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Abstract: Accurate continuous daily evapotranspiration (ET) at the field scale is crucial for allocating
and managing water resources in irrigation areas, particularly in arid and semi-arid regions.
The authors integrated the modified perpendicular drought index (MPDI) as an indicator of water
stress into surface energy balance system (SEBS) to improve ET estimation under water-limited
conditions. The new approach fed with Chinese satellite HJ-1 (environmental and disaster monitoring
and forecasting with a small satellite constellation) images was used to map daily ET on the
desert-oasis irrigation fields in the middle of the Heihe River Basin. The outputs, including
instantaneous sensible heat flux (H) and daily ET from the MPDI-integrated SEBS and the original
SEBS model, were compared with the eddy covariance observations. The results indicate that the
MPDI-integrated SEBS significantly improved the surface turbulent fluxes in water-limited regions,
especially for sparsely vegetated areas. The new approach only uses one optical satellite data and
meteorological data as inputs, providing a considerable operational improvement for ET mapping.
Moreover, HJ-1 high-resolution data promised continuous daily ET at the field scale, which helps
in understanding the corresponding relationships among field, crop, and water consumption.
Such detailed ET information can greatly serve water resources management in the study area
as well as other arid and semi-arid regions.
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1. Introduction

Evapotranspiration (ET), the total amount of water evaporation from land and water surface and
transpiration by vegetation, is considered to be the most active process in the terrestrial hydrological
cycle and the major component of energy and water balance in agricultural systems [1]. It is a major
consumptive use of precipitation and irrigation water on farmland. Agricultural water in the arid and
semi-arid regions of China accounts for about 70% of total water use, more than 90% of which
is consumed via evapotranspiration [2]. Any attempt to improve water use efficiency in water
management must be based on reliable estimates of ET. Hence, understanding spatiotemporal
variations in water use via evapotranspiration on irrigated fields is vital for facilitating the optimization
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of water use and allocation among different competing uses, especially in arid and semi-arid regions
where water resources are scarce.

Accurate ET can be measured in the field by different types of instruments including lysimeters,
eddy covariance (EC), surface renewal, and flux variance systems [3,4]. However, in situ observations
are costly and only obtain the turbulent fluxes over small and homogeneous regions [5]. Remote
sensing (RS) technology provides a cost-effective way to estimate ET at a variety of spatial and temporal
scales [6]. Over the past few decades, many RS-based methods have been developed to estimate land
surface flux and ET. These approaches can be broadly grouped into four categories: (1) empirical
and semi-empirical methods [7,8]; (2) surface energy balance models (SEB) (e.g., the surface energy
balance algorithm for land (SEBAL), the surface energy balance system (SEBS) and mapping ET with
internalized calibration (METRIC), the two-source energy balance model (TSEB), and the simplified
two-source energy balance model (STSEB) [9–14]; (3) vegetation index approaches (e.g., vegetation
index combined with the Penman-Monteith (PM) method and the Priestley-Taylor (PT) method) [15,16];
(4) data assimilation combined with land surface models and observations [17,18]. RS-based models
have been developed and applied over a wide range of spatial scales from local to global, performing
consistently with ground measurements by the relative error of 10–30% for daily ET and 5% for
seasonal and annual ET [19–23].

The focus of this study is on the physically-based SEBS model, which calculates the sensible
heat flux (H) using a single-source bulk transfer equation and derives the evapotranspiration from
the evaporative fraction [10]. It is less site-specific compared to a dual-source model such as TSEB
and does not require subjective intervention by the model user, such as in SEBAL and METRIC
techniques, where selecting hot and cold endmembers within the scene is required [24]. The SEBS
model has been extensively applied and validated with a variety of methods in different regions
and climates, having a good utility to create multi-scale high spatial and temporal resolution ET
datasets [25–29]. However, many studies have reported that the SEBS model overestimates ET in
the range of 0.5–3.0 mm d−1 due to the underestimation of sensible heat flux in semi-arid and arid
regions where water limiting situations prevail [30–32]. Gokmen et al. (2012) adapted heat transfer
additional damping (kB−1) in SEBS by a scaling factor retrieved from passive microwave soil moisture
products (Advanced Microwave Scanning Radiometer-Earth Observing System, AMSE-R, 0.25◦),
with an overall improvement on sensible heat flux of 40 W m−2 under water-limited conditions [33].
The passive microwave soil moisture data has a coarser spatial resolution (~25 km) compared to
the MODIS (moderate resolution imaging spectroradiometer) thermal bands with 1 km resolution,
which would induce error and uncertainty from multiple-resolution data [34]. Li et al. (2015) applied
this approach using soil moisture data with a higher spatial resolution retrieved from airborne PLMR
(a dual polarization L-band (1.4 GHz) passive microwave radiometer, 700 m) in the irrigated oases
of arid regions in Northwest China and obviously overcame the ET overestimation [35]. However,
the expensive airborne radar could not become a conventional data source to support irrigation
management. Hence, inexpensive and readily available RS data should be considered to solve the
problem of consistency in the process of calculating ET.

