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Abstract: This study evaluated the potential for data from dedicated water sub-meters and
circuit-level electricity gauges to support accurate water end-use disaggregation tools. A supervised
learning algorithm was trained to categorize end-use events from an existing database consisting
of features related to whole-home and hot water use. Additional features were defined based on
dedicated irrigation metering and circuit-level electricity gauges on major water appliances. Support
vector machine classifiers were trained and tested on portions of the database using multiple feature
combinations, and then externally validated on water event data collected under dissimilar conditions
from a demonstration house in Austin, Texas, USA. On the testing data, a trained classifier achieved
true positive rates for occurrences and volume exceeding 95% for most categories and 93% for toilet
events. Performance for faucet events was less than 90%. Initial results suggest that dedicated
sub-meters and circuit-level electricity gauges can facilitate highly accurate categorization with
simple features that do not rely on flow rate gradients.

Keywords: water end uses; water event classification; high frequency smart metering data; residential
water flow trace disaggregation; water flow trace filtering; supervised learning

1. Introduction

Water end-use disaggregation has emerged as a promising tool for urban water demand
management, accompanied by increasing adoption of smart water meters among water utilities [1].
The goal of water end-use disaggregation is to contextualize water use data by providing information
about activities and fixture types related to water use, primarily in the residential sector [2].
Contextualized information about residential water end uses has a variety of applications for
consumers, water utilities, and policy makers [2]. For example, appliance-specific information can
help end users by improving perception accuracy of water use [3] while identifying pathways to meet
efficiency goals or reduce water bills [4]. For utilities, end-use disaggregation has potential to improve
day-to-day operations [5], for example by assisting the resolution of billing disputes, facilitating
improved pump scheduling to achieve greater system efficiency [6], or reducing uncertainty associated
with making long-term planning decisions [2]. For policy-makers, disaggregated water use information
can enable efficiency programs for both energy and water by targeting specific appliances within
high-usage homes [7,8], or by providing a tool for digital multi-service utility providers to better
understand their networks [9].

Prior works on water end-use disaggregation have focused on methods incorporating data for
whole-home water flow rate [10–14], water pressure [15–17], or from microphones [18]. Other methods
have taken a multi-modal sensing approach [19–21]. These approaches are thoroughly summarized in
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recent reviews [1,2]. Although methods related to flow rate differ, they typically focus on characterizing
events based on whole-home water data only [1]. With only whole-home data available, flow
rate based methods have incorporated human oversight [10] or very high temporal resolution
(≤5 s) data combined with measurements of flow rate gradients [14] in pursuit of greater accuracy.
Other approaches have deployed multiple sensors throughout the home to gather more data to
improve classification accuracy [17,20,21]. Depending upon the approach, algorithms are often limited
by requirements for human oversight, requirements for data sampling, or requirements for intrusive
metering [2].

Recently, new approaches have emerged that combine electricity and water data by applying
outputs from Non-Intrusive Load Monitoring (NILM) [22,23] or circuit-level electricity use monitoring
to the water event categorization problem [24–26]. These approaches hypothesize that information
about household electricity use also provides information about water use [25]. For example, electricity
consumption by a clothes washing machine provides an indication that the appliance has recently
consumed water [25], while an electricity consumption signal from a water heater indicates that
hot water use is occurring or recently occurred [24]. However, if the sampling interval increases or
gradient-based features are not defined, classification accuracies on events from non-electromechanical
appliances are still limited, even with circuit-level electricity data [25].

When dedicated water sub-meters are already installed in the house, for example on the water
heater inlet or irrigation branch line, a new approach could extend previous work by incorporating
new sources of data to improve the performance of flow rate based disaggregation methods.
Using whole-home data, past work identified that fine sampling resolutions (i.e., 1-s or 5-s resolution)
are needed to achieve high disaggregation accuracy [27]. This resolution allows the definition of
features based on flow rate gradients such as the initial gradient-rise or final gradient-fall for a
water event [14]. Adding new streams of sub-metered water data could challenge this paradigm by
substituting new information in place of finer resolution, supporting the use of simpler features that
are not based on flow rate gradients and are more readily defined for intermediate sampling intervals
(i.e., 1-min). Relying on water meters, a well-established technology, could mitigate concerns about
intrusiveness [2].

