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Abstract: A first-order analytical solution is proposed for the actual depth-averaged concentration
of tracers in shallow river flows in the presence of large Peclet numbers (defined as the ratio of
section-averaged velocity times channel width to turbulent diffusion coefficient). The solution shows
how complete transverse mixing is never achieved due to the typical shape of the velocity and
diffusion coefficient profile, which alternatively tend—depending on the downstream location of the
cross-section—to concentrate the mass at the centre or at the boundaries of the cross-section itself.
The first-order analytical solution proves to be consistent with the results of Lagrangian numerical
simulations based on real-field input data, which show how the solute mass breakthrough curves
always exhibit anomalous behaviour and a considerable and persistent delay when compared with
those that are analytically obtained by assuming a truly one-dimensional process.

Keywords: river flows; solute longitudinal dispersion; breakthrough curves; analytical solution;
numerical simulations

1. Introduction

Scalar mixing and spreading processes are fundamental in many geophysical systems and
engineering applications [1,2]. The increasing need for scientific tools aimed at predicting, monitoring
and controlling chemical contamination and sediment transport in natural channels has recently
inspired extensive studies about different aspects of dispersion in stream flows, from the analysis
of the effects of heterogeneous channel morphology and asymmetry to that of release conditions
and backwater flows, and even to suspended load dynamics. Transient analytical solutions of the
advection-dispersion equation (ADE) for dissolved chemicals and fine sediments in open channels
were given by the authors: (1) in the case of deterministic depth-averaged velocity distributions and
different initial conditions based on Aris’ method of moments [3]; (2) in the case of randomly uniform
flows in the presence of morphologic heterogeneity represented by short-range correlations based
on a stochastic Lagrangian approach [4–6]; (3) and in terms of second-order concentration statistics
based on a stochastic Eulerian approach [7]. An analytical-numerical model was elaborated to solve
ADE in a stochastic Lagrangian framework in the case of backwater flows in large rivers, highlighting
the occurrence of a global re-densification of the cloud and a persistent transverse non-uniformity [8].
A stochastic Lagrangian numerical model was developed to handle ADE in the case of depth-dependent
turbulent diffusion coefficient, highlighting the occurrence of concentration boundary side-pockets [9].
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In the last few years, several studies (e.g., [10]) have described solute mixing in terms of Shannon’s
information entropy [11–14]. A steady-state uniform-flow solution was recently given by the authors
for the concentration of small-size suspended sediments [15] by modeling the cross-sectional velocity
distribution based on the principle of maximum information entropy and by investigating the effects
of velocity-dip position (e.g., [16,17]). The great interest in the investigation of pollutant/sediment
dispersion and the correct quantification of mixing in river flows is justified by its crucial role in
implementing effective natural or engineered remediation strategies and in performing risk assessment
analysis (e.g., [18]).

As a matter of fact, the classic one-dimensional advection-dispersion equation with constant
coefficients and its instantaneous point source solution were always found to be inadequate for
the interpretation of field measurements of chemical dispersion. The typical explanation given to
justify this discrepancy is that the tracer’s travel time was not long enough, implicitly meaning that
section-averaged concentration would have been well-described by Taylor’s [19] model once the
theoretical asymptotic regime of dispersion had finally been achieved.

Nevertheless, all the data available in the literature highlight a persistent skewness of the
distribution and an increasing peripheral drift of the solute clouds that seem to be incompatible
with a pre-asymptotic phase of the process [20–24], the reason for the failure of Taylor’s asymptotic
theory is likely related to the permanent cross-sectional non-uniformity of solute mass. Several
attempts were made to relate the persistent concentration skewness to the presence of dead zones
induced by morphological singularities as edges and corners or subsurface retention phenomena
(e.g., [25–27]). Ahmad analysed the effect of variable transverse mixing on stream-wise dispersion
in terms of longitudinal mixing length for different initial conditions [28] and a classic large-time
Fickian behaviour. Later, based on 2-D Lagrangian numerical simulations and the investigation of the
time behaviour of cloud moments, Pannone found that tracer dispersion in large rivers is singularly
affected by (depth-dependent) transverse diffusion [9]. Specifically, the interplay between zero-bank
velocity and the zero-bank transverse mixing coefficient leads to the occurrence of persistent solute
side pockets and an anomalous transient behaviour of the spatial moments.

In the present paper, the peculiarities of longitudinal dispersion in large rivers in the presence of
suitably variable transverse mixing is discussed through the numerical analysis of the breakthrough
curves. Additionally, the permanent peripheral drift of solute mass and the persistence of
cross-sectional incomplete mixing, even in the absence of morphological singularities and adsorption
phenomena, are justified by a first order analytical solution of the depth-averaged advection-diffusion
equation, which is pursued for large channel aspect ratios and large Peclet numbers. The scope of the
study is: (a) showing that the incomplete transverse mixing is a ubiquitous feature of open channel
flows; (b) providing a closed-form analytical solution that could serve as a fast predicting tool for
the deviatory depth-averaged concentrations of chemicals subject to advection and dispersion along
almost uniform reaches of steady wide river flows.