High spatial resolution imagery (<100 m) is commonly considered necessary to distinguish
the differences in ET among agricultural fields. However, some high spatial resolution imagery
(e.g., Landsat 30 m, ASTER (the advanced spaceborne thermal emission and reflection radiometer) 15 m)
is only available at two weeks or greater temporal resolution, which makes its application problematic
in areas with high cloud cover and dynamic land cover [36]. The Chinese HJ-1 (the environmental and
disaster monitoring and forecasting with a small satellite constellation) can provide global coverage
every two days with a spatial resolution of 30 m. The characteristics of short repeat interval and high
spatial resolution are very useful for monitoring the regional land surface variables, such as vegetation
indexes (VI), drought indexes, land surface temperature (LST), and ET [37–41]. The authors integrated
the modified perpendicular drought index (MPDI) as a soil moisture indicator into the SEBS fed
with HJ-1 images to obtain accurate ET estimation at the field scale in Ganzhou irrigation districts.
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The principal objectives of this study were to: (1) provide an effective way to overcome the shortage of
overestimation of ET under water-limited conditions by integrating MPDI into the SEBS model only
using HJ-1 and meteorological data as inputs; (2) evaluate the performance of the MPDI-integrated
SEBS model for irrigated oases in Northwestern China; (3) analyze the spatiotemporal variability of
daily ET for different crops during the crop growing season to gain an understanding of the irrigation
water requirement in the studied region.

2. Materials and Methods

2.1. Experimental Region and Data

2.1.1. Study Area

The Ganzhou Districts (100.03◦–100.68◦ E, 38.33◦–39.20◦ N) are located in a desert-oasis zone in
the middle reaches of the Heihe River Basin (HRB), Northwestern China (Figure 1). This is a main
agricultural county in the HRB including eight irrigation districts named Daman, Yingke, Ganjun,
Shangshan, Wujiang, Xigan, Huazhaizi, and Anyang. The climate is continental, with an annual
average temperature of 7.5 ◦C. Annual rainfall and annual evaporation capacities are about 136.8 mm
and 1840.1 mm, respectively [42].
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production base in Northwestern China. Maize is a predominant crop in these areas, covering more 
than 70% of the irrigated fields. Other plants include winter wheat, orchards, vegetables, alfalfa, 
cotton, and woods. During the growing season (from April to September), crops needs much water, 
but the rainfall is relatively small. The agriculture of this region depends heavily on irrigation water 
extracted from the Heihe River or from the aquifer. In the period of crop growth, the croplands are 
irrigated using flood irrigation at an interval of 20 days to one month. In 2012, the irrigation used 
10.61 × 108 m3 of surface water diverted from the Heihe River and 5.36 × 108 m3 from pumping ground 
water in the middle reach oasis of the HRB [43]. 

Figure 1. Location of study area.

The artificial oasis, the Gobi Desert, and the transitional zones between the oasis and desert are
the dominant landscapes in the region. The Ganzhou districts are an important maize seed production
base in Northwestern China. Maize is a predominant crop in these areas, covering more than 70% of
the irrigated fields. Other plants include winter wheat, orchards, vegetables, alfalfa, cotton, and woods.
During the growing season (from April to September), crops needs much water, but the rainfall is
relatively small. The agriculture of this region depends heavily on irrigation water extracted from the
Heihe River or from the aquifer. In the period of crop growth, the croplands are irrigated using flood
irrigation at an interval of 20 days to one month. In 2012, the irrigation used 10.61 × 108 m3 of surface
water diverted from the Heihe River and 5.36 × 108 m3 from pumping ground water in the middle
reach oasis of the HRB [43].



