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Abstract: The evidence for global warming can be seen in various forms, such as glacier shrinkage,
sea ice retreat, sea level rise and air temperature increases. The magnitude of these changes tends
to be critical over pristine and extreme biomes. Chilean Patagonia is one of the most pristine
and uninhabited regions in the world, home to some of the most important freshwater reservoirs
as well as to evergreen forest, lakes and fiords. Furthermore, this region presents a sparse and
weak network of ground stations which must be complemented with satellite information to
determine trends on biophysical parameters. The main objective of this work is to present the first
assessment on snow cover over the Aysén basin in Patagonia-Chile by using Moderate Resolution
Imaging Spectroradiometer (MODIS) data from the period 2000-2016. The MOD10A2 product was
processed at 500 x 500 m spatial resolution. The time-series analysis consisted in the application of
non-parametric tests such as the Mann-Kendall test and Sen’s slope for annual and seasonal mean of
snow covered area (SCA). Data from ground meteorological network and river discharges were also
included in this work to show the trends in air temperature, precipitation and stream flow during the
last decades. Results indicate that snow cover shows a decreasing non-significant trend in annual
mean SCA with a —20.01 km?-year~! slope, and neither seasonal mean shows statistical significance.
The comparison with in situ data shows a seasonal decrease in stream flows and precipitation
during summer. The hydrological year 2016 was the year with the most negative standardized joint
anomalies in the period. However, the lack of in situ snow-monitoring stations in addition to the
persistence of cloud cover over the basin can impact trends, creating some uncertainties in the data.
Finally, this work provides an initial analysis of the possible impacts of global warming as seen by
snow cover in Chilean Patagonia.
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1. Introduction

The warming of the climate system and radiative forcing observed since the 1950s have increased
the temperature of the atmosphere and oceans, reduced the amount of snow and ice cover, and raised
the sea level (3.2 mm-year—!) [1]. Snow has decreased in most regions, especially during the spring
and summer seasons, due to a positive feedback with the air temperature trend [2]. Over the last three
decades in the northern hemisphere, the duration of snow cover has remained stable in North America,
while in Eurasia it has decreased (—2.6 + 5.6 days-decade™!) [3]. In the southern hemisphere, however,
the general lack of available records makes it impossible to establish a trend [2]. There is evidence,
however, of retreating glaciers in the Andes mountain range [4-7], although no detailed analysis has
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yet been carried out on the variability in snow cover, which plays a crucial role in water supply for
agriculture and hydroelectric energy production, mainly in the southern area of the Andes [8,9].

Monitoring snow and its properties can be very problematic since conventional methods of
measuring at high altitude are limited by rugged topography and adverse weather conditions. For this
reason, satellite images are useful because they provide information on snow cover in mountainous
areas at regular intervals of time [10]. Due to the physical properties of snow, it has a high reflectance
in the visible spectrum (0.5-0.7 pm) and high absorption in the shortwave infrared (1.0-3.5 um),
which provide the basis of the Normalized Difference Snow Index (NDSI) for differentiating snow
from other types of cover. At the same time, this reflectivity depends on factors such as the snow
grain size and shape, the content of liquid water, the depth of the snowpack and the presence of
impurities [10,11].

Some of the main snow products that have been derived from remote sensors include snow extent
maps and snow albedo, snow grain depth and size, and the snow water equivalent (SWE) [12,13].
At global level, the northern hemisphere has the largest number of available studies and satellite
products since it has continuously monitored snow cover since 1960, while in the southern hemisphere,
this has only been done on specific regions and in the last decade (excluding Antarctica) [14].

