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Abstract: Water is one of the most critical natural resources that maintain the ecosystem and support
people’s daily life. Pressures on water resources and disaster management are rising primarily due to
the unequal spatial and temporal distribution of water resources and pollution, and also partially
due to our poor knowledge about the distribution of water resources and poor management of their
usage. Remote sensing provides critical data for mapping water resources, measuring hydrological
fluxes, monitoring drought and flooding inundation, while geographic information systems (GIS)
provide the best tools for water resources, drought and flood risk management. This special issue
presents the best practices, cutting-edge technologies and applications of remote sensing, GIS and
hydrological models for water resource mapping, satellite rainfall measurements, runoff simulation,
water body and flood inundation mapping, and risk management. The latest technologies applied
include 3D surface model analysis and visualization of glaciers, unmanned aerial vehicle (UAV) video
image classification for turfgrass mapping and irrigation planning, ground penetration radar for soil
moisture estimation, the Tropical Rainfall Measuring Mission (TRMM) and the Global Precipitation
Measurement (GPM) satellite rainfall measurements, storm hyetography analysis, rainfall runoff and
urban flooding simulation, and satellite radar and optical image classification for urban water bodies
and flooding inundation. The application of those technologies is expected to greatly relieve the
pressures on water resources and allow better mitigation of and adaptation to the disastrous impact
of droughts and flooding.

Keywords: remote sensing; geographic information systems (GIS); glaciers; water body; soil moisture;
groundwater; flooding; rainfall measurements; design storm; runoff simulation

1. Introduction

Human-accessible freshwater resources primarily include mountain glaciers, snow, surface water
bodies (lakes, rivers and reservoirs), soil moisture and ground water. Since they have very unequal
distribution spatially and temporally, pressures on water resources are increasing globally. On the
other hand, people may not know where and how much water resources are available regionally,
especially for the remote mountain glaciers/snow, and deep confined groundwater. In extreme
cases, if there is too little or too much water within a certain period and area, severe drought and
torrent flooding could occur, often resulting in catastrophic impacts and damages to the local and
regional community. Therefore, it is of great significance to map and manage water resources,
drought and flooding risk precisely by using the cutting-edge technologies of remote sensing,
geographic information systems (GIS), geostatistics and hydrologic models (Table 1).
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Table 1. Latest remote sensing technology and sensors used for water resources, hydrological fluxes,
drought and flood mapping.

Application Fields Specific Contents Examples of Sensors or Satellites

Water resources

Snow AVHRR, Terra/Aqua MODIS, Landsat, SSM/I,
AMSR-E, Cryosat etc.

Glaciers Landsat, ASTER, SPOT, ICESat, SRTM, etc.
Soil moisture SSM/I, AMSR-E, SMAP, SMOS, etc.
Groundwater GRACE

Lakes, reservoirs, rivers, and wetlands MODIS, Landsat, SPOT, ICESat, GRACE, SRTM etc.

Hydrological fluxes
Precipitation NEXRAD, TRMM, GPM, etc.

Evapotranspiration MODIS, Landsat, GRACE, etc.
River, reservoir or lake discharge MODIS, ENVISAT, Landsat, SRTM, ICESat, etc.

Drought and flooding Drought and flooding MODIS, Landsat, GRACE, UAV, AMSR-E, SMAP,
SMOS, ENVISAT, ASAR, Sentinel-1A/2A, etc.