2. Formulation and First Order Analytical Solution

Let us consider the time-mean advection-diffusion equation that governs steady uniform turbulent
flows in straight open channels, Equation (1):

∂c
∂t

+ u
∂c
∂x

= εx
∂2c
∂x2 +

∂

∂y

(
εy

∂c
∂y

)
+

∂

∂z

(
εz

∂c
∂z

)
(1)

where x, y, and z are the orthogonal axes of a reference frame originating on the free surface at the right
bank, c = c(x, y, z, t) is the time-mean concentration of tracer, u = u(y, z) is the time-mean longitudinal
velocity, and εx(y, z), εy(y, z), and εz(y, z) indicate longitudinal, transverse, and vertical turbulent
diffusion coefficient, respectively.

The longitudinal macro-dispersion coefficient, widely investigated in the literature to analyse
the asymptotic macroscopic characteristics of the process (e.g., [3–6,9,29–31]), appears in the
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one-dimensional transport equation derived from Equation (1) after section averaging, which is
here performed according to Equation (2) [9]:

F(x, t) =
1
A

∫
A

f (x, y, z, t)dA =
1
B

B∫
0

 1
Heq

0∫
−h(y)

f (x, y, z, t)dz

dy (2)

where h(y) is the local depth, A the flow area, B the free-surface width, and Heq indicates the depth of
the equivalent rectangular cross-section. When the variation of the flow depth along the transverse
coordinate is very slow and the width is much larger than the equivalent depth, the depth-averaged
diffusive deviatory fluxes are negligible if compared to those that are associated with the joint variability
of u and c. Considering the no-flux condition at the banks, Equation (3) is obtained:

∂C
∂t

+ U
∂C
∂x

= Dx
∂2C
∂x2 (3)

where U is the section-averaged velocity, Dx represents the longitudinal macro-dispersion coefficient
expressed by Equation (4) combined with Equations (5) and (6):

Dx(t) ∼= −

1
B

B∫
0

u′c′dy

∂C
∂x

, (4)

c(x, y, t) = C(x, t) + c′(x, y, t), (5)

u(y) = U + u′(y), (6)

the overbar indicates depth-average and the prime the corresponding deviation. Equation (3) holds in
the reasonable and well-documented hypothesis that the dispersive effect induced by the transverse
heterogeneity of u′ and c′ dominates the corresponding effect induced by vertical heterogeneity and
turbulent diffusion (e.g., [20,30,32]).

Dispersion and dilution phenomena in large rivers can be analysed either by solving
advection-diffusion equations like Equation (1) or Equation (3) (e.g., [7]), or by estimating the spatial
moments of the equivalent discrete distributions of mass in terms of solute particle trajectories after [33].
The solution of Equation (3) for instantaneous point solute source at x = 0 reads:

C(x, t) =
M

BH
√

4πDx(t + t0)
exp

[
− (x−Ut)2

4Dx(t + t0)

]
(7)

where t0 indicates the initial longitudinal relaxation time, M total mass and H the cross-sectional
average flow depth.

In the present study, in the hypothesis of shallow waters, and assuming that vertical mixing
is much faster than its transverse and longitudinal counterparts [30], the problem is solved based
on a 2-D numerical Lagrangian approach (e.g., [9]) in terms of downstream breakthrough curves,
and based on a 2-D analytical Eulerian approach in terms of actual depth-averaged concentration.
To our knowledge, this is the first attempt at finding an explicit analytical solution for the deviatory
concentration (whose contribution is routinely analysed in an average sense by the corresponding
variance).

The depth-averaged advection-diffusion equation is formulated as, Equation (8):

∂c
∂t

+ u
∂c
∂x

=
∂

∂y

(
εy

∂c
∂y

)
(8)
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where only the transverse diffusive term, whose order of magnitude is comparable with that of
the stream-wise component [32], is maintained because of its crucial role in triggering longitudinal
dispersion by the cross-sectional displacement of solute particles that enables the sampling of the
whole velocity distribution.

Subtracting Equation (3) from Equation (8) gives the governing equation for the deviatory
concentration, Equation (9):

∂c′

∂t
+ U

∂c′

∂x
+ u′

∂C
∂x

+ u′
∂c′

∂x
− 1

B
∂

∂x

B∫
0

u′c′dy =
∂

∂y

(
εy

∂c′

∂y

)
(9)

An approximate solution of Equation (9) can be pursued in the case of straight reaches of large
regular rivers in steady uniform-flow conditions. At the first order in the velocity/concentration
deviations, Equation (10):

∂c′

∂t
+ U

∂c′

∂x
+ u′

∂C
∂x

=
∂

∂y

(
εy

∂c′

∂y

)
(10)

where, Equation (11) [30]:

εy(y) = 0.6h(y) u∗[h(y)] = 0.6h(y)
√

gh(y)i f (11)

u∗ indicates shear velocity, g is the acceleration due to gravity and if channel slope. According to
the above-mentioned hypotheses, Equation (10) will be solved here for large cross-sections and large
related Peclet numbers, Equation (12):

Pe =
UB
εy

(12)

where, