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Abstract: Within the framework of the two-dimensional cell-centered Godunov-type finite volume
(CCFV) method, this paper presents a novel multislope scheme on the basis of the monotone upstream
scheme for conservation law (MUSCL) for numerically solving nonlinear shallow water equations
on two-dimensional triangular grids. The Riemann states of the considered edge are calculated
by an edge-based reconstructing procedure, where a limited scalar slope is employed to prevent
potential numerical oscillations. The novel aspect of the new scheme is that it takes advantage of the
geometrical characteristics of triangular grids in the reconstructing and limiting procedures, which
effectively reduces the cost of computation and provides higher resolution and accuracy compared
with classical MUSCL schemes. Seven tests are adopted to verify the scheme, and the results indicate
that this scheme is efficient, accurate, robust, and high-resolution, and can be an ideal alternative for
solving shallow water problems over uneven and frictional topography.

Keywords: shallow water equations; FVM; unstructured grids; MUSCL scheme

1. Introduction

Two-dimensional shallow water equations (SWEs) have been increasingly employed to simulate
predominantly horizontal, free surface flows over natural topography, for instance, dam-break flow,
urban flooding, and tsunami inundation. Analytical solutions of SWEs are only available for a few
simplified situations with horizontal or regular bottom and infinite water volume [1,2]. Turning to
numerical schemes is necessary in order to keep the balance between accuracy and efficiency.

SWEs are a set of nonlinear hyperbolic-type partial differential equations, and several kinds of
methods have been developed to solve them, such as the finite difference method (FDM) [3], the finite
element method (FEM) [4], the finite volume method (FVM) [5], and the discontinuous Galerkin (DG)
method [6]. The primary advantages of the FVM over the other methods stem from its geometrical
flexibility for space discretization and its way of defining flow variables and discretizing convective
fluxes [7]. The Godunov-type scheme [8] within the framework of FVM, taking into account the
propagation of flow information in resolving a local Riemann problem [9], is probably the most applied
method of simulating free surface flows, for its inherent conservation property and stability in mixed
flow regimes [10]. There are basically two approaches to derive FVM schemes, the cell-centered
finite volume (CCFV) approach and the node-centered finite volume (NCFV) approach. A distinct
difference between these two approaches is the relative position between the control volume and the
mesh element. Besides, CCFV schemes store solutions at cell centroids, while NCFV schemes store
solutions at nodes. In addition, the mixed CCFV and NCFV discretization method, which defines
different flow variables separately at centroids with cells as control volumes, or at nodes with the
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control volumes constructed by the median-dual partition [7,11] with grids, has been proposed and
successfully implemented to simulate the bank failure phenomenon [12,13]. This method integrates
characteristics of the CCFV and NCFV methods, allowing the slope to be univocally defined in each
cell and enabling a straightforward inclusion of the geo-failure operator in the morphodynamic model.
The Godunov-type CCFV scheme has been a widely used numerical method for solving SWEs in recent
decades [7,14–20], for its shock-capturing nature and desirable property of automatic conservation.
Unfortunately, the conventional Godunov-type CCFV scheme provides only first-order accuracy in
space that exhibits relatively large numerical diffusion and follows a low-resolution property. Taking a
linear monotone upstream scheme for conservation law (MUSCL) [21] as a means of reconstruction,
second-order spatial accuracy can be easily achieved. The Godunov-type CCFV scheme calculates
the left and right flow states at a considered edge, assuming a piecewise constant distribution of
flow variables in each cell, whereas the MUSCL scheme assumes a piecewise linear function of flow
variables in each cell.

The classical MUSCL scheme consists of two steps to achieve the reconstructed values of flow
variables. First, neighboring values of the considered cell are used to calculate a predicted slope.
Then the slope is limited and gives rise to a vectorial slope, which is used to calculate the values
of flow variables on the left and right sides of the considered edge [22]. The MUSCL scheme
without stability constraint tends to produce unphysical spurious oscillations near discontinuities
due to their unbounded reconstruction procedures. A measurement of local monotonicity, also
known as the r-ratio [7,23,24], is usually employed as an argument to limit the slopes and provides
oscillation-free results. To this end, combining second-order schemes with selected limiters, such as the
Van Leer [25] or Van Albada [26] limiter, results can be obtained with high accuracy, high resolution,
and good convergence.

In addition to the monoslope MUSCL scheme presented above, there is another kind of MUSCL
scheme, the multislope MUSCL scheme [22]. The former calculates only one vectorial slope per
cell, respecting a specified stability constraint to prevent numerical oscillations, whereas the latter
calculates three scalar slopes equipped with three specified stability constraints for each edge per cell.
The multislope concept is adopted in this work, and a novel multislope MUSCL scheme that takes the
mesh geometry into account is proposed. To achieve second-order accuracy in both space and time,
the classical two-stage Runge–Kutta time integration scheme is used to update solutions at the new
time level. Explicit descriptions of this time integration scheme can be found in [10,27].

The primary purpose of this work is to present a new multislope MUSCL scheme on 2D triangular
grids, where a well-designed scalar slope is equipped with an edge-based limiter for each edge.
This new scheme is incorporated into the Godunov-type CCFV method to solve SWEs. The rest of this
paper is organized as follows: Section 2 introduces the governing equations of SWEs. In particular,
a brief description of the eigenstructure of SWEs is stated. Section 3 presents the details of the new
multislope MUSCL scheme, including a review of the existing MUSCL-type schemes. In Section 4,
some numerical results and comparison analyses over horizontal or uneven topography are provided.
A brief conclusion is drawn in Section 5.