Water 2018, 10, 640 4 of 18

2.1.2. Field Experimental Site

The field measurements used in this study were collected during HiWATER (Heihe Watershed
Allied Telemetry Experimental Research), which was conducted in 2015 [44]. There were five ground
observation stations in the study area: Daman, Huazhaizi, Shenshawo, Zhangye, and Gebi stations.
The underlying surface and geographic information at the five sites are described in Figure 1
and Table 1.

Table 1. Specific information for each site.

Land Use Site Location Instrument

Maize Daman 100◦22′20” E, 38◦51′20” N AWS, EC
Steppe desert Huazhaizi 100◦19′12” E, 38◦45′57” N AWS, EC

Desert Gebi 100◦19′12” E, 38◦45′57” N AWS
Desert Shenshawo 100◦19′12” E, 38◦45′57” N AWS

Wetland Zhangye 100◦19′12” E, 38◦45′57” N AWS

An automatic weather station (AWS) was equipped with sensors for collecting data including
temperature, wind speed and direction, air pressure, humidity, precipitation, soil moisture profile,
solar radiation, four-component radiation, soil heat flux, and infrared temperature every 10 min
over the whole year of 2015. All variables every 10 min were cumulated into the data of one day,
then the daily data were interpolated into a map at a resolution of 30 m covering the study area with
Kriging Interpolation.

Fluxes of sensible and latent heat used in the model evaluation were measured at Daman and
Huazhaizi stations. The eddy covariance (EC) sensors were installed at the height 4.5 m above the
ground. EC data were sampled at a frequency of 10 Hz and turbulent fluxes were recorded every
30 min. The Gaussian fitting method was used to interpolate the missing data [45]. The closure
error of the EC measurements at the daily scale, in the case of the energy imbalance of EC system,
was calculated based on the energy balance ratio (EBR) to correct the daily flux data [46].

2.1.3. Satellite Data

The HJ-1 which includes three satellites (HJ-1A, HJ-1B and HJ-1C) was launched by the China
Center for Resources Satellite Data and Applications (CRESDA) on 6 September 2008 (http://www.
cresda.com/CN/). There were two optical charge coupled devices (CCDs) and a hyper-spectrum image
(HIS) loaded on HJ-1A, and there were two CCDs and an infrared scanner (IRS) on HJ-1B. HJ-1A/B
had a short revisit period (two days), high spatial resolution (30 m), and large cover area (700 km),
which made it applicable to monitor the regional environment. The satellite sensor parameters of HJ-1
are provided in Table 2. Considering the quality of remote sensing over the study area, the available
satellite images obtained in the growth season of 2015 from April to October were selected (Table 3).
All of the images were subjected to geometric correction and atmospheric correction.

Table 2. HJ-1A/B charge coupled device (CCD) and HJ1-B infrared scanner (IRS) sensor parameters.
HJ-1A and HJ-1B (HJ-1A/B) are the two satellites in HJ-1, respectively.

Sensor Band
Spectral

Resolution
(µm)

Spatial
Resolution

(m)
Sensor Band

Spectral
Resolution

(µm)

Spatial
Resolution

(m)

HJ-1A/B CCD

1 0.43–0.52

30 HJ-1B IRS

5 0.75–1.10
1502 0.52–0.60 6 1.55–1.75

3 0.63–0.69 7 3.5–3.9
4 0.76–0.9 8 10.5–12.5 300

http://www.cresda.com/CN/
http://www.cresda.com/CN/
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Table 3. Satellite images for this study.

Satellite Total Number Day of Year (DOY)

HJ-1B CCD/IRS 33
91, 95, 99, 103, 111, 119, 124, 129, 132, 136, 139, 143, 151, 158, 168,
176, 184,188, 192, 200, 208, 212, 216, 220, 225, 233, 237, 241, 249,

257, 263, 272, 274

HJ-1A CCD 18 105, 117, 121, 134, 138, 149, 190, 202, 206, 211, 215, 223, 235, 255,
256, 260, 275, 276

Cropping planting structure was derived from HJ-1 CCDs data with a support vector machine
(SVM), object-based method, and time-series analysis, with the overall accuracy for the crop
classification reaching 84.09% [47]. The green (0.52–0.62 µm), red (0.63–0.69 µm), and near infrared
(0.76–0.9 µm) bands of HJ-1 CCDs data were used to calculate the leaf area index (LAI) through
a vegetation canopy radiation model developed by Jin et al. (2007) [48].