Dedicated metering on water lines has been previously proposed as a tool for water demand
management. For example, dedicated irrigation metering is a common practice in residential and
commercial sectors [28]. For water utilities, a well-planned dedicated irrigation metering program
can facilitate novel pricing strategies that distinguish between indoor and outdoor water use, enable
drought response, and improve system modeling [28]. For customers, dedicated irrigation meters
remove uncertainty associated with wastewater billing, allowing customers to avoid being penalized
for outdoor water use that does not flow through the wastewater system [29]. Dedicated meters have
also been proposed for water heaters. For example, the Residential End Uses of Water Study Version 2
(REU2016) included dedicated water heater metering to quantify per-appliance usage and to improve
estimations of water-related energy consumption [30].

The authors are unaware of existing water categorization tools that incorporate dedicated
sub-meter water data to make event classifications against a known dataset. This analysis evaluates the
potential for dedicated water heater and irrigation meters to improve categorization accuracy across all
categories without using gradient-based features. The results present accuracy in the context of number
of occurrences and cumulative volume. The REU2016 database provides underlying whole-home and
hot water data for classifier training and testing. Additional event features are defined to indicate the
presence of circuit-level electricity data and simulate data logging from dedicated irrigation meters.
Support vector machine (SVM) [31] classifiers are trained and tested on equally-sized portions of the
database for up to ten input features, quantifying trade-offs between adding additional metering and
improving categorization accuracy. Trained classifiers then make predictions against an external catalog
of known water events for a demonstration home with dedicated hot water and irrigation metering in
Austin, Texas, USA. By categorizing events from a demonstration house, this study provides a first test
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of the general applicability of the trained classifiers on data collected from dissimilar environments.
The components of the study are depicted by the flowchart in Figure 1.

Figure 1. After datasets are curated and assembled, support vector machines (SVM) are used to
train classifiers and test their performance. Following testing, SVMs are validated on data from a
demonstration home that were collected under different conditions relative to the training set.

This paper introduces a novel approach to water end-use disaggregation by combining features
that can be derived from dedicated sub-meters, a whole-home water meter, and coincident circuit-level
electricity data. The results of the study indicate the potential for dedicated sub-meters to support
classifier performance using simple input features that are less sensitive to temporal resolution [25].
This analysis can support normative recommendations for household metering layout, meter sampling
requirements, and future applications of smart-meter data.

2. Materials and Methods

This section describes input datasets, selection of event features, choice of machine learning
algorithm, and performance metrics used to evaluate the accuracy of event disaggregation.

2.1. Dataset

This study incorporated data from two sources. Data from the REU2016 study were used for
classifier training and testing. To conduct a first test of classifier applicability outside of the testing
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data, separate data from a demonstration home in Austin, Texas, USA with dedicated sub-meters were
used for initial validation.

REU2016

The Residential End Uses of Water Study Version 2, completed in 2016, collected high-frequency
end-use data from 762 homes across nine cities in the United States or Canada. The study updated an
earlier study from 1999 [32], providing a snapshot of trends and patterns in residential water usage
in North America over the past two decades. A subset of 94 homes were selected for hot water use
monitoring [30]. The database of hot water events included faucet, clothes washer, dishwasher events,
shower, and bathtub events. Leak events were excluded because they are not attributable to a particular
appliance category and can already be identified by commercial leak-detection products [25,33].
Hot water events were merged with whole-home events on a per-house basis by comparing event
timing and categories to achieve a dataset with approximately 1000 events per category. Internal clock
times of data loggers that recorded whole-home and hot water use were not perfectly synchronized
for all houses and required manual curation to resolve discrepancies on a house-by-house basis.
Events were discarded if timing discrepancies could not be resolved. The resulting dataset consisted
of 1584 clothes washer events, 1014 dishwasher events, 1312 shower events, 77 bathtub events,
and 1032 faucet events. Bath events were grouped in the same category as shower events because they
are relatively scarce and share a common purpose.

Irrigation and toilet events, which do not consume hot water, were added to the merged database
by sampling without replacement from REU2016 data. Toilet events were limited to high efficiency
events (≤2 gal) to tailor classifiers for homes built after U.S. Energy Policy Act of 1992 standards were
enacted [34]. Equally-sized training and testing datasets were formed by sampling 500 events from
each category without replacement.

2.2. Demonstration Home

Additional water data were collected from a single-family house in Austin, Texas, USA with
dedicated meters on the water heater inlet and irrigation branch line. The house had four occupants
and consisted of 5 bedrooms, 4 toilets, 3 showers, outdoor space, and a tankless natural gas water
heater. The meters are equipped with a BluBand smart register that samples water use once every 7 s.
The BluBand, developed by Pecan Street, Inc., attaches to the existing residential meter and detects
wobbles by the nutating disk [35]. The logged data were transmitted to a BluCube, a central gateway
device that uploads data to Pecan Street’s data center over the residential wireless network [35].

