn months.
In fact, during October and November the coefficients of SPI1 and SPI3 are almost half of the known
term, suggesting that the variability of the discharge is due to both the surface run-off (SPI1) and the
soil moisture and groundwater states (SPI3).

3.2. Scenarios

For the three case studies analyzed in this paper, synthetic time series of precipitation of
1000 years have been generated in order to perform a robust statistical evaluation of system failure
episodes. The number of hydrological years is similar to the one adopted in Asefa et al. [60].
Moreover, as demonstrated in [50] for the Ridracoli case study, 250-years of precipitation scenarios
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are sufficient to obtain a stationary statistics for the R-R-V metrics. Therefore, considering the larger
extension of both the Lake Maggiore and Occhito catchments, as well as their bigger maximum
volumes, 10 series of 1000-y monthly precipitation are generated for each case study to perform a
robust estimate of the shortage risk indices.

3.3. Reservoir

Results from the computation of the monthly water budget performed through the RESERVOIR
module are presented in Figure 7 in terms of water budget of the reservoir (plots a), failures and
overflows events (plots b). Monthly demands addressed to each reservoir are shown in plots (c) of
each panel. The amount of the demands is assumed to be unaffected by errors.

Figure 7. Results of the RESERVOIR module for Lake Maggiore, Ridracoli and Occhito reservoirs.
(a) actual monthly volume (blue bars, principal y-axis), annual inflow (blue line, secondary y-axis),
annual demand (red line, secondary y-axis); (b) monthly deficit (red bars, principal y-axis) and
monthly overflow discharge (blue bars, secondary y-axis); (c) mean monthly demand (red bars)
and environmental flow (blue bars).
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The starting point of the discussion on the RESERVOIR module concerns the ratio between the
mean annual inflow and the mean annual demand (Table 1). Whereas at Ridracoli and Occhito the
demand addressed to the reservoir is balanced on average by the inflow (MAI/MAD ≈ 1), at Lake
Maggiore the mean annual inflow is much higher than the mean annual demand (MAI/MAD ≈ 1.68).
On the other hand, the ratio between the reservoir maximum storage capacity RMC and mean annual
inflow MAI is much lower for Lake Maggiore (0.03) than for Ridracoli and Occhito (0.44 and 1.54,
respectively). This feature strongly impacts the number of overflow episodes, which are much more
numerous for Lake Maggiore than for Ridracoli and Occhito.

A discussion of the failure episodes is more complex. Although for Lake Maggiore the ratio
between the mean inflow and demand MAI/MAD is higher than 1, the annual demand is almost
20 times greater than the reservoir maximum capacity (RMC/MAD ≈ 0.05). This implies that the
storage capacity of the Lake Maggiore WSS is much lower than the demand, strongly limiting the
seasonal management capability. Therefore, the system appears to be prone to failure episodes. On the
contrary, at Ridracoli, although the seasonal variability (Figure 5) is much higher than the seasonal
variability of the demand (shown in Figure 7b), this could make Ridracoli more exposed to failures,
thus the RMC/MAD ratio is much higher with respect to Lake Maggiore (0.45 and 0.05, respectively),
suggesting a lower vulnerability of the system to failures. How these two aspects combine with each
other will be analyzed through the IOS module in the next section.

At Occhito and at Ridracoli, the inflow to the reservoir is approximately equal to the mean annual
demand. However, Occhito is characterized by two peculiar features that could limit its vulnerability
with respect to Lake Maggiore and Ridracoli, which are the ratios RMC/MAI and RMC/MAD that are
significantly higher than 1 (1.54 and 1.58, respectively). On the one hand most of the inflow can be
stored in the reservoir, avoiding frequent overflow, on the other hand this allows for a multi-annual
management of the system.

3.4. Indices of Shortage (IOS)

Indices of shortage (Equations (2)–(4)) have been computed for the three reservoir based on the
failures time series obtained from the RESERVOIR module. The values shown in Figure 8 have been
estimated as the mean of the indices obtained from the 10 stochastically generated time series of
precipitation (each one 1000-years long, Section 3.2) and the related time series of inflow (through the
SPI-Q model). The modelling uncertainty on the shortage indices has been estimated as the standard
deviation of the results obtained from the 10 different runs (error bars in Figure 8).