2.2. Method

2.2.1. A Brief Description of SEBS

The surface energy balance model (SEBS) is a single source model and takes latent heat flux (λET)
as the residual of the surface energy balance. It is proposed for the estimation of atmospheric turbulent
fluxes and evaporative fraction using satellite earth observation data and meteorological information
at proper scales [10]. The surface energy balance is normally written as:

λET = Rn −G−H (1)

where Rn, G, H, and λET are the net radiation flux, soil surface heat flux, sensible heat flux, and latent
heat flux, respectively. The units of these variables are W m−2. Su et al. (2001) and Su (2002) detailed
a set of equations for the estimation of the land surface physical parameters and variables, such as
albedo, emissivity, vegetation coverage, land surface temperature, etc. [10,49].

Sensible heat flux is derived from the similarity theory along with a dynamic roughness height
formulation for the heat transfer. In the atmospheric surface layer (ASL), the similarity relationship for
the profiles of the mean wind speed (u) and the mean temperature (T0 − Ta) are usually described as:

u =
u∗
k

[
ln
(

z− d0

z0m

)
−Ψm

(
z− d0

L

)
+Ψm

(z0m

L

)]
(2)

T0−Ta =
H

ku∗$Cp

[
ln
(

z− d0

z0h

)
−Ψh

(
z− d0

L

)
+Ψh

(z0h
L

)]
(3)

L =
$Cpu 3

∗ θv

kgH
(4)

where u is the mean wind speed; u* is the friction velocity (m s−1); k is the von Karman constant (0.4);
z is the height above the land surface where the meteorological observations were made (m); Cp is
the specific heat of air at constant pressure (J kg−1 K−1); d0 is the zero plane displacement height (m);
and z0h and z0m are the surface roughness heights for heat and momentum transport (m); Ψh and
Ψm are the stability correction functions for heat and momentum transport; g is the acceleration due
to gravity (m s−2); θv is the virtual temperature (K); L is the Obukhov length (m); T0 and Ta are
the temperature of the land surface and air, respectively (K); and $ is the density of air (kg m−3).
More details about the SEBS model can be found in Su (2002) [10].
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2.2.2. The MPDI-Integrated SEBS Model

Theoretically, d0 + z0h defines the level where the canopy exchanges sensible and latent heat with
the atmosphere [50,51]. Hence, z0h constitutes one of the most crucial parameters for the accurate
calculation of H [52]. The surface roughness height for heat (z0h) can be derived from:

z0h = z0 m/exp (kB−1
)

(5)

ET, in arid and semi-arid regions, is limited not only by the available energy, but also by the
available water [53]. When plants suffer from water stress, the leaf stomata on the top of the canopy
gradually close, thus the air temperature on the top of the canopy increases due to solar radiation.
However, the temperature fluctuation at the bottom of the canopy is relatively small due to the effect of
leaf covers. This means the surface roughness height for heat transport moves to the canopy top, thereby
z0h rises, which induces sensible heat flux to increase, in turn reducing crop transpiration derived
from soil moisture [33]. Therefore, adapting z0h (via kB−1) by introducing soil moisture correction
can remedy the shortcoming of the overestimation of ET using the SEBS model. Here, the modified
perpendicular drought index (MPDI) proposed by Ghulam et al. (2007) was integrated into the
SEBS bulk transfer equation for H (via kB−1). MPDI is based on the spatial distribution features
of soil moisture in NIR-Red spectral space, taking into account both soil moisture and vegetation
growth [54]. It provides a simple method to detect soil moisture condition and crop drought and has
been extensively tested and verified over different climate and hydrologic regimes in China, Iran, and
Thailand [55–57]. It is written as follows:

MPDI =
RRed+MRNIR − fv(R v,Red+MRv,NIR

)
(1− fv)

√
M2 + 1

(6)

where RRed and RNIR refer to the atmospherically corrected reflectance of the red and near-infrared
bands, respectively; M is the slope of the soil line; Rv, Red and Rv, NIR are the vegetation reflectance in
the red and near-infrared bands, respectively; and fv represents fraction of vegetation. More details
about MPDI can be found in Ghulam et al. (2007) [54].

The kB−1 value is modified using a scaling factor (f) represented by a reverse sigmoid function:

kB−1
u = SF×kB−1 (7)

where

SF =

[
a +

1
(1 + exp(b− c / MPDIrel))

]
(8)

Here, kB−1
u is the updated kB−1; a, b, and c are the coefficients of the reverse sigmoid function.

A reverse sigmoid function for SF was selected because it considerably lowers the kB−1 value for
relatively dry conditions (high MPDI values), while soil moisture influence on the value of kB−1 is
not significant for wet conditions (low MPDI values). Hence, it better fits the conceptual framework
for a water-limited evapotranspiration regime [53]. The new calculation process for daily ET with the
MPDI-integrated SEBS model is shown in Figure 2.

To obtain the coefficients of the reverse sigmoid function, the authors calibrated the
MPDI-integrated SEBS using EC flux observations at Daman station. Cloud-free HJ-1 data from
2015 were used to determine the coefficients (a, b, and c) of sigmoid function through an optimization
by reducing the error between the observed and modeled sensible heat flux values from EC and
SEBS. The parameters a, b, and c were determined as 0.024, 3.1, and 1.6, respectively. The reverse
sigmoid function for SF-MPDI availably decreased the kB−1 value, thereby increasing z0h at water
stress conditions. Figure 3 shows that the upper boundary is slightly above 1. That might be because
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the initial effect of soil evaporation before water stress slightly lowers rather than increase z0h when
taking into account the plant physiological discussion [58].Water 2018, 10, x FOR PEER REVIEW  7 of 18 
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3. Results and Discussion

3.1. Comparison of Observed H with SEBS and MPDI-Integrated SEBS

To be able to analyze whether integrating MPDI into SEBS via kB−1 improves the sensible heat
(H) estimates in the study region, the H observations from EC (HEC) at the HJ-1 transit time were
compared with H calculated by SEBS (HSEBS) and MPDI-integrated SEBS (HSEBS-MPDI). Figure 4a
indicates an obvious underestimation of H by the original SEBS, with most scatter points below the
1:1 line, and the slope for the linear regressions was 0.73. A better agreement was obtained between
the observed and modeled H in Figure 4b, with more scatter points around the 1:1 line, and the slope
for the linear regressions was 0.96. When soil moisture information was incorporated in the calculation
of H by SEBS, the coefficient of determination (R2) was 0.85, indicating a strong correlation between
the observed H and simulated H by the MPDI-integrated SEBS model.
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To further study the behavior of the two methods under low soil moisture and high soil moisture,
the time series of soil moisture and the sensible heat fluxes of HEC, HSEBS, and HSEBS-MPDI in the
Daman station and the Huazhaizi station were plotted in Figure 5. At Daman station, from late May
to August, intensive rainfall or irrigation led the soil moisture to maintain a relatively high level
(>0.30 m3/m3) sometimes. Although rain caused soil moisture to fluctuate during growing season,
the values for soil moisture mostly stayed low (<0.20 m3/m3) at Huazhaizi station. Table 4 shows
the error evaluation of HSEBS and HSEBS-MPDI based on EC observations under low soil moisture
and high soil moisture conditions. When soil moisture was less than or equal to 0.30 m3/m3, a large
reduction in the root mean square error (RMSE) occurred and the mean absolute error (MAE) leapt from
58.17 W m−2 to 7.06 W m−2, which indicated that the MPDI-integrated SEBS significantly improved the
underestimation of H for the SEBS model. When soil moisture was greater than 0.30 m3/m3, the RMSEs
and MAEs between HSEBS and HSEBS-MPDI were close, which implied that the MPDI-integrated SEBS
model slightly refined the SEBS model when adequate soil water was available. Seneviratne et al.
revealed in 2010 that the process of evapotranspiration is controlled by the available energy rather than
the soil moisture when the area is under saturated moisture conditions [54]. This is the reason why the
MPDI-integrated SEBS cannot significantly improve the performance of the SEBS model under high
soil moisture conditions.
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Figure 5. Comparison of time series of HEC with HSEBS and HSEBS-MDPI together with soil moisture
and LAI at Daman station (a) and Huazhaizi station (b).

Table 4. Error evaluations of the estimated H from the original SEBS and the MPDI-integrated SEBS at
Daman and Huazhaizi stations.

H Estimation Under Different
Soil Moisture (SM) Conditions

Sensible Heat Flux (H)

Root Mean Square Error (RMSE) (W/m2) Mean Absolute Error (MAE) (W/m2)

SM (m3/m3) SM ≤ 0.30 SM > 0.30 SM ≤ 0.35 SM > 0.30
SEBS 59.78 35.94 58.17 26.01

MPDI-integrated SEBS 15.28 26.53 7.06 19.73

The specific comparison of instantaneous H estimated by SEBS with and without the integration
of MPDI on an early dry summer day of 4 May, 2015 (day of year (DOY) 124) is plotted in Figure 6.
At this time of year, maize was still in the seedling stage. The high MPDI (MPDI > 0.5) and bare to very
sparse conditions (LAI < 2) observed in most of the study region confirmed water-limited conditions
with sparse vegetation (e.g., purple circles in Figure 6). Accordingly, the instantaneous H estimated by
the MPDI-integrated SEBS had the largest increase with about 42.5 W m−2 in these areas. The red circles
in Figure 6 represent samples with relatively high vegetation (LAI > 4) but low soil moisture conditions
(MPDI > 0.5), where the pixels are wheat parcels, orchard, and vegetables, which is consistent with
the planting structure as shown in Figure 1. There was a moderate increase in these areas, with about
22.5 W m−2 of H. Regarding the wetland or open water area (e.g., river) where adequate water was
available (MPDI < 0.2), the MPDI-integrated SEBS model showed little impact on H. The implementation
of the MPDI-integrated SEBS better depicts H rising under water stress conditions through an increase
in z0h. As explained in Section 2.2., in areas under water stress, low soil moisture availability decreases
the kB−1 value, thereby increasing the surface roughness of heat transport (z0h).
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Figure 8a). Similar overestimation results of ET due to crop residues have been reported by 
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Figure 6. H obtained from the original SEBS (a); H obtained from the MPDI-integrated SEBS (b);
MPDI (c); and LAI distribution (d) on 4 May, 2015. Purple circles (“1”) were samples with low LAI and
high MPDI; red circles (“2”) were samples with high LAI and high MPDI.

3.2. Assesing the Performance of Daily ET Estimated by MPDI-Integrated SEBS Using HJ-1 Data

The continuous daily ET (ETd) through the whole growing season estimated by the MPDI-integrated
SEBS (ETSEBS-MPDI) and the original SEBS (ETSEBS) using HJ-1 data are compared with EC measurements
in Figure 7. The results exhibit a clear overestimation in the ETd produced by the original SEBS,
with scatter points above the 1:1 line, and the slope for the linear regressions was 1.19. A better
agreement was obtained between measured ET and ETSEBS-MPDI, with scatter points around the
1:1 line, and the slope for the linear regressions was 1.01. Regarding results from the MPDI-integrated
SEBS model, R2 was 0.89, which indicated a strong correlation between measured ET and ETSEBS-MPDI.
MAE and lower RMSE demonstrated that the modified SEBS model made a good improvement in ETd
estimation for the irrigated oasis. Corresponding to Section 3.1., the modeled ET clearly was improved
when the MPDI was integrated into SEBS under low soil moisture condition (SM ≤ 0.30 m3/m3);
the RMSE and MAE decreased by 0.93 mm and 0.70 mm, respectively (Table 5). When soil moisture was
greater than 0.30 m3/m3, the RMSEs and MAEs between ET estimated by the SEBS and that estimated
by the MPDI-integrated SEBS were close. This indicated that the MPDI-integrated SEBS model slightly
improved the overestimation of the SEBS model when adequate soil moisture was available. In addition,
we found that the simulated ET was always overestimated compared with EC measurements since
September when the field was covered by maize residue (see Figure 8a). Similar overestimation results of
ET due to crop residues have been reported by Odhiambo and Irmak (2012) [59].
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without the integration of MPDI on 3 July 2015 (DOY 185). Although it rained the day before, an 
obvious improvement of ETd estimates after integrating MPDI occurred. The difference of the spatial 
mean of ETd estimates from the original SEBS and the MPDI-integrated SEBS reached 0.8 mm d−1. The 
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Figure 8. Comparison of the time series of daily ET measured by the eddy covariance (EC) system and
estimated by SEBS with and without the integration of MPDI over the growth period in 2015 at Daman
station (a) and Huazhaizi station (b).

Table 5. Error evaluations of the estimated ET from the original SEBS and the MPDI-integrated SEBS at
Daman and Huazhaizi stations.