2. Governing Equations

When the vertical velocity and displacement of water surface is sufficiently small compared
with the frequency of water waves (Figure 1), the governing equations of shallow water flows can be
obtained by integrating the Navier–Stokes equation over depth by assuming a hydrostatic pressure
distribution, as well as a uniform distribution of the horizontal velocity in the vertical direction and a
small bottom slope. Neglecting the diffusion term due to viscosity and turbulence, the Coriolis term,
and the surface shear stress term, SWEs can be expressed in a vector form:

∂U
∂t

+
∂E
∂x

+
∂G
∂y

= S (1)
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where t denotes time; x and y are Cartesian coordinates in the horizontal plane; U represents the vector
of conserved variables; E and G are the vectors of convective fluxes in x and y directions, respectively;
F = (E, G)T is the flux tensor; and S denotes the source term, which can be further divided into the
bed slope source term Sb and friction source term S f . These vectors are expressed as:

U =

 h
hu
hv

, E =

 hu
hu2 + gh2/2

huv

, G =

 hv
huv

hv2 + gh2/2

,

S = Sb + S f =

 0
−gh∂zb/∂x
−gh∂zb/∂y

+

 0
−C f u

√
u2 + v2

−C f v
√

u2 + v2


(2)

where h represents water depth; u and v are depth-averaged velocities in x and y directions,
respectively; g is gravitational acceleration; zb is the bottom elevation relative to the datum plane, as
demonstrated in Figure 1; and C f is the bed roughness coefficient evaluated by:

C f = gn2/h1/3 (3)

where n denotes the Manning coefficient.

Figure 1. Sketch of shallow water flow over uneven topography.

Nontrivial steady solutions to SWEs are physically prevalent in shallow water phenomena as the
time partial derivative term in Equation (1) vanishes and the SWE is deduced to ∇ · F = S. One of the
most important and interesting steady solutions is the “lake at rest” one:

u = v = 0, h + zb = Const. (4)

If the water surface remains constant over the domain and the flow velocities vanish, the bed
source term and the flow depth gradient term in Equation (2) reach balance automatically. However, it
is not always the case, because these two terms are discretized separately. Numerical difficulties may
arise in situations when they should exactly balance with each other [28].

The flux Jacobian matrix of SWEs (Equations (1) and (2)) is:

Jn =
∂E
∂U

nx +
∂G
∂U

ny =

 0 nx ny

ghnx − u(unx + vny) 2unx + vny uny

ghny − v(unx + vny) vnx unx + 2vny

 (5)
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where nx and ny are, respectively, two components of the unit vector in the x and y directions.
The eigenstructure of the flux Jacobian matrix is:

Jn = RnΛnLn (6)

where Rn and Ln represent the right and left eigenvector matrices, respectively, and Λn is the diagonal
matrix of the eigenvalues of Jn, given by:

Λn =

 λ1 0 0
0 λ2 0
0 0 λ3

 (7)

where λ1, λ2, and λ3 denote three eigenvalues of Jn and λ1 = unx + vny −
√

gh, λ2 = unx + vny, and
λ3 = unx + vny +

√
gh. Obviously, these three eigenvalues are all real and distinct from each other,

provided the water depth is positive, so SWEs confirm strict hyperbolicity.

3. Numerical Method

3.1. FVM on Triangular Grids

Two-dimensional grids used for numerical schemes range from structured to highly unstructured.
Unstructured triangular grids are adopted in this work for their extreme flexibility with complex
flow fields. Values of flow variables are stored at cell centroids, and a piecewise constant distribution
is assumed over the computation domain, which conforms to the CCFV scheme. As illustrated in
Figure 2, Ti denotes the centroid of cell i; N1, N2 and N3 are three nodes anticlockwise around Ti; j is
one of the three neighbors of cell i sharing a common edge e; and Mij is the midpoint of edge e where a
local Riemann problem is constructed.

Figure 2. Notations of a typical triangular cell and its three neighbors.

SWEs (Equations (1) and (2)) can be integrated over cell i:∫
Ωi

∂U
∂t

dΩ +
∫
Ωi

∇ · (E, G) dΩ =
∫
Ωi

S dΩ (8)

where Ωi is the control volume, as shown in Figure 2.
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Applying Gauss’s divergence theory to the spatial derivative term in Equation (8) yields:

Ai
∂Ui
∂t

+
∮
Γi

(E nx + G ny) dΓ =
∫
Ωi

S dΩ (9)

where Ai and Γi denote, respectively, the area and boundary of cell i and Ui represents the cell-averaged
values of conserved variables at a given time.

Assuming a uniform distribution of fluxes along each edge, which are equal to the values at the
midpoint of the edge, the surface integral in Equation (9) is redefined and a semidiscrete scheme is
given by:

∂Ui
∂t

+
1

Ai

N

∑
k=1

Fik(U) lik =
1

Ai

∫
Ωi

S dΩ (10)

where N is the number of edges for cell i; lik is the length of edge k; and Fik is the outward normal flux
vector across edge k and can be estimated with the help of Riemann solvers. The expression of Fik is:

Fik(U) = Eik(U)n f x + Gik(U)n f y =

 hun f x + hvn f y
(hu2 + gh2/2)n f x + huvn f y
huvn f x + (hv2 + gh2/2)n f y

 (11)

where n f x and n f y are two components of the unit outward normal vector at the midpoint of edge f.

3.2. Approximated Riemann Solver

The Harten–Lax–van Leer–contact (HLLC) approximated Riemann solver [29] is used in the
construction of numerical fluxes. Other solvers can be adopted as well, but are not presented in
this work. The HLLC approximated Riemann solver restores the missing rarefaction wave by some
estimates, for instance, using the Roe average velocity as the speed of the middle wave, which is very
efficient compared with the exact Riemann solver, while behaving robustly. The numerical flux vector
normal to the considered edge is:

FHLLC(UL, UR) =


FL i f SL ≥ 0
F∗L i f SL < 0 ≤ S∗
F∗R i f S∗ < 0 < SR
FR i f SR ≤ 0

(12)

where UL and UR are the Riemann states to the left and right of the considered edge; FL can be
calculated by Equation (11) using UL as the independent variable, and the similar operation for FR; SL
and SR are the left and right wave speeds; S∗ denotes the contact wave speed; and F∗L and F∗R are the
numerical flux vectors to the left and right of S∗, as shown in Figure 3.
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Figure 3. Structure of the Harten–Lax–van Leer–contact (HLLC) approximated Riemann solver.