Residents manually recorded their water use over approximately three weeks, noting appliance
type, timing, and duration for each event. Additional irrigation events that occurred outside the
three-week period were also included. A validation dataset was formed from a log of known water
events by processing underlying flow-trace data from the whole-home meter and dedicated sub-meters.
The validation dataset includes 371 events, consisting of 70 events from each category except for the
irrigation category, which consisted of 21 events. Note that clothes washer and dishwasher cycles
consist of several single events during the overall appliance runs.

The demonstration home is also equipped with an eGauge device for measuring household
electricity use [36]. Circuit-level data were not available for the clothes washer or dishwasher circuit.
Instead, sub-circuit electricity features were defined based on their proximity to known events [25].
In future work, previously developed NILM algorithms should be implemented to detect electricity
consumption by major appliances.

Automatically separating combined water events was not a component of this study. However,
recent work introduced an advanced two-step filter that combines an Elitist Non-Denominated Sorting
Genetic Algorithm NSCA-II, followed by a cropping algorithm [37]. This approach was tested on
data from two dissimilar case studies to establish general applicability. Other work has shown
that combined events can be accurately separated into single events using gradient vector filtering
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techniques [14]. For demonstration house data, logged combined events were manually separated
by following a similar procedure. First, the whole-home flow rate of the base event was recorded
before and after the secondary event. The base event was assumed to continue to use water during
the secondary event. After usage was assigned to either the base event or a secondary event, features
were defined based on the separated profiles. The same procedure was used to separate combined
hot water events into base events and secondary events. Once separated, whole-home and hot water
events were linked according to their time stamp. Manual disaggregation of combined events was
part of early water event categorization methods [10] and is relatively simple to execute, however,
it is expensive to adopt at scale due to human labor requirements [14]. As discussed in Section 3.4,
automating the combined event disaggregation process and demonstrating its use on hot water events
is an important element of future work needed to scale the method to a real-world application.

2.3. Feature Selection

To help understand the distribution of water events in the REUWS dataset by category, violin
plots of whole-home and hot water volume (Vtot, Vhot), duration (Dtot, Dhot), and maximum flow rate
(Mtot, Mhot) for each event are shown in Figure 2 on a log-10 scale. Hot-water fraction, defined by
dividing hot water volume by total water volume for each event, is plotted on a linear scale.
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Figure 2. Distribution of water event features on the basis of duration, volume, and maximum flow
rate for total and hot water use. Hot-water fraction is also plotted. Distributions for hot water features
have similar shapes relative to total water use features, although natural groupings between appliances
emerge on the basis of hot-water fraction.
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Hot water use is only a fraction of total water use for a given event. In general, hot and cold water
consumption occur together, with the relative share of each determined by the user or by the appliance.
This behavior is reflected in the violin plots for hot water volume and maximum flow rate, which
are slightly closer to zero in Figure 2 relative to plots for total volume and total maximum flow rate
(excepting toilet and irrigation events, which do not consume hot water). However, distributions for
hot water event duration closely match total water event duration. Overall, there is little distinction
between hot water versus total water events on the basis of aggregate distributions for event volume,
duration, and maximum flow rate. The lack of differentiation suggests using directly measured hot
water features might not introduce new useful information into a classification algorithm. However,
natural groupings emerge for indoor water events on the basis of hot-water fraction, particularly
between clothes washer, shower, and dishwasher categories. According to Figure 2, shower events tend
to use 50–75% hot water, clothes washer events typically use less than 25% hot water, and dishwasher
events most commonly use only hot water.

Because the REU2016 study did not include dedicated irrigation meters, an irrigation fraction
feature (Firr) was defined as the expected fraction of irrigation volume divided by total water
volume for each event. For irrigation events, Firr = 1. For non-irrigation events, small non-zero
values were assigned to Firr to prevent classification algorithms from incorrectly making a binary
distinction between zero and non-zero values of Firr. Such a distinction would be inappropriate when
working with empirical data that could include small irrigation leaks or irrigation meter measurement
error during non-irrigation events. A similar approach was taken when defining Fhot for toilet and
irrigation events.

Similar to a preceding study, an important aspect of this work was incorporating simultaneous
circuit-level electricity data to improve the classification accuracy across all categories of water
events [25]. When electricity data are available, information related to electricity use can help clarify
drivers of water use. For example, data for when clothes washers or dishwashers consume electricity
provide information that can be used to differentiate between events with similar water-related features.
Similarly, data for electric water heater operation in conjunction with water use data could help
differentiate shower events that use large amounts of hot water from other event types. In past work,
NILM techniques have been developed to identify electricity appliance signatures for electric smart
meter data, including clothes washer, dishwasher, and water heater events [23]. When circuit-level
electricity data are recorded, major appliances are often allocated their own circuit, making appliance
events trivial to differentiate from underlying load profiles [35]. However, circuit-level electricity data
for major appliances does not completely simplify water event categorization. For example, shower
events might commonly occur before, during, or after clothes washer events; whereas several faucet
events might occur while the dishwasher consumes electricity.