Figure 8. Indices of shortage for the three reservoirs.
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As shown in Figure 8, the impact of the modelling uncertainty on the indices of shortage is
very low and does not affect the representativeness of the estimated values. It is worth noting that
uncertainty on the Resilience metrics (both median and extreme) is null: this is due to the fact that
such values (and the related standard deviations) are approximated at a monthly scale, which is the
time step of analysis.

Concerning the differences among the three WSSs, Occhito is the less exposed to shortage episodes,
as it has the lowest index of reliability (6%). Conversely, Lake Maggiore and Ridracoli present an
occurrence of deficit slightly higher than 0.1, corresponding to return periods of about 10 years. The higher
stability of the Occhito’s system is due to the higher maximum capacity of the reservoir with respect
both to the mean annual inflow (RMC/MAI = 1.54) and to the mean annual demand (RMC/MAD = 1.58).
However, this implies that when failures occur (although less likely than at Lake Maggiore and Ridracoli),
these strongly impact the vulnerability index (that measures the water deficit with respect to the
corresponding demand) both in the median and extreme values (67% and 87%, respectively).

The higher exposure of Lake Maggiore with respect to Occhito is mostly due to the high value of
the ratio between demand and storage capacity RMC/MAD (0.05). This feature strongly affects both
the reliability and the resiliency indices. In fact, on the one hand Lake Maggiore is more prone than
Occhito to failures, on the other hand the low value of the reservoir capacity with respect to the annual
inflow (RMC/MAI = 0.03) results in a significant decrease of the system’s resilience, in both the median
and extreme value (1-Resmed = 0.17 and 1-Resext = 0.42, corresponding to 2 and 5 months, respectively).

Ridracoli has characteristics that can be considered “intermediate” between Occhito and Lake
Maggiore. Although the mean annual demand is balanced by the mean annual inflow (i.e., less exposed
to failures compared to Lake Maggiore), the mean annual inflow with respect to the maximum
capacity of Ridracoli is much higher than that of Occhito (RMC/MAD is equal to 0.45 and 1.58,
respectively). Thus, the number of overflow episodes is much higher. Moreover, the maximum
capacity is significantly lower than the mean annual demand (RMC/MAD equal to 0.45 and 1.68 for
Ridracoli and Occhito, respectively): this feature strongly increases the resilience of the system, equal to
3 and 6 months for Resmed and Resext.

3.5. Support to Early-Warning (SEW)

In order to discuss the analysis performed through the SEW module, March has been taken
into account as the month of analysis. This choice is related to two main aspects: (1) The highest
precipitation rates occur in all the three case studies during the cold months (from late autumn to early
spring); moreover, the related inflow to the reservoir is almost null during summer at both Ridracoli
and Occhito, while at Lake Maggiore the variability of the monthly discharge during summer is low
(the variation coefficients being 0.40 and 0.25 in July and August, compared to 0.90 and 0.74 in October
and November). (2) The water demand is generally higher during the late spring and summer months,
due to irrigation and/or the touristic season. This implies that an assessment of possible conditions of
shortage and the consequent possible mitigation measures should be suitably undertaken at least in
early spring. Of course, the proposed method of analysis can be extended to any month of the year.

The SEW module estimates the precipitation conditions occurred before the month of
analysis (March) that potentially can lead to water shortage conditions in the following months.
To this goal, an overview plot showing all the possible combination of SPI aggregation scales
(from 1 to 12 antecedent months) and forecast window (from 1 to 12 future months) is delivered
and analyzed. Therefore, as an example, the subplot (SPI3, DEF4) relates the precipitation cumulated
over the trimester Jan-Feb-Mar to the deficit over the period Apr-May-Jun-Jul (similarly for the
other subplots). In Figure 9, the overview plots show as a maximum the aggregation time scale for
precipitation N = 6 months (thus considering precipitation from October to March) and as a maximum
time window of forecast M = 6 months (from April to September). The complete figure, including
all the possible 144 combinations (12 aggregation scales for SPI times 12 forecast windows) is not
presented for clarity reasons.
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Figure 9. Results of the SUPPORT TO EARLY-WARNING module (overview). (a) Lake Maggiore.
(b) Ridracoli. (c) Occhito. Colorcode refers to the cumulated deficit.

The basic idea of the SEW analysis is that the higher the number of failure episodes for negative
values of SPIn, the more effective will be the ability of such an index to forecast failures over the next
M months. Moreover, the more the points on each graph are structured along a straight line, the more
it is possible to predict the intensity of future deficits.
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A visual inspection of Figure 9 suggests that forecast at six months (DEF6) is feasible for Ridracoli
and Occhito, as plots appear well structured, while the forecast for Maggiore Lake over the same
time window is not possible. The structure of the plots for both Ridracoli and Occhito leads us to
conclude that for the two considered case studies, if winter precipitation (from October or November
to March) is above the mean, the system is able to satisfy the entire water demand, whatever the spring
and summer precipitation. The distribution of the deficit for SPI5 ≤ 0 (or SPI6 ≤ 0) appears to be
well structured both at Ridracoli and Occhito. Approximately, the higher the negative precipitation
anomaly, the stronger the probability to have a higher water deficit in the reservoir. Of course, such a
structure appears to be more effective for early-warning as the time window of the forecast is reduced.
Let us stress, as an example, the forecast ability of SPI6 at Occhito when the forecast window is reduced
to 4 months ((SPI6, DEF4) in Figure 9c): the majority of the points for SPI6 ≤ 0 are aligned along a
straight line, indicating the likely intensity of a future deficit.

The same analysis performed on the Lake Maggiore plots (Figure 9a) indicates that, for long
forecast time windows (e.g., ≥5 months considering March as reference month), the capability to
operate as an early-warning for future deficit is not consistent. The cloud of points for such timeframes
appear not to be structured no matter the aggregation time scale that is taken into account for the
precipitation. A large number of failure events occur also for SPI6 > 0, which means that the ability
of the system to perform satisfactorily until the end of the irrigation season (August or September)
strongly depends on the spring and/or summer precipitation. More information can be inferred only by
reducing the forecast horizon. Considering, such as an example, a 3-months window, the precipitation
of the last two months (SPI2) can be adopted as an early-warning for the next 3-months, as for SPI2 > 0
only few failures are shown. Similar considerations can be done concerning the forecast ability of SPI3
and SPI4 (for the same 3-months window of analysis). It is worth noting that increasing the time scale
of the precipitation index (SPI5 and SPI6) does not necessarily improve the forecast capacity.

Results shown in Figure 9 can be analyzed from a quantitative perspective in order to obtain
information on possible management actions in case of forecasted shortage episodes. To this goal,
the Cohen’s k has been computed for each pair SPI (predictor)—forecast window (predictand). Figure 10
(from a to c panels) shows the Cohen’s k for each case study. The overview presented in Figure 10d
reports the contour lines of the Cohen’s k coefficients, as well as the contour lines of the correlation
of the regression coefficients computed accordingly to the methodology presented in Section 2.1.5.
Figure 10 can be considered a summary of the main prediction performances for each case study.

Figure 10. Panels (a–c) Cohen’s k coefficients for the three case studies. (d) Contour line Cohen’s k = 0.25
contour line for Lake Maggiore (solid line), contour line correlation = 0.4 for Lake Maggiore
(dashed line); contour line Cohen’s k = 0.6 for Ridracoli (solid line), contour line correlation = 0.6
for Ridracoli (dashed line); contour line full Cohen’s kappa = 0.35 for Occhito (solid line), contour line
correlation = 0.75 for Occhito (solid line).
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Cohen’s k and r give different information. Cohen’s k quantifies the ability to forecast the
occurrence of failure episodes, therefore it is strongly affected by both the number of true positives
(failures correctly predicted) and the number of false positives (null deficit for SPI < SPImt as in the
example of Figure 3). The correlation coefficient (r) measures the ability to forecast the intensity of
the deficit as a function of the antecedent SPI when the failure occurs. It is also an assessment of
the influence of the precipitation after the reference month on the future deficit intensity. From this
perspective, it is a measure of the resilience of the system.