The values of the wave speeds SL, SR and S∗ can be evaluated by [30]:

SL =

{
u⊥R − 2

√
ghR i f hL = 0

min (u⊥L −
√

ghL, u⊥∗ −
√

gh∗) i f hL > 0

SR =

{
u⊥L + 2

√
ghL i f hR = 0

max (u⊥R +
√

ghR, u⊥∗ +
√

gh∗) i f hR > 0

S∗ =
SLhR(u⊥R − SR)− SRhL(u⊥L − SL)

hR(u⊥R − SR)− hL(u⊥L − SL)

(13)

where the superscript ⊥ denotes the quantities of flow variables normal to the considered edge, for
example, u⊥ = un f x + vn f y, and h∗ and u⊥∗ represent, respectively, the water depth and flow velocity
normal to the considered edge in the star region and can be evaluated based on the two-rarefaction
assumption [31]:

h∗ =
[(

u⊥L − u⊥R
)

/4 +
(√

ghL +
√

ghR

)
/2
]2

/g

u⊥∗ =
(

u⊥L + u⊥R
)

/2 +
(√

ghL −
√

ghR

) (14)

F∗L and F∗R can be calculated in a simplified version based on the HLL approximated Riemann
solver [32]:

F∗L =

 F(1)
∗

F(2)
∗ n f x − uP

LF(1)
∗ n f y

F(2)
∗ n f y + uP

LF(1)
∗ n f x

F∗R =

 F(1)
∗

F(2)
∗ n f x − uP

RF(1)
∗ n f y

F(2)
∗ n f y + uP

RF(1)
∗ n f x

 (15)

where the superscript P denotes the quantities of flow variables tangential to the considered edge,
for example, uP = −un f y + vn f x, and F(1)

∗ and F(2)
∗ are two components of the numerical flux vector

calculated by the HLL approximated Riemann solver:

F∗ =
SRF⊥L − SLF⊥R + SRSL∆U⊥

SR − SL
(16)

where FL, FR and ∆U are all column vectors with two components, F⊥L = F(U⊥L ), F⊥R = F(U⊥R ), and
∆U = U⊥R −U⊥L , respectively.
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3.3. Treatment of Source Term

Simulating shallow water flows over irregular topography demands appropriate treatment of
the bed slope source term to achieve well-balanced property. A bed slope source term discretization
method developed by Hou [33] is adopted in this work. A brief introduction is given below.

The integral form of the bed slope source term in cell i can be rewritten as:

∫
Ωi

SbdΩ =
∮
Γi

FSb(U)ndΓ =
N

∑
k=1

FSb
ik (U)n f klik (17)

Integrating Equation (17) with the first-order time marching scheme of SWEs yields:

Un+1
i = Un

i −
∆tn

Ai

(
N

∑
k=1

FSb
ik (U)n f k lik −

N

∑
k=1

Fik(U) lik

)
n

(18)

where the bed slope source term has been transformed into the sum of fluxes across the edges,
expressed as:

FSb n f =

 0
−gn f x(hL

f + hL)(zb f − zbL)/2
−gn f y(hL

f + hL)(zb f − zbL)/2

 (19)

where hL and zbL are, respectively, the water depth and bottom level at the centroid of cell i; and
hL

f and zb f represent the reconstructed values of the water depth and the bottom level obtained by
Equations (43) and (41), respectively.

With respect to the friction source term, the splitting implicit method proposed in [20] is adopted
in this work to properly handle the friction source term:

Un+1 = Un + ∆tSn
f (20)

where the continuity equation is omitted and S f is the implicit friction source term expressed by:

Sn
f x =

 S f x

1− ∆t
(

∂S f x/∂(hu)
)
n

, Sn
f y =

 S f y

1− ∆t
(

∂S f y/∂(hv)
)
n

(21)

where S f x and S f y are limited by a criterion:

S f

{
≥ −U/∆t i f U ≥ 0
≤ −U/∆t i f U ≤ 0

(22)

3.4. Time Integration Scheme

To achieve second-order accuracy in time, the two-stage Runge–Kutta time integration scheme is
adopted in this work to update solutions to the new time step. The detailed description of this time
integration scheme is given by:

Un+1
i =

[(
Un

i + Un∗
i

)
+ K

(
Un∗

i

)]
/2 (23)

where
Un∗

i = Un
i + K(Un

i ) (24)
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where K
(
Un

i
)

is evaluated by:

K(Un
i ) =

∆tn

Ai

∫
Ωi

S dΩ−
3

∑
k=1

Fik(U
n
i ) lik

 (25)

Stability Criteria

The time step used in an explicit time integration scheme must be limited by some
stability conditions, otherwise errors could be produced and convergence difficulties could arise.
The Courant–Friedrichs–Lewy (CFL) condition is used in this work to estimate the time step:

∆t = CFL ·min(
R√

u2 + v2 +
√

gh
)

i

i = 1, 2, . . . , Nt (26)

where CFL is the Courant number, specified in the range of (0, 1] (CFL = 0.5 is used in this work); R
denotes the minimum distance from the centroid to the boundary of cell i; u, v and h are the values of
flow variables located at the cell centroid; and Nt is the total number of cells.

3.5. Second-Order Spatial Reconstructing and Limiting Method

To achieve high-order accuracy in space, the MUSCL scheme introduced by Van Leer [21] has been
a widely used numerical technique for its inherent simplicity and adaptation capacity [22]. Numerical
results show that the MUSCL scheme can effectively reduce diffusion in the original Godunov-type
scheme [34], leading to improved resolution of water surface where large gradient or discontinuity
occurs. Specifically, there are two types of MUSCL schemes, depending on how the values of flow
variables are reconstructed: the monoslope and multislope MUSCL schemes. The primary difference
between these two schemes is that the former calculates only one vectorial slope per cell, whereas the
latter calculates three specific scalar slopes for each edge per cell. It is notable that the monoslope
MUSCL scheme involves an additional step for selecting the best limiter [35]. Correspondingly, for
the multislope MUSCL scheme, scalar slopes are calculated in the same loop of evaluating numerical
fluxes, which apparently leads to a more straightforward and efficient scheme. The multislope MUSCL
scheme appears to be more robust when dealing with complex shallow water problems and more
accurate than the monoslope one [34]. Moreover, the edge-based limiters chatter far less than the
cell-based limiters, and better converging performance can be achieved. A review of these two schemes
is presented below. Furthermore, a novel multislope MUSCL scheme is detailed.

3.5.1. A Review of Monoslope MUSCL Scheme

The basic idea of the monoslope MUSCL scheme is briefly reviewed in this subsection by
introducing the limited central difference (LCD) scheme [27], which is probably the most widely
used MUSCL-type scheme to date. The LCD scheme consists of two stages: the reconstructing stage
and the limiting stage. As illustrated in Figure 2, U denotes one of the components of the flow variable
vector U and TiMij denotes the direction vector from Ti to Mij. The value of UM

L can be extrapolated
from the centroid Ti with a limited slope:

UM
L = Ui + φi∇Ui · TiMij (27)

where ∇Ui represents the gradient of U in cell i, which can be evaluated by neighbors’ values with the
help of the least squares method [36] or Green–Gauss method [37]; φi denotes the limiting function:

φi = min
k=1,2,3

αk (28)

where the expression of αk(k = 1, 2, 3) can be found in [27].
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3.5.2. Review of Multislope MUSCL Scheme

A recent representative multislope MUSCL scheme proposed by Touze [34] is introduced in the
following, which essentially extends the original multislope MUSCL schemes [17,22], and based on
that a review of the multislope MUSCL scheme is presented.

A wide stencil is illustrated in Figure 4, which consists of cell i and its neighbors sharing at least
a common node; T−i1 and T−i2 represent the two most upwind neighboring centroids relative to Ti in
the direction of TiMij; T+

i1 and T+
i2 represent the two most downwind neighboring centroids relative

to Ti in the direction of TiMij; and C−i and C+
i are the intersections of Ti Mij with T−i1 T−i2 and T+

i1 T+
i2 ,

respectively. These two points are exactly the upwind and downwind points relative to Ti in the
direction of TiMij. The highlight as well as the challenge of Touze’s scheme is to construct the upwind
and backwind points C−i and C+

i , where the values of flow variables are used to calculate the upwind
and downwind slopes, p−ij and p+ij . These two slopes are then employed as arguments in the limiting
function to calculate the directional scalar slope for the considered edge.

Figure 4. Sketch of Touze’s scheme on triangular grids.

To sum up, the principle of the multislope MUSCL scheme is to construct the upwind and
downwind slopes. Despite the merits of better robustness, higher accuracy, and better converging
performance compared with the monoslope scheme, the drawback of the multislope MUSCL scheme
is also obvious: a wider stencil is necessary for evaluating the slopes, which makes the scheme not
straightforward because of the procedure for selecting the most upwind and downwind points, so
additional computation cost is inevitable. Hence, a more straightforward and efficient numerical
scheme is proposed in this work that can efficiently avoid the complicated procedure, while at the
same time, the merits of the multislope MUSCL scheme are perfectly inherited.

3.5.3. A Novel Multislope MUSCL Scheme

Based on the basic idea of the multislope MUSCL scheme proposed by Touze, a novel multislope
MUSCL scheme equipped with the edge-based Van Albada slope limiter, which takes into account the
geometric characteristics of triangular grids, is presented below.

Considering the CCFV scheme adopted in this work, the first thing to calculate is the values
of flow variables located at cell nodes, which can be evaluated from neighboring centroids with the
method of inverse distance weighting (IDW) [38]:

UNk = ∑nc
i=1

(
ωiUTi

)
/∑nc

i=1 ωi (29)
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where UNk denotes the value of the flow variable U located at Nk; nc is the total number of neighboring
cells of Nk; UTi denotes the value of the flow variable U located at Ti, which is one of the neighboring
centroids of Nk; and ωi denotes the weighting coefficient related to the distance between Nk and Ti:

ωi = 1/|TiNk| (30)

Two different cases should be taken into consideration, as shown in Figure 5. The criterion is
straightforward and independent with the shapes of triangular grids:{

Case (a) i f MijTj ×MijTi ≤ 0
Case (b) i f MijTj ×MijTi > 0

(31)

where the coordinates of the midpoint Mij can be obtained by those of N2 and N3. In case (a),
the intersection C+

i of MijTi and cell j locates at the edge N′2N3, whereas in case (b), the intersection
C+

i locates at the edge N2N′2. For the sake of clarity, the following steps are only for case (a).

Figure 5. Sketch of the new scheme on triangular grids: (a) case (a); (b) case (b).

Similar to Touze’s scheme, cell j can be seen as the most downwind cell relative to cell i, and the
intersection C+

i can be regarded as the downwind point in the direction of TiMij. The value of U+
ij

located at C+
i is evaluated by:

U+
ij = νi1UN′2 + νi2UN3 (32)

where νi1 and νi2 denote the weighting coefficients with respect to the neighboring nodes of C+
i , that

is, N′2 and N3 in case (a), which can be evaluated by:

νi1 =
∣∣C+

i N3
∣∣/∣∣N′2N3

∣∣, νi2 =
∣∣C+

i N′2
∣∣/∣∣N′2N3

∣∣ (33)

As shown in Figure 5, the line connecting Ti and Mij also passes through the node N1, which
is selected as the upwind point in the direction of TiMij. Considering that the value located at N1 is
known, the upwind and downwind slopes for the considered edge are almost ready and given by:

p−ij =
(
UTi −UN1

)
/|TiN1|, p+ij =

(
U+

ij −UTi

)
/
∣∣TiC+

i

∣∣ (34)

where UN1 denotes the value of U located at N1.
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The modified Van Albada limiting function φVA (Equation (35)) [17,26,39] is employed here to
turn the upwind and downwind slopes into a limited slope, which is then used to calculate the left
and right Riemann states:

φVA(a, b) =

{
ζa + (1− ζ)b i f ab > 0

0 i f ab ≤ 0
(35)

where ζ ranges between 0 and 1 and is defined by Equation (36), and a and b denote, respectively, the
upwind and downwind slopes; and

ζ(a, b) =
(

b2 + e
)

/
(

a2 + b2 + 2e
)

(36)

where e is a constant used to prevent division by zero and e = 10−6 is adopted in this work.
The flow states on the considered edge, for example, the left flow state of the flow variable U

located at Mij, can be calculated by:

UM
L = UTi + φVA(p−ij , p+ij )

∣∣TiMij
∣∣ (37)

Similarly, the flow states on the other edges can be obtained by repeating the above steps.
In order to preserve the C-property, only η, h, hu and hv are reconstructed [14], which gives rise to

the left and right Riemann states, i.e., ηL, hL, (hu)L, (hv)L, ηR, hR, (hu)R and (hv)R. The bottom level
and velocity components in x and y directions are subsequently obtained by:

zb = η − h,u = (hu)/h, v = (hv)/h (38)

A criterion proposed by Hou [33] is adopted here to identify problematic cells next to the
wet-dry interface:

hL ≤ min(|zbL − zbi|, 0.25hi) or hi ≤ εwd (39)

where hL and zbL denote, respectively, the water depth and bottom level to the left of the considered
edge; hi and zbi denote, respectively, the water depth and bottom level at the centroid of cell i; and
εwd is the threshold of water depth used to distinguish wet and dry cells, and εwd = 10−6 m [40,41] is
adopted in this work.

3.6. Treatment of the Wet-Dry Interface

The second-order MUSCL scheme degenerates to first-order accordingly once the criterion
in (Equation (39)) is met, that is, the left and right Riemann states are respectively constant with
cell-averaged values. By doing so, abnormal reconstructed values are effectively avoided. Furthermore,
numerical schemes integrated with an appropriate Riemann solver can properly handle the transience
of flow state from wet to dry zones, as long as the topography is horizontal or slowly varying. However,
realistic topography is quite inhomogeneous: adverse or abruptly steep slopes are common in cells next
to the wet-dry interface. Water depth gets smaller and smaller as flow advances, leading to extremely
high velocity, which is unacceptable for simulation. Hence, particular numerical techniques must be
used in the representation of wet-dry interface. The classic hydrostatic reconstruction method [14] and
the local bed modification technique [18,42] are combined in this work to deal with the wetting and
drying problem, stated as follows.

A single value of the bottom level at the common interface is defined by:

zb = max(zbL, zbR) (40)
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Considering those sensitive cells over adverse slopes, a bed modification strategy is carried out to
hold the stopping flow condition:

zb ← zb −max(0, zb − ηL) (41)

The water surface elevation on the right side of the common interface is modified accordingly:

ηR ← ηR + (zb − zbR) (42)

Then the left- and right-side water depths are reevaluated as:

hL = ηL − zb,hR = ηR − zb (43)

After these steps, (∆zb)LR = −(∆h)LR = 0 is obtained at the wet-dry interface, which is in
agreement with the equilibrium condition proposed by Brufau [42]. The water surface elevation over
adverse slopes is equal to ηL, so spurious flow motion is effectively prevented and the well-balanced
property is perfectly preserved.

3.7. Boundary Conditions

Boundary conditions provide information about how the water along boundaries responds to
external disturbances. In order to achieve an optimal simulation for shallow water flows, an adequate
treatment of boundary conditions should be considered. Basically, there are two approaches to
implementing boundary conditions: using ghost cells and directly calculating fluxes across boundaries.
In this work, the latter is adopted by solving Riemann problems along boundaries. Boundaries need to
be divided into two distinct sections: the liquid boundary and the solid boundary. The former can be
further subdivided into four different cases.

3.7.1. Liquid Boundary

There are four cases to take into account for the liquid boundary, depending on the flow velocity
normal to boundaries u⊥ and the local Froude number Fr, expressed as Fr =

∣∣u⊥∣∣/√gh [43]:
Supercritical inflow (Fr > 1):

u⊥R = u⊥c , uP
R = 0, hR = hc (44)

Supercritical outflow (Fr > 1):

u⊥R = u⊥L , uP
R = uP

L, hR = hL (45)

Subcritical inflow (0 < Fr ≤ 1):

u⊥R = u⊥c , uP
R = 0, hR =

[√
hL − (u⊥R − u⊥L )/2

√
g
]2

(46)

Subcritical outflow (0 < Fr ≤ 1):

u⊥R = u⊥L + 2
√

g(
√

hL −
√

hR), uP
R = uP

L, hR = hc (47)

In order to calculate the numerical fluxes through boundaries, a reverse transforming operation is
applied to velocities as soon as u⊥R and uP

R have been obtained:

uR = u⊥R n f x − uP
Rn f y, vR = uP

Rn f x + u⊥R n f y (48)

where uP
R is equal to uP

L along boundaries.
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Once the flow states to the right of boundaries are obtained, a local Riemann problem can be set
up and then settled by the HLLC Riemann solver, where the left flow states of the Riemann problem
can be evaluated by averaging those at the two adjacent nodes located on the boundary edges, since
they have been obtained from neighboring centroids with the IDW method.

3.7.2. Solid Boundary

Normal velocity is ignored in this situation, and the value of water depth is taken from the internal
computational domain, that is, hR = hL. The normal fluxes at the midpoint of the considered edge
along solid boundaries can be evaluated by a simplified form of Equation (11):

Fsolid
ik =

 0
(gh2

R/2)n f x
(gh2

R/2)n f y

 (49)

4. Verification and Application

4.1. Stationary Flow with Wet-Dry Interface

A well-balanced scheme should correctly compute the solutions to a steady state and maintain
the stationary state throughout the simulation for a quiescent shallow water problem. A simple test
is employed here, as also used in [44,45], to verify the well-balanced property of the new scheme. A
hump is defined in an 8000 m long square basin with topography given by:

zb(x, y) = max
(

0, 2000− 0.00032
(
(x− 4000)2 + (y− 4000)2

))
(50)

where the solid boundary condition is imposed on vertical walls. The initial water surface is given
by 1000 m, so the hump is partly submerged. The computational domain is discretized into 15,360
Delaunay triangles, and the simulation is run until t = 1500 s.

A variable Rn(U) is defined to quantify the global relative error of solutions following Zhou [45]:

Rn(U) =

√√√√√∑
Nw

Ai ·
(

Un
i −Un−1

i
Un

i

)2
/ ∑

Nw

Ai (51)

where Un
i and Un−1

i denote, respectively, the vectors of flow variables at time level n and n − 1 for cell i.
Figure 6 gives the numerical results of water surface and unit width discharges in x and y

directions. The stationary state is visible at the end of the simulation, since the numerical water
surface elevation almost coincides with the analytical result. With regard to the numerical unit width
discharge, a little wriggle can be observed in Figure 6b in terms of qx. As a matter of fact, the global
relative error is quite small, as illustrated in Figure 7, where both R(qx) and R(qy) hold rather small
values (lower than 10−30) throughout the simulation; such a result is acceptable and the well-balanced
property is well preserved.
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Figure 6. Comparisons between numerical and analytical results at t = 1500 s: (a) water surface; (b) unit
width discharges in x and y directions.

Figure 7. Global relative errors of unit width discharges in x and y directions.