In previous work, the feasibility and usefulness of binary event flags were evaluated as input
features for water end-use categorization [25]. These features, Ecw and Edw, were introduced and
defined for each water event in the present study. The value of each flag indicates whether a clothes
washer or dishwasher event would be observed following a water event. For each house, water events
that occur within a specified timespan, dtcw, after a clothes washer event have an assigned value of
Ecw = 1. Otherwise, Ecw = 0. Similar rules apply for setting Edw. The values of dtcw and dtdw were set
equal to 20 and 30 min, respectively, to cover the expected duration of clothes washer and dishwasher
activity observed in a previous study [25]. Ongoing work is evaluating simple threshold techniques for
setting clothes washer and dishwasher related flags on circuit-level data that are available from 350+
homes in the Pecan Street database. In future work, NILM techniques should be adopted to automate
clothes washer and dishwasher event detection for households with only whole-home electricity data.
An example of Ecw and Edw assignment for twelve events from a single house in the REUWS dataset is
shown in [25]. The 10 features defined for each water event in the REUWS and demonstration house
are summarized in Table 1.
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Table 1. A summary of the 10 input features defined for each event in the merged REU2016 dataset.
Combinations of these features were used for classifier training.

Utility Meter/Circuit Name Description
Water Whole-home Vtot Volume of total event (gal)

Dtot Duration of total event (min)
Mtot Maximum recorded event flow rate (gal/min)

Hot water Vhot Volume of hot water in event (gal)
Fhot Hot water volume divided by total volume
Dhot Duration of hot water flow during event (min)
Mhot Maximum recorded event hot water flow rate (gal/min)

Irrigation Firr Irrigation volume divided by total volume
Electricity Clothes washer Ecw Binary indicator of circuit-level activity

Dishwasher Edw Binary indicator of circuit-level activity

2.4. Training and Testing Support Vector Machine Classifiers

The Matlab Classification Learner [38] was used to train multi-group SVM classifiers with 10-fold
cross-validation [39–42]. These classifiers were selected because they achieve a balance between
training time and accuracy [25]. Other classification techniques such as complex trees exhibited
similar performance during testing. SVM classifiers are explained in detail by [31]. A gaussian kernel
function [43] was observed to perform well relative to a linear or polynomial kernel function [38],
achieving a high degree of specificity while limiting overfitting. During testing, performance remained
approximately equal over a range of values for the KernalScale parameter, ranging 1.2–2.0. A value of
1.6 was used for training SVM models in this study.

SVM models were developed to make event predictions using up to the 10 input features described
in Section 2.3. Training SVM models to handle an increasing numbers of inputs allows for features to
be added based on an increasing amount of metering at a given house. For example, only features
related to total water use are available for training when only whole-home data are being collected.
As circuit-level electricity metering is added, Ecw and Edw become available for classifier training.
Discerning the performance increase from adding new inputs into the classification can help prioritize
decisions about adding additional water meters or circuit-level electricity instrumentation. Following
training, classifiers were evaluated against the testing dataset.

Classification performance is reported in terms of True Positive Rate (TPR), or recall, on the basis
of event occurrence (TPRocc) and category-specific cumulative volume (TPRvol). Recall for a particular
category is the fraction of correctly labeled events of the category divided by the total number of events
of the category. Results for Positive Predictive Value (PPV), or precision, are also reported. Precision is
the fraction of predicted positive cases that are real positive cases for each category [44]. As shown in
previous work [25], it is possible to achieve a high level of performance for a particular category on
the basis of number of occurrences while simultaneously achieving low performance on the basis of
category volume. In practice, it is desirable to achieve high rates for both metrics. Existing literature
often focuses primarily on number of events identified without commenting on how much volume
was identified correctly [12,14–17,26], although category-specific volume has been discussed in recent
work [25,37].