The largest part of the Andes mountain range is in Chile, where it stretches 8000 km and has
an average height of 4000 m, nearly all of which is covered in snow during the winter season [15].
Some of the most notable studies on snow levels include those by [16] in the northern zone and their
study of how wind impacts snow cover duration patterns in Pascua Lama and the Andes through
the use of ablation simulation models. At mid-latitudes, Masiokas et al. [17] analyzed the central
region of the Andes and identified a positive correlation with warm phase of the El Nifio/Southern
Oscillation (ENSO), showing the importance of western air masses in the regulation of mountain
snowfall. Between the northern and southern zone, Stehr et al. [18] have studied spatiotemporal
dynamics of snow cover over five Andean watersheds, detecting an important decline of snow cover.
In the southern zone, [19] have studied the snowpack on the Northern Ice Field using satellite images
and meteorological data. However, there is a lack of research on the amount of snowfall in the region of
Aysén over the past few decades and how this variation might impact the water scheme of the region’s
most important rivers, which have been under consideration for several hydroelectric projects [20].
Likewise, this variability might affect how water is managed regionally for different uses, like drinking
water and agriculture, thus leading to unsustainable water-use conditions under future scenarios
of lower resource availability. In fact, a decrease in precipitation has been estimated for the coming
decades [21,22], which might potentially lead to greater vulnerability and might require water users’
organizations to be created for resource use under a scenario of scarcity. It is for this reason that the
main objective of this work is to analyze the spatial and temporal variability of snow cover in the
Aysén river basin using satellite images and in situ measurements. The structure of this paper is as
follows: Sections 2 and 3 detail the study area and data used. Section 4 presents the methodology,
Section 5 the results and, lastly, Sections 6 and 7 provide a brief discussion and conclusions.

2. Study Area

The Aysén river basin (Figure 1) is located in the XI Region of Aysén del General Carlos Ibéfiez
del Campo between 45° and 46° south latitude. It has a surface area of 11,540 km?, of which 38.3% is
covered by native forests, 22.6% by scrub and meadows, and 13.6% by glaciers and permafrost [23].

Its climate is cool oceanic with low temperatures, heavy precipitation and strong winds. However,
the different terrain within the basin creates micro-climates: the western sector is influenced by islands
and archipelagos and the western slope of the Patagonian Andes, with average annual precipitation
between 3000 and 4000 mm and an average annual temperature varying between 8 and 9 °C. The central
part of the basin presents a cold steppe climate on the eastern slope of the Patagonian Andes. On the
eastern side, rainfall drops as far as 621 mm per year in Balmaceda and down to 1385 mm per year in
the city of Coyhaique [24].
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Figure 1. Aysén river catchment.

The basin has an elevation ranges from the sea level to a high of 2227 m and an average slope
of 32%. The western part is where the Andes mountain range intersects and the highest elevations
and steepest slopes are found, and where the typical vegetation is temperate, lenga beech forest
(Nothofagus pumilio) [25]. The eastern part, on the other hand, has wide valleys and gentle slopes with
the Patagonian steppe [26].

The river basin’s predominant hydrological regime is pluvial-nival (Figure 2), with three
sub-regimes: mixed nivo-pluvial in trans-Andean riverbeds, mixed nivo-pluvial and nivo-pluvial
regulated by lakes and glaciers. The first sub-regime is characterized by flow coming mainly from
melting; the second by the predominance of rainfall as a result of orographic factors; and the third,
by the regulation of lakes and glaciers. In this last sub-regime is the Blanco River and 10 other lakes that
produce an increase in flows during the dry season, in addition to a several peaks with permafrost [24].
The major tributaries of the main river are the Maiiihuales, Simpson, Blanco, Coyhaique and Los Palos
rivers, which provide the basin with an average flow of between 250 and 800 m3-s~1 [27,28].
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Figure 2. Intra-annual distributions of mean precipitation and stream flow for the 2000-2016 period.
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3. Data

3.1. Remote Sensing

The Moderate Resolution Imaging Spectroradiometer (MODIS) is a terrestrial remote-sensing
system which employs a cross-track mirror and a set of individual sensors to provide images of the
Earth surface and clouds in 36 spectral bands in a wavelength range between 0.405 to 14.385 um.
The main purpose of MODIS is to aid in the study of vegetation and its properties, the concentration
of aerosols, albedo and surface temperature, as well as snow and ice cover. Snow cover is identified
using the Normalized Difference Snow Index (NDSI) [11,29], while snow cover over densely forested
areas is identified using thresholds of NDSI along with the Normalized Difference Vegetation Index
(NDVI) [30]. MODIS snow cover products are provided daily (MOD10A1) and as 8-day composites
(MOD10A2), both at a resolution of 500 m with a sinusoidal map projection. MOD10A2 is a composite
of MOD10A1 generated to show maximum snow cover extent [31]. For this study, MOD10A2 (V005)
was used to reduce the effects of cloud cover on the study area. The sample period covers the years
between 2000 and 2016, with a total of 770 images.

3.2. In Situ Information

In order to compare variations in the snowpack with hydro-meteorological parameters, daily
records of average flows (m®.s~1), average air temperature (°C) and accumulated precipitation (mm)
from stations belonging to the General Directorate of Water (Direccion General de Aguas, DGA) and
the Meteorological Directorate of Chile (Direcciéon Meteorolégica de Chile, DMC) were used. Table 1
shows the hydro-meteorological stations and their data availability during the time period.

Table 1. Hydro-meteorological stations located in the Aysén river catchment.

Station Type * Station Name Latitude Longitude Altitude (m.a.s.l.) ]?::;ng‘;,ai?:(;l(lg)
M Villa Manihuales 45°10'24"”  72°08'52" 150 88.79
M Estancia Bafio Nuevo 45°16'01”  71°31'45" 700 93.70
M Nirehuao 45°16'14"  71°42/33" 535 74.98
M Villa Ortega 45°22/19"  71°58/56/ 550 46.46
M Puerto Aysén 45°24'02"  72°42'00" 10 71.90
M El Balseo 45°24'13"  72°29'16" 25 96.49
M Rio Aysén en Puerto Aysén 45°24/21"  72°37'23" 32 86.39
M Coyhaique Alto 45°28/49"  71°36'16" 730 77.28
M Coyhaique CONAF 45°33/04"  72°03/32" 340 84.38
M Coyhaique (Escuela Agricola) — 45°34/26"”  72°01'43" 343 83.40
M Puerto Aysén Ad. 45°23/58"  72°40/38" 10 75.70
M Teniente Vidal, Coyhaique Ad.  45°35/38"  72°06'31” 310 100.00
M Balmaceda Ad. 45°54/46"  71°41'39" 517 100.00
F Rio Aysén en Puerto Aysén 45°24'21" 7203723 32 93.64

* Type M is for meteorological weather stations and F for stream-flow gauging station.

4. Methods

4.1. Remote-Sensing Processing

To cover the study area, two MOD10A2 (h12v13, h13v13) tiles for the period between 2000 and
2016 were acquired from the National Snow and Ice Data Center (NSIDC) (https:/ /earthdata.nasa.
gov/). The images were reprojected into the Universal Transverse Mercator System (UTM) Datum
WGS-84 Zone 19S. The original values of the MODIS product were classified into three classes: snow,
no-snow (land, continental bodies of water and ocean) and clouds, where the latter corresponded
to pixels with no information corresponding to clouds and classes with missing values and errors
generated by the sensor (Table 2).
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Table 2. MOD10A?2 original and reclassified values.

Original Product Reclassified Product
Value Description Value Description
0 Missing data 50 Clouds
1 Undetermined 50 Clouds
11 Night 50 Clouds
25 Land 25 No snow
37 Continental water body 25 No snow
39 Ocean 25 No snow
50 Cloud 50 Clouds
100 Ice lake 200 Snow
200 Snow 200 Snow
254 Saturated sensor 50 Clouds
255 Full 50 Clouds

4.2. Snow Covered Area (SCA)

The snow cover corresponding to the reclassified product’s snow class was converted to area by
multiplying by a conversion factor of 0.25 km?. This area was presented as snow covered area (SCA).

4.3. Seasonal Trend Analysis

In order to analyze snow cover variation, the average monthly anomalies in SCA were calculated
using the method by [32] (Equation (1)):

xa; = (x; —X) D

where xa; is the SCA anomaly, x; is to the annual/seasonal SCA value, and ¥ is the average for the
seasonal/annual period for the years in the time series. The trend analysis was performed on the
anomaly estimation indicated above, in which the slope among all the ordered pairs on a scatter plot
was calculated using Sen’s slope estimator (Equation (2)). In the time series, time will be on the x-axis
and SCA on the y-axis. Then, the median of the created data set (11,;) was determined and the result
represented the non-parametric trend of the sampled time series [33,34],

Yi—Yi . .
mg = ﬂ, 1< (2)
where m, is the series of slopes among all the combinations of ordered pairs which are natural numbers
from 1 to k (Equation (3)):

(n)(n—1)

= ®

where 7 is the total number of ordered pairs. To estimate whether there is a significant trend in the

time series, the non-parametric Mann—-Kendall test was performed [35,36] since it has been identified

as one of the most robust techniques available for estimating trends in environmental variables [37].

Equation (4) gives the statistics on the sign of the trend for the sampled series, where a positive value
of t indicates an increasing trend and vice versa:

n—1 n
t=Y Y signo(xj—xi) )
i=1 j=it1

where signo(x) extracts the sign of the expression entered (Equation (5)).
+1 x>0
signo(x) =¢ 0 x=0 5)
-1 x<0
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When the ¢ statistic is calculated with more than 10 data points, it presents a normal distribution,
which is what makes it possible to run it through a hypothesis test, for which the z statistic must be
calculated as a function of ¢ and its variance (Equation (6)):

8
var(t) = 1173 an=1)(n+5) = Y talta )21 +5) ©)
q=

To calculate the z-statistic, Equation (7) was used,

t—1
var(t) £>0
z=4 0 t=0 @)
_t+1 t<O0
var(t)

The significance level for this work is 0.05, and because it is bilateral, the rejection region of the ¢
statistic will be [Zg 025; Z1-0.025]-

4.4. SCA and In Situ Data

The stations whose data availability was equal to or greater than 85% in the period 2000-2016
were used. Hydro-meteorological data were added annually and measurements from the stations
were averaged to obtain a representative value at hydrological basin level. As far as precipitation and
average air temperature, the annual cumulative and the annual average were used, respectively, as in
Equation (8):

Yia Ti

T= P =
n n

®)

where T is the annual mean temperature at basin level, Ti is a specific weather station, i is the air
temperature measurement and 7 is the number of stations in the basin. P is the average accumulated
precipitation at basin level and Pi is the annual accumulated precipitation measured by one weather
station. As far as stream-flow, the annual average of the gauging station at the outlet of the basin
was used.

5. Results

5.1. SCA

Figure 3 shows the SCA (%) variability for the 2000-2016 period in the Aysén river basin.
The greatest SCA accumulation occurs during the winter season and the maximum SCA occurs
in the year 2005 when it reaches 90.72%. However, the maximums for the last two years of the period
do not exceed 40% of the area of the basin. Figure 4 shows the maximum SCA in each year of the
2000-2016 period.
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Figure 3. Snow covered area (SCA) variability for the 2000-2016 period.



Water 2018, 10, 619 7 of 16

| Clouds

- No Snow
- Snow

Figure 4. Annual maximum SCA for the 2000-2016 period.

Figure 5 shows the seasonal and annual mean SCA (%) for the 2000-2016 period. The maximum
annual mean SCA occur in the years 2005 and 2010, with 22.78% and 20.94% of the basin area,
respectively. The greatest accumulation of SCA occurs in the autumn and winter seasons. In autumn,
the maximum mean SCA occurs in 2008, while in winter, in the year 2005. In spring, the maximum
SCA occurs in the year 2000 and in summer, in the year 2001. The minimum annual mean SCA occur
in the years 2003 and 2016.
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Figure 5. Annual and seasonal mean SCA (%) for the 2000-2016 period.
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5.2. Seasonal Trend Analysis

Figure 6 shows the anomalies in the seasonal and annual mean SCA in the 2000-2016 period.
Annually, the year 2005 is 801.51 km? above the average for the period, while the years 2003 and
2016 are 597.20 and 459.49 km? below the mean for the period, respectively. In addition, during
the 2005-2013 period, there are positive or slightly negative anomalies, and then in the following
years, there are negative anomalies nearly 400 km? below the mean for the period. In autumn,
the year 2008 presents the maximum positive anomaly, and in 2013 the maximum negative anomaly.
In winter, the maximum positive anomaly occurs in 2005 with 2387.11 km? and in the spring of 2000,
with 474.20 km? above the mean for the 2000-2016 period. In summer, lastly, the maximum anomaly
occurs in 2001 with 280.88 km? above the mean for the time series. Finally, the year 2016 presents the
maximum negative anomalies in the spring and summer seasons.
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Figure 6. Anomalies of annual and seasonal mean SCA for the 2000-2016 period. Mann-Kendall’s
trend test “1” and Sen’s slope estimator “S”.
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The annual mean SCA shows a non-significant decreasing trend at a rate of —20.01 km?-year !

at 95% confidence. The autumn and winter seasons show decreasing rates of —14.92 and
—19.44 km?-year~! with no statistical significance (p > 0.05). In addition, in winter, beginning in
2014, there are negative anomalies of the annual mean SCA of about 1000 km? below the mean for the
2000-2016 period. Likewise, the spring and summer seasons show non-significant decreasing rates
with a slope of —4.60 and —9.99 km?-year~!, respectively.