4.2. Potential Flow over Uneven Bottom

As proposed by Ricchiuto [46], the steady flow with divergence-free velocities over uneven bottom
is simulated here to verify the capacity of the new scheme to preserve monotonicity and converge
to steady-state solutions in the presence of irregular topography. This test case was performed in
a smooth square domain, [−1 m, 1 m] × [−1 m, 1 m], where the velocity field is obtained by the
harmonic function:

ψ(x, y) = xy (52)

The velocities in x and y directions are expressed as the partial derivatives of ψ(x, y):

u(x, y) =
∂ψ

∂y
= x, v(x, y) = −∂ψ

∂x
= −y (53)

The analytical water depth and bottom level of the test case are calculated by:

h(x, y) = 1.5 + ψ, zb(x, y) =
(

30−
(

x2 + y2
)

/2
)

/g− ψ− 1.5 (54)
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Considering the Froude number inside the computational domain is always less than 1, the north
and south edges are used as subcritical inlet boundaries and the east and west edges are used as
subcritical outlet boundaries during the simulation. The computational domain is discretized into 6341
Delaunay triangles, as shown in Figure 8. The simulation is run with the initial conditions calculated
by Equations (53) and (54) until t = 50 s.

Figure 8. Computational mesh in the potential flow test.

Figure 9a,b illustrate, respectively, the numerical results for water depth and flow velocities
computed at the end of the simulation by the new scheme proposed in this work. It can be observed
that the new scheme is able to converge to the steady-state results in terms of water depth and flow
velocities on Delaunay triangles at the end of the simulation. The contours of the water depth are
symmetric about two diagonal lines of the computation domain, which agrees well with the analytical
results, since the analytical water depth (Equation (54)) matches a hyperbolic-paraboloid distribution.
In addition, the velocity field of this test is also well predicted at the end of the simulation, because
the distribution of flow directions is very regular, as shown in Figure 9b, and obviously there are
no unphysical high velocities inside the computational domain. The numerical results confirm that
monotonicity in the limitation procedure is guaranteed, and the new scheme can achieve convergent
results in the case of irregular topography and nonzero velocities.
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Figure 9. Numerical results of the potential flow test: (a) contours of water depth; (b) vector field of
flow velocities.

4.3. Water Sloshing in a Parabolic Basin

The test proposed by Thacker [1] on water oscillation in a smooth 2D parabolic basin, as illustrated
in Figure 10, has been a classical benchmark for evaluating the accuracy of and capacity to deal with the
wetting and drying problem of numerical schemes [17,47,48] and is employed in this subsection. There
is a parallel test, developed in [49], that takes the effect of friction source term into consideration and is
widely used by many other researchers [33,50]. The bottom level of the parabolic basin is defined by:

zb(x, y) =
h0

a2 (x2 + y2) (−10, 000 m ≤ x, y ≤ 10, 000 m) (55)

where h0 denotes the water depth at the center of the basin and a denotes the distance from the center
to the shoreline with zero elevation; the analytical solutions of velocities and water depth are:

u = −σω sin(ωt)

v = −σω cos(ωt)

h(x, y, t) = max
(

0,
σh0

a2 (2x cos(ωt) + 2y sin(ωt)− σ) + h0 − zb(x, y)
) (56)

where σ is a constant denoting the amplitude of the water motion andω denotes the frequency of the
water motion and is calculated by

√
2gh0/a; values of the parameters used in this test are a = 8025.5 m,

h0 = 10 m, σ = 802.55 m, ω = 1.7453× 10−3 s−1, and T = 3600 s.
The computational domain is discretized into four scaled meshes with sizes of ∆L = 55.18 m, 108.49

m, 138.58 m and 205.02 m, where ∆L is the averaged grid size, calculated by
n
∑

i=1

√
Ai/n. For each scaled

mesh, the number of Delaunay triangles is 128,418, 33,038, 20,516 and 9304, respectively. The analytical
solutions at t = 0 calculated by Equation (56) are used as the initial conditions. In addition, the solid
boundary condition is employed in this test. This simulation is carried out for three periods, i.e., t =
10,800 s.
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Figure 10. Sketch of water sloshing in a parabolic basin.

The comparison between the analytical and numerical results of water surface along the
x-direction symmetric axis at t = T, T + T/3, T + T/2 and 2T + T/6 for the smallest scaled mesh
is depicted in Figure 11. Compared with the analytical solutions, the numerical water surface and
shoreline show good agreement with the exact results, meaning the new scheme can accurately capture
the moving boundaries and handle the wetting and drying problem well. Moreover, two components
of flow velocity at the point (−5000, −100) versus time are also depicted in Figure 12, demonstrating
the difference between the numerical and analytical flow velocities, which is almost negligible.

Figure 13 shows the relative error of the total volume of water during the simulation over time.
The relative error ranges from−5.42× 10−17 to−5.43× 10−19, indicating a rather small deviation from
the initial total water volume, and the new scheme proposed in this work ensures mass conservation.
The errors in L1 and L2 norms, reflecting the deviation between numerical and analytical solutions, are
widely used to investigate the convergence performance of numerical schemes and are also used in
this work. Water depth and two components of unit width discharge at t = 3T versus the grid size ∆L
in logarithm scale are plotted in Figure 14. It is obvious that, for all flow variables, the convergence
rate in errors in both L1 and L2 norms is greater than 1.6. The accuracy is acceptable, considering the
second-order reconstruction procedure has been switched to first-order in some problematic cells near
the wet-dry interface.
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Figure 11. Comparison between simulated and analytical water surface for the mesh of ∆L = 55.18 m.
(a) t = T; (b) t = T + T/3; (c) t = T + T/2; (d) t = 2T + T/6.

Figure 12. Comparison between simulated and analytical velocities for the mesh of ∆L = 55.18 m at the
point (−5000, −100): (a) u velocity; (b) v velocity.
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Figure 13. Relative error of total water volume in the parabolic basin.

Figure 14. Errors of the numerical scheme in L1 and L2 norms at t = 3T for h, qx and qy: (a) L1 errors;
(b) L2 errors.