3. Results and Discussion

Section 3.1 includes results and discussion of classifier performance on REU2016 testing data
as the number of input features made available to the training algorithm is increased. Section 3.2
focuses on a specific six-feature classifier and reports performance in terms of true positive rate and
positive predictive value for each appliance category, with additional visualization to communicate
common modes of mislabeling. Section 3.3 discusses classifier performance on data from the
demonstration home.
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3.1. SVM Classifier Performance on REUWS Dataset

SVM classifiers were trained and tested on n = 1023 combinations of features, representing all
unique combinations of the 1–10 input features presented in Table 1. Results of the testing are shown in
Figure 3 in terms of a combined metric that averages overall True Positive Rate in terms of occurrences
(TPRo) and volume (TPRv) across all event categories.

Figure 3. Ranges of classifier performance on a weighted metric that balances overall True Positive
Rates on the basis of occurrences and volume. For a given number of features, the highest point in the
column indicates the best performance for all feature combinations. Boxes represent the 1st and 3rd
quartile of performance and the red line indicates median performance. The whiskers extend to the
highest and lowest value beyond the box that is less than or equal to 1.5 times the interquartile range.
There is only one possible combination of the 10-feature classifier.

When only one feature is used by the SVM classifiers, combined performance ranges from 22.0%
(Ecw) to 77.4% (Fhot). As more features are added, the range of performance shrinks. For a given
number of features, n, the highest point in Figure 3 relates to results by the best performing n-feature
SVM model. The best combined performance overall is achieved by an eight-feature SVM classifier,
which includes all features in Table 1 except Vhot and Dhot. Beyond seven features in Figure 3, adding
additional features is detrimental to median classifier performance. Because some event features
are correlated, such as Vtot and Mtot, features can be removed from some SVM models to increase
simplicity with only minimal impact on performance. There are 12 distinct six-feature SVM classifiers
that are within 0.5% of the best eight-feature classifier in Figure 3. Within this subset, a specific
six-feature SVM classifier was selected for additional testing to reduce model complexity. These results
are discussed in Section 3.2. Category-specific performance for each of the 1023 SVM models is
included in the Supplementary Materials for this work.

3.2. Category-Specific Performance of a Six-Feature SVM Classifier

In the six-feature SVM classifier, features related to the whole-home water meter were incorporated
first (Vtot and Dtot), followed by circuit-level electricity features (Ecw and Edw), dedicated hot water
meter features (Fhot), and features related to the dedicated irrigation meter (Firr). The testing described
in Section 3.1 determined that features related to maximum flow rates (Mtot and Mhot), hot water
volume (Vhot), or hot water duration (Dhot) produce limited performance improvement when added as
additional features. These features were excluded from additional testing.

Categorization by the six-feature SVM classifier can be visualized by introducing Sankey
diagrams, which are commonly used to map material flows between multiple categories [45]. In this
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case, the Sankey diagrams are used to map the flow of actual events from each category to their
predicted category. These diagrams are introduced by Figure 4 to display appliance-level performance
improvement as additional input features are introduced. When used for evaluating classification
accuracy, Sankey diagrams use a visually descriptive format to communicate similar information as
confusion matrices. For example, the true positive rate for the shower category is the fraction of flow
between the actual and predicted shower category divided by the total flow from the actual shower
category. The positive predictive value is the fraction of flow between the actual and predicted shower
category divided by the total flow into the predicted shower category.

Figure 4. Sankey diagram representation of classifier performance on testing data with one to six
input features: (a,b) a significant fraction of actual events incorrectly flow to predicted categories
for shower, dishwasher, and toilets; (c,d) introduction of Ecw and Edw more than doubles the flow of
correctly predicted clothes washer events; and (e,f) small amounts of incorrectly predicted events are
observed when up to six features are included. The severity of remaining misclassifications appears to
be mitigated by cancellation error.

In Figure 4a, many events flow between the actual and predicted shower and toilet category.
However, both the predicted shower and toilet category receive incorrectly classified events from
irrigation, clothes washer, and dishwasher use. In Figure 4c, adding Ecw significantly increases the
event flow between the actual and predicted clothes washer category. In Figure 4d, adding Edw to
the classifier has a qualitatively similar effect, although to a lesser magnitude. Classifier performance
on the dishwasher category was already relatively high even without Edw as a feature. In Figure 4e,
adding information about hot water fraction (Fhot) into the classifier more than doubles the true positive
rate of irrigation events. Prior to adding Fhot, a portion of short-duration irrigation events resembled
shower events on the basis of length, volume, and circuit-level electricity activity. Because shower
events use hot water and irrigation events do not, adding Fhot as a feature eliminates those errors.
The classification of events in Figure 4f closely resembles Figure 4e, indicating a diminished level of
performance improvement from adding a sixth feature. However, performance on the faucet category
improves as fewer faucet events consisting of only cold water use are mistaken for irrigation events.