5.3. SCA and In Situ Data

Figure 7 shows the anomalies in the annual mean air temperature, the annual accumulated
precipitation and the annual mean stream flows for the Aysén river basin in the period 2000-2016.
The air temperature increased significantly, with a trend of +0.07 °C-year—!, in which the period
2011-2015 was mainly warm, with 2013 and 2016 as the warmest. On the other hand, the period
2000-2007 was less warm, except for the year 2004, which presents a positive anomaly of 0.53 °C.
As far as annual total precipitation, this grew at a non-significant trend +8.60 mm-year~!, and in the
years 2007 and 2016, it can be seen that there was a significant deficit of over 350 mm compared to the
other years in the period 2000-2016. Lastly, annual mean stream flows show a significant decreasing
trend with a trend —8.76 m3-s~!.year~!, as well as a marked decrease in surface runoff in the final
five years of the time series. The years 2000, 2007 and 2016 show the most negative anomalies in
the period 2000-2016, and in the year 2016 there was a deficit in the annual mean stream flow of
—256.81 m®:s~1.year~!, below the mean for the time series.
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Figure 7. Annual mean anomalies for temperature (top), precipitation and stream flow (bottom) for in
situ data between 2000 and 2016.
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Seasonal trends of mean air temperature anomaly are positive over the study area (Figure 8).
For autumn, the time period presents a statistical significance trend (+0.10 °C-year~!). It can be seen
that positive air temperature anomalies are in relation to the negative SCA anomalies. This effect could
be related to the global warming causes, specifically an increase of the 0 °C isotherm, resulting in
decreased snow cover in mountainous regions or a reduction in winter snowfall, while also pushing
early the thaw in spring [38,39].
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Figure 8. Anomalies of seasonal mean air temperature for the 2000-2016 period.

Figure 9 shows the seasonal accumulated precipitation and mean stream flows over the
Aysén catchment. Autumn and winter seasons present an increase in precipitation with trends
+10.88 mm-year~! and +8.22 mm-year~!, respectively. Furthermore, spring and summer show
a decrease in precipitation and stream flows, where these latter show a decrease with statistical
significance, with slopes of —23.78 and —12.35 m3-s~!-year~!

stream flows with no statistical significance (p > 0.05) and a slope of +3.52 m3-s~!.year™~

, respectively. For winter, an increase in
! was estimated.
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6. Discussion

The MODIS daily snow product indicates an accuracy of over 90% identifying snow cover under
clear sky conditions and its observations are matched to measurements made in situ or taken by other
satellites [31,40-43]. Likewise, in mountain areas with the presence of evergreen forest, the precision
of the product decreases up to 75-80% for winter months [44], because thick canopy does not allow
the snow to be identified [45]. In this research, a decreasing trend in the annual and seasonal mean of
SCA was determined in the Aysén river basin in the period 2000-2016, although with no statistical
significance. However, it is necessary to validate these results in future work by incorporating data
about snow height and cover measured in situ, which are currently non-existent for the study area.
This would improve the estimation of the amount of snow, and not just its surface area, thus improving
available estimates.

The last five years in the time period show negative anomalies in the precipitation, streamflow
and SCA, with 2016 as the year with the most negative set of anomalies. The variations in snow cover
are closely related to the stream flow hydrological response in seasonal cycles. In this sense, generally
a positive anomaly of SCA corresponds to a positive anomaly in river discharge in the periods of snow
fusion [46]. The SCA shows wide intra- and inter-annual variability, which is consistent with research
done in other studies on central Chile and Asia [17,47,48]. In fact, compared to results obtained by [18]
in Chile’s Andean basins between latitudes 32.0-39.5° S, there is a decreasing trend in SCA and no
significance in the southernmost basins, which is consistent with SCA variability in the Aysén river
basin. However, [17] identified a non-significant increasing trend of snowpack over central Chile in
the period 1951-2005, which differs from the results of this study due to the fact that it comprises a
more extensive data series (54 years) and does not include austral latitudes.