For most of the pairs (SPIn, DEFm) the management threshold SPImt is equal to 0. Few cases
(6 in total) at Occhito are characterized by management thresholds lower than 0, all of them for small
forecast windows (2 or 3 months) and long aggregation scale of SPI (5 or 6 months).

Cohen’s k is well structured over the space (SPIn, DEFm) for all the three case studies, as it is
possible to find a pair for which this coefficient is maximized. It is worth noting from Figure 10 that
no relative minimum or maximum can be found (surfaces are convex). A summary of the Cohen’s k
statistics and regression coefficient is presented in Table 3.

Table 3. Cohen’s k and regression coefficient for the three case studies.

RESERVOIR

Lake Maggiore Ridracoli Occhito

Cohen’s k
Maximum 0.271 0.648 0.390

Predictor SPI SPI4 SPI6 SPI7
Forecast time window DEF3 DEF7 DEF8

Regression coefficient
Maximum 0.449 0.657 0.945

Predictor SPI SPI4 SPI5 SPI6
Forecast time window DEF2 DEF6 DEF3

The highest values of Cohen’s k are computed for Ridracoli. This is due to the specific features
of such a reservoir. In fact, on the one hand Ridacoli is a relatively small reservoir, on the other
hand the inflow to it takes place basically during the cold months (from late autumn to early spring).
This implies that knowing the past precipitation at the beginning of spring allows us to correctly
forecast future failures, maximizing the percentage of true positives and minimizing the percentage of
false positives. SPI6 appears to be the best predictor for a time window of 7 months (therefore including
the summer months). The contour line 0.6 of the correlation coefficient (r) over the (SPIn, DEFm) space
(Figure 10d), shows that increasing the SPI time scale as predictor does not add new information,
as the internal area is very narrow and aligned along the DEF7 class. The contour line of the regression
coefficient is almost overlapped to the contour line of the Cohen’s k, implying that the maximum ability
to predict the occurrence of deficit coincides with the maximum ability to predict the failure’s intensity.

This is not the case for Occhito, although it is possible to find a pair (SPIn, DEFm) that maximizes
the Cohen’s k, its absolute value is lower with respect to Ridracoli. This is due to the higher number of
false positives, which is related to the great volume of such a reservoir that strongly limits the number
of failures. It is interesting to note from Figure 10d that the area bounded by the Cohen’s k contour line
0.35 is approximately a square. Increasing the forecast time window from 7 to 12 months does not affect
the performance of the predictor, provided that the aggregation time scale for the SPI is increased from
5 to 10 months. In opposition to what has been observed for Ridracoli, the maximum of the correlation
coefficient area does not overlap to the maximum of the Cohen’s k, although it is much higher. From a
management perspective, this means that even if it is possible to perform forecasts in terms of the
probability of occurrence over long time windows (from 7 to 12), predictions of a deficit’s intensity
are less feasible for those periods. Decreasing the analysis windows (to 3 or 4 months) improves
the regression coefficients (i.e., it improves the prediction of the intensity of deficit), but significantly
degrades the performance in predicting the occurrence, due to the high number of false positives.
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Analysis of the Cohen’s k for Lake Maggiore (Figure 10a) shows that predicting future failures in
terms both of occurrence and the intensity of the deficit is definitively less feasible than at Ridracoli
and Occhito, both the maximum Cohen’s k and maximum regression coefficients are lower than at
Ridracoli and Occhito. Maxima for both indices are obtained for short time windows (2 to 3 months),
considering 4 months as a time aggregation scale of SPI. As already stressed before, this is basically due
to the high value of the connected demand with respect to the reservoir maximum capacity of the lake
(Table 1, RMC/MAD = 0.05). Moreover, the high value of the annual inflow with respect to the reservoir
maximum capacity (Table 1, RMC/MAI = 0.03) makes the lake more prone to overflow episodes,
limiting the storage capability and, as a consequence, the performance of the early-warning system.

Results from the SEW procedure allows us to conclude that for Ridracoli and Occhito it is possible
to early detect future conditions of shortage over time scales of 6 months, considering the SPI6 or SPI7
computed in March as predictor. Increasing the aggregation time scale of SPI allows to extend the
forecast time scale only for Occhito, while at Ridracoli increasing the SPI does not add new information
on early warning. The forecast window is much shorter for Lake Maggiore, whatever the chosen time
scale for SPI aggregation, due to the limited ability of the Lake to store water (whose regulation levels
are established by law) and, as a consequence, to manage the supply over time scales longer than a
few months.