Figure 5 summarizes classifier performance for each category in terms of number of occurrences
(TPRocc and PPVocc) and cumulative category volume (TPRvol and PPVvol). The abscissa communicates
the number of features used for classification. In Figure 5, achieving 100% represents perfect classifier
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performance on a given category. There is a general trend up and to the right within each panel,
indicating that classifier performance generally improves when adding up to all six input features.

Figure 5. Classifier accuracy generally improves when adding input features, although accuracy gains
from one category can come at the expense of another category. For example, adding event duration as
the second feature improves (h) TPRfaucet

vol while slightly reducing (b) TPRshower
vol .

The six-feature classifier achieves TPRocc ≥ 95% for all categories except faucets, which is limited
to TPRfaucet

occ = 87% (Figure 5g). Clothes washer, dishwasher, and irrigation events are predicted with
near certainty. On the basis of volume, toilet events are limited by TPRtoilet

vol = 93% (Figure 5l), with

most remaining categories achieving TPRvol ≥ 97%. However, TPRfaucet
vol = 78% (Figure 5h), suggesting

larger faucet events are susceptible to mislabeling. In Figure 4, it appears that some faucet events
incorrectly flow to dishwasher or clothes washer categories, suggesting they occur during a washing
cycle. Other faucet events are confused with toilet events, suggesting they were cold-water faucet uses
of about 1.5 gallons. Fewer faucet events are misclassified as showers, which would likely occur for
high-volume events with moderate amounts of hot water use. In general, faucet events are challenging
for flow-based methods to account for because they serve a variety of purposes and are ultimately
controlled by behavior rather than mechanical settings [10].

A feature set that includes whole-home and sub-meter water data but excludes circuit-level
electricity data is also of practical interest. Without circuit-level electricity features, the best performing
SVM classifier uses six input features: Vtot, Dtot, Mtot, Fhot, Mhot, and Firr. Category-specific results
are available in the Supplementary Materials. In general, classifiers without circuit-level electricity
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features perform well on most categories but poorly on the clothes washer category in particular,
with category-specific True Positive Rates of only about 80% for occurrences and volume. This occurs
because clothes washer events in the REU2016 dataset vary widely in terms of whole-home and hot
water duration, volume, and maximum flow rate. For example, feature distributions in Figure 2 range
from short, small, low-flow rate events to large events that resemble showers. Similarly, although
many clothes washer events use primarily cold water, high hot-water fractions are also common.

3.3. Classifier Performance on Demonstration House Dataset

Following testing, trained classifiers were used to predict events from the demonstration house
dataset with the two-, four-, and six-feature combinations. If algorithms trained by supervised
learning can be generally applied, the burdensome process of obtaining ground-truth information for
validation might be avoided [2]. The purpose of this testing was to provide an initial test of the general
applicability of the trained classifiers on data collected from a single home under dissimilar conditions.
In this case study, the geographic location, collection device, and sampling frequency were dissimilar
from the training data [30].

In Table 2, results for TPRocc and TPRvol are presented for the demonstration house across all
categories. As features are added, improvements in TPRocc and TPRvol are similar for each category,
with the exception of faucet and irrigation categories. For the faucet category, the true positive rate is
typically higher on the basis of event occurrence because small volume events are easiest to classify
whereas larger volume faucet events are prone to misclassification. The opposite is true of irrigation
events, where identifying a small percentage of large volume events can yield a low occurrence
accuracy but a high volume accuracy.

Table 2. A summary of TPR classification rates (TPRocc/TPRvol) on the demonstration house dataset
for an increasing number of input features.

Features Shower Clothes Washer Dish Washer Faucet Irrigation Toilet

Vtot, Dtot 98.6/99.7 12.8/38.3 2.9/9.76 91.4/71.6 35.7/94.9 95.7/95.1

Vtot, Dtot
Ecw, Edw

100/100 97.1/96.8 100/100 91.4/81.9 28.6/86.8 84.3/84.7

Vtot, Dtot, Ecw
Edw, Fhot, Firr

100/100 97.1/98.8 100/100 90.0/80.0 100/100 87.1/87.9

With all six features, classifier performance on the demonstration house roughly matches the
performance observed in Section 3.2. Classifier performance on the toilet category is limited due
to unexpected measurements of simultaneous hot water consumption in the demonstration home.
An example of this behavior is shown in Figure 6, which shows flow rate data for ten consecutive toilet
flushes. Although the events were isolated (i.e., no other events were occurring), non-trivial amounts
of hot water use were measured by the BluBand on the water heater inlet.