4.4. Steady Flow over Frictional Uneven Bottom

A two-dimensional steady-state flow over uneven bottom considering friction effects, originally
proposed by Murillo [51] and also adopted in [7,10,52], is employed here to test the new scheme when
perturbations by friction source term are involved. The analytical water depth and bottom level satisfy
Equations (57) and (58):

h(x, y) = a + qxx + qyy (57)

where a is constant and equal to 0.5, and

zb(x, y) = − 1
2g

(
q2

x + q2
y

)
+ 2gh3

h2 +
3
7
|qx|n2

√
2

h7/3 (58)

The computational domain is a square of 10 m. The unit width discharges in Equation (57)
are assumed to be constant over the domain and qx = qy = 0.1 m2/s. The Manning coefficient n
throughout the domain is also a constant value taken as 0.03 s/m1/3. As shown in Figure 15, in order
to study the adaptability and robustness of the new scheme on various irregular triangular grids,
four types of triangular meshes are adopted in this simulation under the same initial and boundary
conditions: the Delaunay mesh, the orthogonal-I mesh, the orthogonal-II mesh, and the distorted mesh.
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For each type of mesh, the number of discrete triangles is 1020, 800, 800 and 1111, respectively, and
the number of nodes is 551, 441, 441 and 602, respectively. Once again, the global relative error Rn(U)

defined in Equation (51) is employed in this test to quantify the convergent performance of the new
scheme on different types of meshes, and R(h) < 10−8 is used as the criterion of convergent results.

Figure 15. Four triangular mesh types used for computation: (a) Delaunay; (b) orthogonal-I;
(c) orthogonal-II; (d) distorted.

Before computation, the initial water surface is set to zero and the still water condition u = v = 0
is assumed over the domain. The constant unit width discharges qx = qy = 0.1 m2/s are imposed on
the west and south boundaries. The east and north boundary conditions are given by the water depth
calculated by Equation (57). The simulation runs on four types of meshes for 25 s with a time step of
0.005 s.

Figure 16 illustrates the global relative errors of the new scheme in terms of water depth for
different types of meshes. In these four series of runs, the new scheme is able to converge to the steady
state on all the mesh types at the end of the simulation (R(h) < 10−8), even in the case of distorted
mesh. Figure 17 displays the exact and numerical water surface at the end of the simulation along
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the diagonal section (Figure 17a) and horizontal-symmetry section (Figure 17b) of the computational
domain on the distorted mesh. The comparisons show good agreement between the numerical and
exact water surface even on the distorted grid (the difference is rather small, on the order of 10−5 m,
for both recorded sections). In summary, this test demonstrates not only the validity of the friction
source term treatment introduced in Section 3.3, but also the flexibility of the new multislope MUSCL
scheme for irregularly shaped grids even in the presence of obtuse triangles.

Figure 16. Global relative errors of water depth on different types of mesh.

Figure 17. Comparisons between simulated and analytical water surface on the distorted mesh along:
(a) the diagonal section; (b) the horizontal-symmetry section.

4.5. Flow in a Compound Channel

This test considers a commonly seen scenario in natural rivers: an asymmetric compound channel,
as sketched in Figure 18. The physical experiment was conducted by Rajaratnam [53]. The channel
was 18.3 m long and 1.22 m wide. The most significant characteristic of this channel was the distinctly
different velocity distributions in the main channel and the floodplain, since a high step separates the
main channel and the floodplain. Hence, the test simulated here is used to verify the capability of
the new scheme to give an accurate prediction of different flow regimes caused by rapidly varying
topography. For further comparison, three kinds of MUSCL-type schemes are used: the LCD scheme,
Touze’s scheme, and the new scheme proposed in this work. Detailed parameters are listed in Table 1.
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Figure 18. Sketch of a cross-section in a simplified compound channel.

Table 1. Data of the physical experiment.

D (cm) d (cm) h (cm) B (cm) b (cm) Q (m3/s) Sw × 103 Fr

11.28 1.52 9.75 71.1 50.8 0.027 0.45 0.37

The computational domain is discretized into 17,164 Delaunay triangles. In order to sharpen the
resolution of the topography equipped with an abrupt step, the computation domain is discretized
using a longitudinal break line that exactly coincides with the line dividing the main channel and the
floodplain in the horizontal plane. Triangles are distributed on both sides of the break line, resulting
in the break line being discretized with triangle edges. The inlet boundary condition is given by a
uniform velocity and the outlet boundary condition is given by a constant water surface elevation.
In addition, the channel is supposed to be smooth, so the friction source term is negligible.

Figure 19 plots a comparison of the measured and simulated longitudinal velocities along the
cross-section located 9.15 m from the inlet boundary. Three schemes can reproduce the dramatic
decrease in streamwise velocity from the main channel to the floodplain. Correspondingly, a large
gradient of streamwise velocity occurred at the interface of the main channel and the floodplain
(the dotted line in Figure 19) due to an abrupt change of flow depth, consistent with observations in
the published literature [54,55]. However, all the schemes exhibit some sort of numerical diffusion
near the step, which leads the numerical results to deviate from the measured data. It means the
two-dimensional shallow water model has an inherent limitation in dealing with this kind of case with
sharp changing topography. It is also obvious that the numerical diffusions drag the flow momentum
in the main channel to the floodplain and narrow the velocity gap between these two regions.

It is worth noting that compared with the LCD scheme, both multislope schemes perform better in
capturing the large gradient of velocity, which is also stated by Delis [17] and Hubbard [27]. Moreover,
slight differences can be found between the numerical results of Touze’s scheme and the new scheme
proposed in this work. Similar accuracies are achieved by these two schemes and parallel large-slope
capturing capabilities can be seen in Figure 19. However, the new scheme is more efficient than Touze’s
scheme and the LCD scheme (4.353% and 4.976% runtime, respectively, saved in this test). This is
because the new scheme avoids the addition loop for selecting an appropriate limiter in the LCD
scheme and makes full use of the geometric characteristic of triangular grids, so the upwind point
used for calculating the upwind slope is already available, which yields a more straightforward and
efficient algorithm.
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Figure 19. Comparison of experimental and simulated longitudinal velocities.

4.6. Flow in a Contracting-Expanding Channel over Uneven Bottom

Parshall flume, a widely used device for field measurement in open channels, as shown in
Figure 20, is employed to verify the applicability of the new scheme for varying flow regimes.

Figure 20. Sketch of the Parshall flume: (a) section view of L-L; (b) plan view.