Remote sensing provides critical data for water resource mapping (Table 1). Satellite remote
sensing techniques can make continuous and up-to-date measurements with global coverage
depending on their orbital features, while they count on ground observations for algorithm
development and validation [1]. For example, the Moderate Resolution Imaging Spectroradiometer
(MODIS) on-board on Terra and Aqua satellites has provided daily global snow cover products
since February 2000 [2]. They have been widely applied in different fields, such as hydrology,
agriculture and climate studies [3,4]. Relative high-resolution images from the Landsat series could
be used to recovery and monitor the global state of mountain glaciers, thus making it possible to
update the global glacier inventories at high accuracy and confidence, such as the Global Land
Ice Measurements from Space (GLIMS), and Glacier Area Mapping for Discharge from the Asian
Mountains (GAMDAM), and the second Chinese Glacier Inventory [5–7]. Besides areas, glaciers surface
elevation information extracted from satellite instruments of the National Aeronautics and Space
Administration (NASA) Ice, Cloud and land Elevation Satellite (ICESat), Shuttle Radar Topographic
Mission (SRTM), Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER),
SPOT 5 and even airborne stereo images were used to investigate glaciers’ thickness and volume
changes in the vast, high Asia Mountains [8–10]. MODIS images and ICESat elevation data were used
together to map the lake water body areas and surface elevation changes in human-inaccessible
regions in the Tibetan Plateaus for the first times on record [11,12]. The Advanced Microwave
Scanning Radiometer for NASA’s Earth Observing System (AMSR-E), NASA’s Soil Moisture Active
and Passive (SMAP) mission, and the European Space Agency (ESA) Soil Moisture Ocean Salinity
(SMOS) mission all can provide global soil moisture mapping [1,13]. Groundwater is the most
difficult to detect by satellite sensors, while the Gravity Recovery and Climate Experiment (GRACE)
has been successfully used to measure groundwater depletion and the filling of the Three Gorges
Reservoir [14,15]. Ground penetration radar can even obtain accurate estimations of glacier thickness,
soil moisture, and groundwater [16,17].

Besides water resource mapping, remote sensing can also quantitatively measure hydrological
fluxes, such as precipitation, evapotranspiration, river stages and discharges (Table 1). Ground-based
radar such as the US Next Generation Weather Radar (NEXRAD) has been used to quantitatively
measure precipitation on US territory since 1990s at relatively high accuracy, and has been widely
applied to monitoring precipitation locally and regionally worldwide [18,19]. The Tropical Rainfall
Measuring Mission (TRMM) was the first satellite to measure the global mid-latitude precipitation
at unprecedented 0.25◦ and 3-h product since 1998, e.g., the Multi-satellite Precipitation Analysis
(TMPA), and the Global Precipitation Measurement (GPM) products have even been able to provide
global near-real time precipitation estimates of 0.1◦ and 30-min products since 2014, e.g., the Integrated
Multi-satellitE Retrievals of GPM (IMERG) [20,21]. Those precipitation products greatly improve
hydrological simulation and flood prediction due to their large coverage and relatively high spatial
resolution [22]. Evapotranspiration (ET) can be estimated based on the Surface Energy Balance
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Algorithms for Land (SEBAL) using the radiance detected by satellite sensors, such as Landsat and
MODIS retrievals [23]. Now, more energy balance-based models have been developed to estimate the
field actual ET in agricultural management [24]. Together with in situ lake water level observations,
daily MODIS images were also used to map the Poyang Lake’s water volume and lake bed topography
changes by the elevation contours derived from the land-water boundary line [25]. River discharge
estimation was traditionally done by in situ observations, and now can also be detected by the
synthetic width/stage-discharge rating curves via measuring the river’s effective wet width and
water level using MODIS, the Environmental Satellite (ENVISAT), Landsat and other high-resolution
images [26–28].

Remote sensing techniques are playing increasingly important roles in drought monitoring
and flooding emergency response (Table 1). Many drought indices were developed using MODIS
reflectance data under different climate and land cover conditions, such as the Normalized Difference
of Vegetation Index (NDVI), Normalized Difference of Water Index (NDWI), Visible Atmospherically
Resistant Index (VARI), Enhanced Vegetation Index (EVI), Normalized Difference Infrared Index Band
6 or Band7 (NDIIB6/7), and so on [29–31]. Emerging Unmanned Aerial Vehicles (UAV) provide a more
flexible low-altitude platform to monitor vegetation growth, soil moisture conditions, flood inundation
mapping and damage assessment [32]. Flood mapping from various data sources can greatly improve
disaster response, e.g., for the widespread and sustained flood events in several river basins in Texas
and Oklahoma of USA in late April and May 2015, a total 27,174 space- and airborne images were
applied to monitor the daily variations of flood inundation extents [33].

GIS is very versatile, especially in spatial analysis, modeling, visualization, data processing and
management. At most times e.g., in this special issue, GIS operates heroically behind the scenes.
Almost every paper published in this special issue uses GIS for data preprocessing, spatial analysis
or establishing results maps (Table 2). With unprecedented data resources, it is quite challenging
to manage so much data in risk management and especially in disaster response, such as in the
aforementioned 2015 Texas flooding event. Schumann et al. [33] suggest that the proactive assimilation
of methodologies and tools into the mandated agencies are required in order to unlock the full potential
of those various data. GIS, such as the most popular ArcGIS products and other commercial or open
source software, are required to process the original remote sensing images and videos, and carry out
spatial analysis, modeling and visualization. Meanwhile, statistics can draw solid conclusions from
the satellite images data and GIS spatial analysis.

Hydrologic models can take full use of the remote sensing and GIS data and carry out lots of
physical experiments and scenario analyses. They are able to provide a full spectrum of modeling what
happened in the past and project what will happen in the future. The availability of model simulations
over a long time period also allows for a robust estimate of low-probability events that were not
recorded in ground observations [34]. This is especially so for the remote and mountainous areas where
there are few or even none in situ observations for rainfall and stream flows; satellite-measured rainfall
is normally used to drive a hydrological model to simulate historical flooding events, thus projecting
current and future flooding risk [35].

In summary, remote sensing techniques have played increasingly important roles in the hydrologic
community (Table 1). They can map the spatial and temporal distributions of water resources,
quantitatively measure the hydrologic flux, and monitor the working conditions of hydraulic
infrastructures, drought conditions and flooding inundation. GIS, statistics and numerical models
together can unlock the potential of various remote sensing data resources, and make for better
management of water resources, drought and flooding disasters. The following session 2 summarizes
the 12 papers published in this special issue (Table 2), which present the best practices, cutting-edge
technologies and applications of remote sensing, GIS and hydrological models for water resources
mapping, satellite rainfall measurements, storm hyetography analysis, runoff and urban flooding
simulation, water body and flooding inundation mapping, and risk management.
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Table 2. Latest geographic information systems (GIS) and remote sensing technologies and hydrologic
models applied in the 12 papers published in this special issue.

Application Fields Specific Contents GIS, Algorithm, Model,
Sensor or Satellites Reference

Water resources
mapping and
management

Glaciers mapping Landsat, ASTER GDEM, GIS,
TIN 3D model. [36]

Soil moisture detection GPR, CMP, FO, GIS spatial
analysis [16]

Groundwater and
subsidence analysis GIS spatial analysis, GPS [37]

Irrigation planning
UAV, HTM for video image

classification, GIS
visualization

[32]

Rainfall
measurements and

design storm

Rainfall measurements TRMM, GPM, GIS spatial
analysis and visualization [38]

Design storm and urban
flood modeling

Huff curve, SWMM, GIS data
preprocess and visualization [39]

Rainfall runoff
prediction and flood

forecasting

Flood modeling GSSHA model, GPM IMERG,
GIS visualization [40]

Rainfall Runoff simulation RCM, LSM, CoLM, CoLM+LF,
GIS data preprocess [41]

Flood inundation forecast ARX regressor, MOGA
algorithm, GIS visualization [42]

Water body and flood
mapping

Flash flood detection TMPA real time 3B2RT, CT,
CDFs, JFI, GIS spatial analysis [43]

Urban water body mapping ZY-3 images, AUWEM, GIS
spatial analysis [44]

Flood inundation mapping ENVISAT, ASAR, GIS spatial
analysis [45]

2. Summary of This Special Issue

2.1. Water Resources Mapping and Management

Mountain glaciers and snow in the Tianshan Mountains are critical water resources in arid and
semi-arid Central Asia [46]. Glacier areas are defined as the extent in two horizontal dimensions
(2D area) in the ice mass balance community [47], and often used to estimate the total ice volume by
volume-area power law equations [48]. In the high Tianshan Mountains, most glaciers lie on steep
slopes, and their actual surface extent (3D area) may be much larger than the 2D area. Wang et al. [36]
in this special issue establish a 3D model to quantify glaciers’ 3D and 2D area differences in the
Muzart Glacier catchment and in Central Tianshan using ASTER GDEM data, CGI2 and Landsat
images. They found that glaciers’ 3D areas was 34.2% larger than their 2D areas in the Muzart Glacier
catchment and by 27.9% in the entire Central Tianshan, where glaciers’ 3D areas reduced by 115 km2

between 2007 and 2013, being 27.6% larger than their 2D area reduction. This confirms that there is
significantly large difference between glaciers’ 3D and 2D areas in the steep Central Tianshan. As they
remarked, “Those large areal differences remind us to re-consider a glacier’s real topographic extent
when discussing an alpine glacier’s areal and volume changes, especially in calculating the glacier’s
surface energy balance and melting rates in the high Asian mountain glaciers with large surface slopes
and strong solar radiation.”

Surface soil is a critical boundary layer between atmosphere and land surface. Soil water content
affects local agriculture, ecology, hydrology and climate. In the dry desert steppe, soil moisture is
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one of the main factors that control vegetation growth and ecosystem restoration. The common soil
moisture measurement technologies, such as the gravimetric method, neutron method, Time Domain
Reflector (TDR), Frequency Domain Reflectometry (FDR), and so on, provide point measurements
with high accuracy, while being labor and time-consuming and may destroy the soil structures.
Lu et al. [16] in this special issue present their study to measure the steppe soil moisture using Ground
Penetrating Radar (GPR). The common-mid point (CMP) method and fixed offset (FO) method are
used for sensitivity analysis, while the gravimetric soil moisture measurements are used to validate the
accuracy of the GPR measurements. Their results show Topp’s equation is more suitable than Roth’s
equation for processing GPR data in the desert steppe. Both CMP and FO methods show high accuracy
in GPR soil moisture measurements. Vegetation affects the measurement precision, and precipitation
reduces the effective sampling depth of the ground wave from 0.1 m to 0.05 m. Overall, the operation
of GPR measurements is simple and does not damage the soil layer structure, while providing high
accuracy and easy movement.

Groundwater is an important freshwater resource in mid-latitude and in arid and semiarid
regions. Instead of directly measuring the soil moisture or aforementioned glaciers, Li et al. [37] in this
special issue used GIS and statistical tools to study the geographic distribution of land subsidence,
groundwater drawdown, and compressible layer thickness using in situ monitoring data in the
metropolitan areas of Beijing, the capital of China. The Beijing Plain lies in the alluvial–pluvial plain
fan built up by river deposits and belongs to the temperate continental monsoon climate with annual
mean temperature of 10–15 ◦C and precipitation of 601 mm. Land subsidence is one of the critical
threats to the sustainable development of Beijing. Multiple approaches including point (gravity center),
line (major axes), and polygon (coverage) views are tested for analyzing spatial change patterns.
Results show that the Chaoyang District of Beijing had the largest land subsidence and groundwater
drawdown, both of which concentration trends were consistent and the principle orientation was
southwest–northeast (SW–NE). The spatial distribution pattern of land subsidence was similar to that
of the compressible layer. Those results are useful for assessing the distribution of land subsidence
and managing groundwater resources.

Irrigation planning is an important component in water resource and precision agriculture
management. Golf courses are one kind of precision agriculture, and their turfgrass has high water
demand. Turfgrass irrigation is rapidly transitioning to reuse water because of the water price incentive
and mandated water management policies. Therefore, knowing the turfgrass areas and growth
conditions can help plan the water and treated sewage effluent needs exactly at a daily or weekly
rate. Perea-Moreno et al. [32] in this special issue utilized UAV video images to extract automatically
the turfgrass areas and growth conditions by a Hierarchical Temporal Memory (HTM) algorithm,
and further assess the water needs for turfgrass irrigation. The extracted turfgrass area from video
imagery classification could achieve an accuracy of 98%. They commented, “Technical progress
in computing power and software has shown that video imagery is one of the most promising
environmental data acquisition techniques available today. This rapid classification of turfgrass can
play an important role for planning water management.”

2.2. Rainfall Measurements and Design Storm

Rainfall is one of the most critical components of water cycle and water resources recharge.
Heavy rainfall often causes devastating flood events. Typhoon-related heavy rainfall has unique
structures in both time and space at mesoscale. Satellite rainfall estimate may better delineate the
structures of heavy rainfall, which is helpful for early-warning systems and disaster management.
Wang et al. [38] in this special issue compares the latest versions of two satellite rainfall products with
ground rain gauge observations along the coastal region of China from 2014 to 2015. They are the GPM
IMERG final run and TMPA 3B42V7. Overall, correlation coefficients (CCs) of both IMERG and TMPA
with gauge observations for the eight typhoon events investigated are significant at the 0.01 level,
but both TMPA and IMERG tend to underestimate the heavy rainfall against the gauge observation,
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especially around the storm center. The IMERG final run exhibits better performance than TMPA
3B42V7. In space, both products have the best applicability within the range of 50–100 km away from
typhoon tracks, and the worst beyond the 300-km range. It is always a challenging task to measure
accurately heavy rainfall by rain gauges, a ground radar network, or satellite sensors.

The temporal evolution of heavy rainfall over certain area is called the storm hyetograph.
Given a total rain depth and duration over a certain return period, the storm hyetograph (also called
design storm) determines the peak flooding volume and is critical for drainage design in storm water
management [49]. The common design storms for drainage design include the Triangular curve [50],
the Chicago curve [51] and the Soil Conservation Service (SCS) curve [52]. Pan et al. [39] in this
special issue compared these curves and found that they tend to underestimate the peak rainfall in the
metropolitan areas of Guangzhou, south China. The normalized time of peak rainfall is at 33% ± 5%
for all storms in Guangzhou, and most storms (84%) are in the 1st and 2nd quartiles. Pan et al. [39]
improved the Huff curve by separately describing rising and falling limbs and then combined them
into a full storm hyetograph, instead of dividing the storms into four quartiles as in the original Huff
curve analysis. The improved Huff curve can better represent the storm hyetographs in Guangzhou
than the other three curves. It generates larger peak flooding volumes that match better with the street
water inundation depth when they are input in the Storm Water Management Model (SWMM) for
given heavy storm events. “The Improved Huff curve has great potential in storm water management
such as flooding risk mapping and drainage facility design, after further validation.” [39].

2.3. Rainfall Runoff Prediction and Flood Forecasting

Hydrological models are the backbones of climatic and hydrologic simulations, water resources
management, and flood forecasting. Hydrological models originated from conceptual and clumped
models, and are advancing to physically-based, distributed models, such as the Gridded Surface
Subsurface Hydrologic Analysis (GSSHA). Sharif et al. [40] in this special issue utilized the GSSHA
model to simulate a recent flood event to gain a better understanding of the runoff generation and
spatial distribution of flooding in a very arid catchment of Hafr Al Batin City, north-eastern Saudi
Arabia. The GPM IMERG rainfall products (the uncalibrated early run and calibrated final run) were
used to drive the GSSHA model. This showed that 85% of the flooding was generated in the urbanized
portion of the catchments for the simulated flood event. Urban storm drainage and catchment runoff
were used in simulations by different models. The variable model grid sizes allowed the GSSHA
model to be applied on large basins that include the entire catchment for a coarse grid size and urban
centers that need to be modeled at very high resolutions. Thus, urban flooding can be simulated by
a single physically-based and distributed model that could model the local heavy storm runoff in
the urban areas and the regional rainfall runoff on a large river catchment, and the integrated urban
flooding risk can be considered at the same time.

Compared to the fine hydrologic modeling of storm runoff at grid sizes of tens of meters and
minutes or hourly intervals, runoff prediction in the regional climate models (RCM) such as the Land
Surface Models (LSM) is much coarser, at tens of kilometers and daily or monthly scales. The original
Common Land Model (CoLM) predicts runoff from net water at each computation grid even without
the explicit Lateral Flow (LF) scheme. Lee and Choi [41] in this special issue proposed a CoLM+LF
model to improve the runoff prediction by incorporating a set of lateral surface and subsurface runoff
computations into the existing terrestrial hydrologic processes in CoLM. The CoLM+LF model was
assessed in the Nakdong River Watershed of Korea using Earth observations at the 30-km resolution
and daily time step. The simulated runoff by CoLM and the CoLM+LF was then compared with the
daily stream flow observations at the Jindong stream gauge station in the study watershed during
2009. CoLM+LF can simulate the effect of runoff travel time over a watershed by an explicit lateral
flow scheme, and can more effectively capture seasonal variations in daily streamflow than CoLM.
It is expected to be a helpful and essential tool for water resource management and hydrological
impact assessment.
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Flood inundation forecast technology can generally be divided into either numerical simulation
or black-box modeling. Numerical simulation is based on theoretical deduction and often has good
accuracy, while demanding high computing resources and being difficult to use for the real-time
forecasting of rapid disaster mitigation and rescue response in most conditions, such as during
a typhoon and flash flooding. In contrast, the black-box model relies on different approaches by
deeming the process from rainfall to inundation as a black box to simulate the relationship between
input rainfall and output runoff and inundation [53]. It cannot explain the physical mechanism, but can
correctly and effectively simulate the response after full calibration at much faster computing speed
than physically-based models. Ouyang et al. [42] in this special issue proposed such a black-box
model that combines non-sequential regressors for the ARX (Auto-Regressive model with eXogenous
inputs)-based typhoon inundation forecast. The difficulty when using the model is finding an optimal
combination of regressors to perform accurate prediction. They developed a novel approach to
integrate a Multi-Objective Genetic Algorithm (MOGA) to transfer the search for the optimal
combination of non-sequential regressors into an optimization problem. The results (tested in
the northeastern Taiwan) showed that the optimal models acquired through this model had good
inundation forecasting capabilities in terms of accuracy, time-shift error, and error distribution,
thus providing practical benefits for decision making and rescue response during a typhoon
landfall period.

2.4. Water Body and Flood Mapping

It is a challenge to forecast accurately flash flooding by hydrological models in arid regions
of the Middle East like Saudi Arabia because of the sporadic storm events and scarce stream flow
data. The vulnerability of arid and semi-arid regions to flash floods was thought to be similar to
that of regions having heavy rain owing to the strong convective storms and the rapid formation of
flash floods [54,55]. Tekeli [43] in this special issue examines the feasibility of flash flood detection
over the city of Jeddah in western Saudi Arabia using TRMM TMPA Real Time (RT) 3B2RT data
during 2000–2014. Three indices, constant threshold (CT), cumulative distribution functions (CDFs)
and Jeddah flood index (JFI), were developed to detect flash flood events using the 3-h 3B42RT
rainfall data. CDF worked best. It did not miss any flood event and had a hit rate of up to 94%.
Compared to hydrological models using various variables, this approach seems promising in arid
regions, although only rainfall data are used.