With moderate values of Fhot and active electricity-related flags, several toilet events were
misclassified as clothes washer or dishwasher events according to Figure 4. Others were misclassified
as shower or faucet events. Because the unexpected behavior is persistent, it appears the measurements
of hot water use during toilet events are attributable to the BluBand sensor, which potentially detects
flow in response to transient pressure drops upstream of the metering device. Notably, the irrigation
meter is upstream of all toilet appliances in the demonstration house and did not exhibit similar
behavior. This instance exemplifies potential difficulties associated with curating water data for
flow-related algorithms and motivates the adoption of data processing or filtering techniques prior to
single-event disaggregation [37].
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Figure 6. Non-trivial amounts of hot water use were measured during isolated toilet events in
the demonstration house. This unexpected behavior contributed to slightly diminished classifier
performance on the toilet category. This example underscores the importance of robust data curation to
facilitate water end-use disaggregation.

3.4. Considerations Pertaining to Demonstration Home Results

Although geography, sampling frequency, and collection equipment differed for water
measurements from the demonstration home compared to testing data, both datasets were gathered
from the North America region (two out of nine REU2016 collection sites are located in Canada [30]).
The REU2016 data represent a diversity of climate conditions found on the North American continent;
however, future work is needed to determine if the results from this study are valid in other contexts
such as Europe or Australia. In addition to climate, user behaviors and end-use fixture characteristics
from different contexts could influence how SVM classifiers perform in real-world conditions.

Descriptive statistics published from the South East Queensland Residential End Use Study
(SEQREUS) [46] provide an indication for how user behaviors and end-use fixture characteristics from
four cities in the Australian context could influence classifier performance on various fixture categories.
For example, comparing REU2016 data to SEQREUS data, which is from 2010, reveals that on average
shower events in the Australian context are shorter (5.7–6.5 min/event versus 7.8 min/event) and use
less water (11.8–14.5 gal/event versus 15.7 gal/event). However, the six-feature SVM model discussed
in Section 3.2 still categorizes average Australian showers correctly, assuming typical hot water usage
and no clothes washer or dishwasher activity.

Even when end-use fixture characteristics between contexts vary significantly in terms of volume
or duration, circuit-level or sub-meter water features can help preserve classifier performance.
For example, SEQREUS dishwasher events use 1.1–1.8 gallons on average while REU2016 dishwasher
events use 6.1 gallons on average. However, when Edw = 1 and Fhot ≥ 0.95, the six-feature classifier
correctly classifies even very small volume dishwasher events. The irrigation category has the greatest
disparity between the U.S. and Australian context, possibly reflecting increased water restrictions
and efficiency attitudes influenced by water scarcity [46]. However, for heavily metered houses with
irrigation branch line sub-meters, irrigation events should be easy to identify regardless of geographic
context. Without the sub-metered data, there could be an increased frequency of small volume
irrigation events that are more likely to be misclassified into a different fixture category.

To more fully address the question of context dependency, future work should evaluate classifier
performance on large datasets of end use events gathered across geographic contexts. Making both
REU2016 and SEQREUS data freely available could address the North American and Australian
context, while ongoing work by researchers at the Politecnico Milano might contribute event data from
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the European context [47]. However, to the author’s knowledge, only the REU2016 study provides
water use information that includes simultaneous hot water consumption, potentially motivating the
use of representative data from smaller end-use studies to describe hot water usage behaviors in other
contexts [48].

A second, related limitation pertains to the size of the demonstration house dataset, the limited
three-week collection window, and its ability to represent variability of end-use categories. For some
fixture categories, such as faucet or shower, the four occupants of the demonstration house combined
to log a heterogeneous collection of events that differed in terms of duration, volume, hot water
usage, and temporal proximity to a clothes washer or dishwasher event. Heterogeneity in flow rate
is represented for faucet events due to user behavior, although shower event flow rates are largely
consistent in the demonstration home but would exhibit more variation across multiple homes.

For other categories, such as clothes washers and dishwashers, event characteristics are primarily
determined by the appliance manufacturer, although users also influence event characteristics.
For clothes washer and dishwasher events, appliances from other manufacturers might behave
differently in terms of volume, duration, and potentially fraction of hot water use. However, in
houses where circuit-level electricity data are measured, values of Ecw and Edw are strong indicators of
appliance usage for a range of volumes and durations.

The demonstration home dataset was not large enough to test for a seasonal impact. Although
past work has described limited seasonal variability for indoor water end uses [30,46], outdoor water
events are expected to exhibit seasonal variability. Some seasonal variability was incorporated into the
REU2016 data, with collection occurring over a three-year period (2010–2013) [30]. However, testing
for seasonal influence is a related priority for future work that assembles a larger external dataset
for validation.