The corresponding experiment was initially conducted by Ye [56]. The flow discharge is
0.0145 m3/s at the inlet boundary, and the outlet boundary conditions do not influence the flow
regime upstream. The water surface along the path is presented in Figure 21a. Zone 1 denotes the
converging section where the cross-section contracts over a flat bottom to create a critical depth; zone 2
denotes the throat section over a sloping bottom where supercritical flow occurs; and zone 3 denotes
the diverging section over an adverse slope bottom where the flow is supercritical. The flow regime
along the flume varies from subcritical to critical and eventually reaches supercritical conditions
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downstream of the throat section. Complexly varying flow regimes present a great challenge to the
accuracy and stability of the simulation. A robust numerical scheme should provide an accurate
prediction for different flow regimes. The parameters of this experiment are listed in Table 2.

Figure 21. Comparison of experimental and simulated results along the flume: (a) water surface;
(b) x-directional velocity.

Table 2. Values of parameters of the experiment.

A (m) B (m) C (m) D (m) E (m) F (m) G (m) M (m) N (m) T (m) W (m)

0.389 0.381 0.305 0.305 0.267 0.152 0.483 2.54 0.086 0.889 0.152

For numerical computation, the domain is discretized into 10,567 Delaunay triangles. The inlet
boundary condition is given by u = 0.4 m/s and h = 0.12 m. The outlet boundary condition is not
imposed since the supercritical flow regime. The initial condition is given by h = 0.05 m. In addition,
the channel is supposed to be smooth.

Figure 21a depicts the distribution of water surface along the Parshall flume, including the
numerical result computed by the scheme proposed in this work and the one provided in [56]. It can
be seen that there is excellent agreement of the water surface profile between the numerical and
measured results along the flume. Compared with the numerical results in [56], the numerical result in
this work is obviously closer to the experimental data regardless of flow regime. This phenomenon
is more pronounced for Ye’s numerical results in the supercritical flow regime downstream, where
a large deviation from the experimental data occurs. Figure 21b illustrates the flow field of the



Water 2018, 10, 524 25 of 29

numerical x-directional velocity calculated by the new scheme, which is shown to agree closely
with the experimental data, although the velocity downstream is slightly greater than that of the
experimental data. Since the frictional resistance will more or less affect the measured results, the
difference of velocity downstream in the flume between the numerical results and measured data
is acceptable. It is concluded that this new scheme can provide satisfactory solutions for varying
flow regimes.

4.7. A Symmetric 2D Riemann Problem

The last test was proposed by Brio [57] and was widely adopted in other studies [17,58] to verify
the shock-capturing capability of numerical schemes. This test aims to simulate the flow pattern arising
from two streams intersecting at a straight angle over a frictionless square domain. As presented in
Figure 22, the domain is divided into four subregions of equal size, where the bottom levels are all
zero. The initial conditions are discontinuous and listed as follows:

Figure 22. Sketch of the symmetric 2D Riemann problem.

The interactions between different regions result in a complex two-dimensional wave pattern,
which provides an excellent basis for verification of numerical schemes in terms of shock-capturing
ability. The computational domain is discretized into 15,360 Delaunay triangles, and the new multislope
MUSCL scheme is used to predict wave propagation. The initial flow conditions are given by the data
in Table 3 and the boundary conditions are not prescribed, to avoid water reflection.

Table 3. Initial conditions for the 2D Riemann problem.

Region (#) Coordinates (m) Water Depth (m) u (m/s) v (m/s)

1 x ≤ 100, y ≤ 100 1 10 10
2 x > 100, y ≤ 100 1 0 10
3 x ≤ 100, y > 100 1 10 0
4 x > 100, y > 100 10 0 0

Figure 23 demonstrates the 3D view of the simulated water surface at t = 4 s in a square subregion
[50 m, 150 m] × [50 m, 150 m]. It is clear that the complex wave propagation pattern is well reproduced.
The interactions between regions 1 and 2 yield two shock waves propagating along the x axis in
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opposite directions. A symmetric wave propagation pattern occurs as a result of the interactions
between regions 1 and 3. The interactions between regions 4 and 2 yield a shock wave propagating
along the negative y axis and a refraction wave along the positive y axis. A symmetric wave propagation
pattern occurs as a result of the interactions between regions 4 and 3, where both a shock wave and a
refraction wave arise. The interactions between regions 4 and 1 together with the interactions of the
shock waves as mentioned above result in a complex wave propagation pattern.

Figure 23. Simulated water surface of the 2D Riemann problem in 3D view at t = 4 s.

Figure 24 illustrates the contours of water surface elevation (equidistance = 0.1 m) and the vector
field of flow velocities calculated by the new scheme. The contours of the simulated water surface
(Figure 24a) and the vector field of flow velocities (Figure 24b) are symmetric about the bottom-left
to top-right diagonal line of the domain. All the shock waves are perfectly captured, caused by the
interactions between neighboring regions, indicating the excellent shock-capturing capability of the
new scheme.

Figure 24. Numerical results of the 2D Riemann problem at t = 4 s: (a) contours of water surface
elevation; (b) vector field of flow velocities.

5. Conclusions

A new multislope MUSCL scheme on triangular grids is proposed in this paper within the
framework of the Godunov-type CCFV method for simulating 2D shallow water flows over uneven
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topography. The values of flow variables on both sides of the considered edge are calculated by an
edge-based reconstructing and limiting procedure where the upwind slope is easily obtained, since
the upwind point is fixed at the node corresponding to the considered edge. Moreover, the downwind
slope is also easy to evaluate by means of a straightforward criterion. The algorithm is simplified in
the reconstructing and limiting procedures compared with the conventional LCD scheme [27] and
other existing multislope MUSCL schemes [17,34], so computation cost is obviously reduced without
sacrificing accuracy and robustness.

Seven tests were carried out to verify this scheme. The results show that lower time cost for
reaching convergent results is achieved compared with the classical monoslope and multislope MUSCL
schemes. In addition, it is also shown that this new scheme is more flexible on triangular grids and
more straightforward to implement for taking account of the geometrical characteristics of triangular
grids without sacrificing accuracy, robustness, and resolution. Furthermore, this new multislope
reconstruction method is independent of HLLC approximated Riemann solvers and SWEs, so it can be
integrated with numerical schemes based on other hyperbolic-type equations and Riemann solvers.
To sum up, the new scheme provides an ideal alternative to the existing monoslope and multislope
MUSCL schemes for numerically solving SWEs and other hyperbolic-type equations.
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