ET Estimation Under Different
Soil Moisture (SM) Conditions

Evapotranspiration (ET)

Root Mean Square Error (RMSE) (mm) Mean Absolute Error (MAE) (mm)

SM (m3/m3) SM ≤ 0.30 SM > 0.30 SM ≤ 0.30 SM > 0.30
SEBS 1.25 0.66 1.05 0.98

MPDI-integrated SEBS 0.32 0.57 0.35 0.64

Figure 9 shows the spatial distributions and frequencies of ETd generated by SEBS with and
without the integration of MPDI on 3 July 2015 (DOY 185). Although it rained the day before, an obvious
improvement of ETd estimates after integrating MPDI occurred. The difference of the spatial mean of
ETd estimates from the original SEBS and the MPDI-integrated SEBS reached 0.8 mm d−1. The low ET
values presented dry sandy land and wheat parcels while spring wheat had matured and soil moisture
was low due to less irrigation. The ET for these parcels mostly declined to 1 mm. The high ET values
presented at well-irrigated, densely planted maize plots and water surfaces, where the difference of ET
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values given by the original SEBS and the SM-integrated SEBS was very small. The pixel numbers of
ET above 5.0 mm d−1 decreased from 2.8% to less than 1% for the study region.
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Figure 9. Spatial distribution and frequency distribution of ETd using the SEBS model (a) and the
MPDI-integrated SEBS model (b) on 4 July 2015.

3.3. Spatial and Temporal Variability of Evapotranspiration at the Field Scale

Spatial distribution of daily ET at the field-scale is essential to understand the water consumption
pattern over a whole field region to irrigate rationally. Figure 10a,b show the distribution of irrigated
fields in Daman, where plants mainly include maize, winter wheat, and orchards. Water consumption
via the ET of individual fields was captured by the MPDI-integrated model using HJ-1 images on
24 May and 3 July 2015 (DOY 144). To understand the variability of water consumption via ET for
a specific crop, we overlaid the field boundaries of cropland provided by “Heihe Plan Science Data
Center, National Natural Science Foundation of China” (http://www.heihedata.org). There was
high variability of evapotranspiration over agricultural fields, which was strongly linked to the crop
planting structure. Most of the pixels of high ET value (ET > 4 mm d−1) presented well-irrigated
wheat parcels when winter wheat was in the heading stage, with LAI > 3 on 24 May 2015. The maize
pixels maintained a low ET value of less than 2 mm, which was still in the tillering stage with LAI < 2.
When it came to 3 July, the high ET values (ET > 5 mm d−1) occurred at well-irrigated maize parcels in
the heading stages with LAI > 4. Wheat harvesting in July caused the field’s ET to decline to less than
2 mm. Meanwhile, the orchard field maintained a relatively high daily ET through the growing season.
Based on the high spatial variability of ET at the field scale, an individual farmer could use water

http://www.heihedata.org
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consumption information for his/her field to understand the relationship between water application
and yield for improved water management.Water 2018, 10, x FOR PEER REVIEW  13 of 18 
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value (7.2 mm d−1) in mid-June. The ET of wheat fields was obviously lower than that of the other 
vegetation types when the winter wheat was in its maturity period in summer. Among the vegetation 
classes, the ET values of maize fields were found to be always higher than those of the other land-
cover types in June and July, when maize was in the jointing stage. Abundant water supply to the 
maize field from frequent flooding irrigation was the most general way to ensure the growth of seed 
maize under no-stress conditions for better seed production in Ganzhou. This apparently resulted in 
soil water content reaching its field capacity and, in turn, large daily ET. Other types of crops (maize, 
wheat, and soybean) were intercropped in the orchard field in different seasons. Frequent irrigation 
to these crops led to the orchard maintain a relatively high daily ET during the growing season.  

Figure 10. Magnified view of the spatial distribution of daily ET on the day of satellite
overpass—24 May 2015 (a) and 3 July 2015 (b) within a selected part of the Daman irrigation district.
Field boundaries were overlaid to compare inter- and intra-field variability in ET.

Irrigation management requires continuous daily ET, especially during growth seasons, so ET
losses can be compensated for by applying the proper quantity of water at the right time to meet
the plant water demands. Here, based on HJ-1 data, the complete daily time series of ET estimates
were obtained by using the cubic spline interpolation method to fill in the gaps of daily ET during
the 33 cloudless days [54]. The areal statistical means of daily ET for the main land-cover types in
Ganzhou through the whole growing season in 2015 are presented in Figure 9. Obviously, the high
temporal resolution of HJ-1 promised more satellite images to capture the dynamic changes of the
daily ET. These dynamic traits of daily ET included the day-to-day fluctuations related to changes in
meteorological forcing (i.e., solar radiation, air temperature, and humidity) and sporadic peaks due to
the increase in soil evaporation fluxes after rainfall or irrigation events (i.e., such as the peak values on
DOY 132, 158, 176, 184 188, 208, 235, see Figure 6b).

Moreover, the modeling of ET at such detailed temporal resolution allows the ability to capture
long-term (weekly/monthly) trends, primarily dictated by plant growth (see Figure 11). The mean
daily ET for different land-cover types showed similar seasonality with an increasing trend since the
beginning of the growing season (late April) and a decreasing trend since September. Peak values of
daily ET for most land-cover types appeared in July, while the winter wheat reached its highest ET
value (7.2 mm d−1) in mid-June. The ET of wheat fields was obviously lower than that of the other
vegetation types when the winter wheat was in its maturity period in summer. Among the vegetation
classes, the ET values of maize fields were found to be always higher than those of the other land-cover
types in June and July, when maize was in the jointing stage. Abundant water supply to the maize field
from frequent flooding irrigation was the most general way to ensure the growth of seed maize under
no-stress conditions for better seed production in Ganzhou. This apparently resulted in soil water
content reaching its field capacity and, in turn, large daily ET. Other types of crops (maize, wheat, and
soybean) were intercropped in the orchard field in different seasons. Frequent irrigation to these crops
led to the orchard maintain a relatively high daily ET during the growing season.
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4. Conclusions

To solve the problem of the overestimation of ET for vegetation in water stress conditions, this
study proposed an approach to improve the accuracy of ET estimates through integrating MPDI as
an indicator of soil moisture into the SEBS model through a modified definition of kB−1. The new
approach was tested by comparing it with observations from the EC tower. The results indicated a clear
improvement of H with 42.5 W m−2 for the case of sparse vegetation with low soil moisture. Regarding
the agricultural crops with relatively high soil moisture, there was a moderate improvement with
22.5 W m−2. Accordingly, the MPDI-integrated SEBS approach significantly remedied the shortcoming
of overestimating evapotranspiration under water-limited conditions. The daily ET map generated
by the MPDI-integrated SEBS had a higher spatial variability compared to the original SEBS and
was able to better distinguish between the irrigated fields and the neighboring dry areas in arid and
semi-arid regions.

The authors carried out crop evapotranspiration estimation at the field scale in the Ganzhou
irrigation districts in 2015 using the MPDI-integrated SEBS model and HJ-1 images. The results showed
that the spatial resolution of HJ-1 provided valuable information regarding the spatial variability of ET
within fields. Furthermore, the relatively short revisit period permitted the capture of the dynamic
change of crop daily ET, especially of a few peak values after rainfall or irrigation events. Based on
the day-by-day dynamics of ET, the temporal variation of crop ET changed with clear seasonality,
which was closely related to the crops’ phenophase. The field to field and crop to crop variability in
evapotranspiration provide substantial information about crop consumption via ET for agricultural
water management in arid and semi-arid regions. The authors were able to successfully leverage the
capacity of HJ-1 satellite images in a way that can provide both integrative and quantitative visual and
analytical components for the study of water use and availability.

The MPDI-integrated SEBS model only requires HJ-1 data and meteorological data as inputs,
providing an effective way to obtain high spatial resolution soil moisture information for the
SEBS model under water-limited conditions, especially for sparsely vegetated surfaces. The scheme
effectively resolves the overestimation of ET in areas with sparsely vegetated surfaces under water
stress conditions. However, the estimation of ET in dense vegetation areas still need to be improved.
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On the one hand, there are uncertainties in the parameterization schemes of the land surface parameters
and daily net radiation, which are usually related to the study region and the selected sensors. On the
other hand, MPDI is not sensitive to soil moisture variation for dense vegetation. When the leaf area
index is more than 5 (see Figure 5a), the function of MPDI in regulating kB−1 will be reduced as the
canopy density increases. In fact, MPDI present a strong correlation with the normalized difference
vegetation index (NDVI) related to canopy density [55]. Future study will consider the removal of this
correlation in order to capture the vegetation stress.
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