4. Conclusions

In this paper, a robust tool is presented for the analysis of water shortage risk in water supply
systems constituted by a reservoir connected to multiple water demand systems. The final goal
of the proposed methodology, implemented in a computational software named INOPIA, is the
identification of “management triggers” for the implementation of specific mitigation measures based
on water-saving policies. In this work, the emphasis is given on defining a robust system of indicators,
according to the EU standards, to support drought risk management as a tool to promote participative
processes and achieve effectively implemented mitigation measures. To this aim, the presented
methodology has been based on a preliminary end-users’ consultation.

The proposed tool allows for the quantification of the risk of shortage for a given WSS. Such a
quantification is carried out through a statistical analysis of the time series of failures. The latter are
obtained by a guided procedure driving the simulation of the inflows to the reservoir from precipitation
data through a self-calibrating multilinear regression model (SPI-Q model). Time series of failures are
analyzed by means of reliability-resilience-vulnerability metrics, able to capture and quantify extreme
events through standardized indices. Then, results are quantitatively analyzed in order to identify
“management triggers” for the implementation of specific mitigation measures based on allocation
policies. Main potentialities of the proposed tool can be summarized as follows:

1. The calibration procedure performed through the SPI-Q model is based only on precipitation and
discharge data. The minimal number of parameters along with the self-calibration procedure
allows the implementation and comprehension of the hydrological model also by non-expert
users. Moreover, although it is statistically-based, it maintains the physical meaning of the
parameters. Despite model simplicity, the simulations performed on the three Italian case studies
showed the goodness of the method for studying occurrence of failures.

2. The method adopted to generate scenarios allows for the simulation of a discharge time series
based on both the time series of precipitation (i.e., from medium term weather forecast) and
directly on the Standardized Precipitation Indices time series, which is particularly useful when
implementing climate change scenarios from a General Circulation Models (GCM) output.
The main limit of the proposed approach relies on the basic assumption that catchment response
to the precipitation regime is time invariant.

3. A new formulation of the reliability-resilience-vulnerability metrics has been tested on the
three case studies (a previous discussion on this new formulation solely on the case of the
Ridracoli reservoir can be found in [49]). The use of standardized indices allowed for a quick
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comparison among water systems regardless of the differences in size, climate, meteorological,
and hydrological regimes of the basins and reservoirs.

4. The Support to Early-Warning procedure relates the precipitation regime, represented by the SPI at
different time scales, to the simulated deficit volumes computed over the m following months.
This kind of representation allows a user to qualitatively identify possible early-warnings by
analyzing the antecedent precipitation conditions that can potentially lead to shortage conditions
over a future time window assigned by the user. A quantitative method to analyze the output
from the SEW module and to identify possible “management triggers” is proposed. It is based on
the Cohen’s coefficient and allows for ranking the predictor in terms of antecedent precipitation
(SPI) and forecast time scale. Possible management options based on different future water
allocation schemes (both in time and quantity) can be suggested based on the linear regression of
the forecasted deficit versus the antecedent standardized precipitation indices.

It is important to stress that the current version of the proposed tool, developed in collaboration
with the National Civil Protection Department of Italy, has been adopted by the Permanent
Observatories of the Central and South Apennine Hydrographic Districts as its early-warning system
for WSS management under water scarcity conditions. However, it is worth noting that in the current
level of development, INOPIA can be adopted to analyze WSSs constituted by one single reservoir fed
by surface waters. Future developments, already ongoing, will be addressed to extend the proposed
approach to water supply systems constituted by multiple surface reservoirs, possibly interconnected,
supplying multiple users. This will allow for analyzing the drought vulnerability of single components
of complex WSSs, permitting the exploration of a wider range of management options.

Finally, the proposed tool, once fully developed, can be adopted and added as part of Water Safety
Plans in the “System assessment”, “Monitoring”, and “Management and Communication” sections of
the WMO guidelines [34].
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