Based on observed performance in Table 2, the demonstration home appears to be a good match
for the six-feature SVM model trained in this study, suggesting the demonstration home is similar to
many of the 762 REU2016 homes that provided data used to train the model. However, the trained
SVM model might perform poorly for certain types of homes. For example, homes with pre-1992
toilets or urinals might overpredict the faucet category; homes where short showers occur after starting
the washing machine might habitually underestimate shower use; and homes that feed cold water to
dishwashers with built-in water heaters might confuse dishwasher events and toilet events. Identifying
situations that produce feature volatility or classification error, and evaluating their relative frequency,
can help more thoroughly evaluate general applicability of the trained SVM model.

The demonstration home is a single-family house, which simplifies challenges associated with
differentiating between simultaneously occurring events. As previously mentioned, past work has
developed methods to separate single events from combined events [14,37] in single-family houses.
Demonstrating combined event disaggregation from a multi-unit housing complex with a common
meter would extend the potential reach of end-use categorization techniques. The present study used
a manual process to disaggregate combined events from the demonstration home into single events,
as described in Section 2.2. This procedure was implemented for both whole-home and sub-metered
hot water data. To make the SVM classifiers commercially relevant, future work should test the
validity of combined event disaggregation methods on hot water use data and implement a method to
automatically link the hot water event with its associated whole-home water use event.

4. Conclusions

This study proposes that dedicated sub-meter water data combined with circuit-level electricity
data can improve the accuracy of water end-use classification algorithms using simple input features.
In particular, hot water data help distinguish natural groupings among appliance categories. However,
the marginal benefit of the Fhot feature is diminished when sub-circuit electricity flags are also
present. When added as the fifth and sixth feature to SVM classifiers, dedicated sub-meter data
results in TPRocc ≥ 95% for all categories except faucet. The irrigation fraction feature is especially



Water 2018, 10, 714 14 of 17

useful for distinguishing small to medium cold water events between faucet, toilet, clothes washer,
and irrigation categories.

This study also provided an initial test of general model validity by applying SVM classifiers
to data gathered from a demonstration home that were collected in dissimilar conditions relative to
the REU2016 study. Although the demonstration home data were dissimilar in terms of collection
equipment, sampling frequency, and geography within the North American context, the demonstration
data do not represent dissimilar user behaviors or fixture characteristics that might exist in non-U.S.
contexts. However, even though average fixture-level event characteristics are known to differ between
U.S. and non-U.S. contexts, circuit-level and sub-meter event characteristics can preserve categorization
accuracy over a range of characteristics.

The real-world application of this work is currently limited by the number of homes with
dedicated metering for hot water, irrigation, and appliance sub-circuits. This limitation made it
infeasible to collect data from multiple locations for demonstration purposes in this study. However,
testing the method on additional homes with sub-metered water data is necessary to demonstrate
general applicability outside of the U.S. context. One way to overcome this challenge could involve a
partnership with interested electric or water utilities, offering the water event categorization method as
a potential application that could stack on top of other smart metering initiatives. Applying the SVM
classifiers developed in this study across a larger number of houses with circuit-level and sub-metered
data could help clarify the potential for a commercial application of the disaggregation scheme.
As affordable hardware solutions come to market, electric and water utilities might increasingly
embrace sub-metering to improve demand management, further customer education, or introduce
novel electricity or water rate structures.

More work is needed to quantify the trade-offs between sampling rate, volume resolution,
and categorization accuracy, which influence the hardware requirements of a hypothetical commercial
application. Ultimately, water-related features and NILM techniques should merge to create combined
methods for water and electricity event disaggregation. Initial work in this area has focused on
using clothes washer or dishwasher activity to inform water event disaggregation. By using NILM to
disaggregate water heating, additional usage information might be built into water disaggregation
tools [24]. Alternatively, NILM algorithms could potentially improve by introducing water data into
their formulation [49].

As reviews of water disaggregation methods have noted, unsupervised or semi-supervised
disaggregation methods are a promising direction of future work for several reasons, including their
ability to avoid the expensive and time-intensive process of gathering ground-truth information [1,2].
By implementing trained classifiers on external data from a demonstration house, this work shows
there is potential for classifiers trained on previously collected data to be applied externally. However,
results for the toilet category in Section 3.3 hint at potential limitations associated with heterogeneous
site conditions, metering equipment, or data resolutions. In future work, results from supervised
learning algorithms might be useful for initializing behavior of a semi-supervised approach.

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Table S1: Database
of REUWS water events, Table S2: Dataset of validation water events, Table S3: Spreadsheet of complete SVM
model results.
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