Water surface is easily detectable by remote sensing images in most conditions because of its low
reflectance, while it is a challenging task to accurately extract urban water bodies from high-resolution
images due to the shadowing effect of high-rise buildings and trees. To disentangle this problem,
Yang et al. [44] in this special issue proposed an automatic urban water extraction method (AUWEM)
to extract urban water bodies from high-resolution ZY-3 multi-spectral images. They first refined
the Normalized Difference of Water Index (NDWI) algorithm by constructing two new indices,
namely NNDWI1, which is sensitive to turbid water, and NNDWI2, which is sensitive to the water
body interfered with by vegetation. Both indices were then used to map all water body and shaded
areas by image threshold segmentation. An object-based technology was then developed to detect
the shades, which were finally removed from the classified water bodies. This automated approach
was tested by five images featuring different areas and environments including lakes and rivers in
the cities of Beijing, Suzhou, Wuhan and Guangzhou, China. Compared to the Maximum Likelihood
Method (MaxLike) and NDWI, AUWEM had a detection accuracy of 93%, against 86% for Maxlike
and 89% for NDWI, and exhibited both smaller omission errors and commission errors. It even works
better when detecting water edge and small rivers, and can effectively distinguish shadows of high
buildings from water bodies to improve the overall accuracy.

Flood inundation mapping is similar to water body mapping, while facing more challenges,
such as the short response time and cloud blockage. Flood mapping from various data sources can
greatly improve disaster response, e.g., all optical images, UAV video images and radar images were
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applied in the May 2015 Texas flooding event [33]. Radar microwave images beat the optical images
in flood mapping by their unique capability to penetrate through cloud. Frappart et al. [45] in this
special issue use the ENVISAT ASAR images to recovery the flood extent between 2005 and 2008
in the Guayas watershed on the Pacific Coast of Ecuador, where floods are an annual phenomenon
and become devastating during El Niño years. Flooded pixels present lower backscattering than
bare soil or vegetation as the radar electromagnetic wave is specularly reflected by water surfaces.
The core algorithm of the method is change detection using radar backscattering coefficients at the
C-band between the wet and dry seasons. Mapping inundation water under tree canopy and other
vegetation needs special consideration, since vegetation usually decreases the radar backscattering
coefficients. In spite of the coarse spatial resolution (1 km) of these SAR images, the patio-temporal
(monthly) dynamics of the flood in the Guayas watershed between 2005 and 2008 was mapped using
ASAR images for the first time in this watershed. Moreover, other radar satellites launched in recent
years, such as Sentinel-1A in April 2014, Sentinel-2A in June 2015 and Sentinel-1B in April 2016,
satellite SAR (C-band) etc., can provide global coverage of flood inundation mapping every few days
at unprecedented spatial resolution of tens of meters.

3. Conclusions

Remote sensing and GIS play critical roles in water resource and flood inundation mapping and risk
management. Remote sensing provides critical data for mapping water resources (snow and glaciers,
water bodies, soil moisture and groundwater), measuring hydrological fluxes (ET, precipitation and
river discharge), and monitoring drought and flooding inundation; while GIS provides the best
tools for water resource, drought and flood risk management and for hydrologic models’ setup,
input data processing, output analysis and visualization. This special issue presents the best practices,
cutting-edge technologies and applications of remote sensing, GIS and hydrologic models for water
resource mapping, satellite rainfall measurements, runoff and urban flood simulation, water body
and flood inundation mapping, and risk management. The latest technologies applied include 3D
model analysis and visualization of glaciers, UAV video image classification for turfgrass mapping and
irrigation planning, ground penetration radar for soil moisture estimation, TRMM and GPM satellite
rainfall measurements, storm hyetograph analysis, rainfall runoff and urban flooding simulation,
and satellite radar and optical image detection for urban water bodies and flooding inundation. GIS is
very versatile, but operating heroically behind the scenes at most times. GIS techniques are used in
almost every paper published in this special issue for data preprocessing, spatial analysis or making
results maps. The applications of those technologies are expected to greatly relieve the pressures on
water resources and enable better mitigation of and adaptation to the disastrous impact of droughts
and flooding.
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