According to [21], a drop in SCA is expected over the Andes mountain range, as well as an
increase in the intensity and frequency of extreme climate events related to prolonged droughts
and floods. In line with this, central Chile recently experienced the so-called mega-drought in
the 2010-2015 period, with a deficit of between 25% and 45% in annual rainfall [49]. During the
period from 2000 to 2016, there were five occurrences of El Nifio or warm phase of ENSO (2002,
2004-2005, 2006-2007, 2009 and 2015-2016) and three of La Nifia (19992000, 2007-2008 and 2010-2011)
(http:/ /origin.cpc.ncep.noaa.gov/products/analysis_monitoring /ensostuff /ONI_v5.php). In keeping
with this, the maximums in annual mean SCA coincide with the periods of La Nifia, with the exception
of the year 2005. El Nifio events are often associated with increases in precipitation, but can also
increase the air temperature, which together can have a pronounced altitude effect on the snow cover
during spring and fall [50]. In this sense, an increase in air temperature causes 0 °C isotherm to ascend
to higher elevations resulting in a larger proportion of precipitation falling as rain as opposed to
snow [51,52]. However, due to the short time series of sampled satellite images, it would be necessary
to carry out complementary studies to confirm the aforementioned relationship.

The precipitation data used show a limited spatial distribution with respect to the diversity of
geographic zones in the study area. In fact, most of the stations are located in sectors near the mouth of
the Aysén River, making evident the lack of data in areas of snow accumulation, height, lakeside areas,
among others. Likewise, precipitation stations consist of basic rain gauges lacking any adaptations for
measuring or determining snowfall. This means that there could be a bias in the data when combining
solid and liquid precipitation at the same station. In addition, this study analyzed SCA and not the
height or volume of snow, so a greater SCA does not necessarily mean a greater amount of water
stored as snow [18].

In terms of management, variability and decreasing precipitation and SCA might potentially
require a water-management plan for the basin because a negative trend in snow cover would mean a
relatively greater shortage of available water in the basin, thus affecting ways of dealing with a demand
that has not been prioritized as of yet in regional management plans and programs. In fact, the region
is adapted to a pluvio-nival hydrological regime, and therefore water availability is abundant in the dry
season. This means that the greater water demand is offset by an abundance of the resource. However,
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a decrease in the snowpack might impact the pluvio-nival regime by altering the water supply’s
seasonality. In fact, forecast studies show that in the basins of central Chile, significant changes have
already been detected in the regimes of the pluvio-nivales rivers, thus leading to a change in its status
to pluvial, modifying the time balance between water supply and demand, affecting agricultural and
human consumption [53].

7. Conclusions

In this study, an initial approach is presented for evaluating snow cover variability in the Aysén
river basin in Chilean Patagonia. Using MODIS satellite images, the region could be monitored over
the last 17 years and SCA trends were estimated. SCA values showed a significant decrease between
2010 and 2016 as compared to the historical record, totaling 1050.48 km? for the entire Aysén river
basin. The decreasing trend in snow cover is dropping, —20.01 km2-year ! (p > 0.05), and variables
such as temperature were estimated to be positive, +0.07 °C-year~!. Seasonal trends for precipitation
and stream flows were negative estimated by —8.66 mm-year—! and —23.78 m3.s~!-year~! for spring,
respectively. Despite the temporal composite method applied to the MODIS imagery, the persistence
of cloud cover during a winter might affect the estimates of SCA and, therefore, these retrievals could
impact on seasonal SCA trends. Moreover, the data’s scarce spatial representativeness and lack of
stations over mountains impact on the validation of the SCA trend and its relation to precipitation,
stream flows and air temperature. Nevertheless, this is the first work to contribute to the analysis of
snow cover in one of Chilean Patagonia’s most important river basins, where the impact of global
warming could have consequences in the water balance and, therefore, impact on the sustainable
management of water resources.
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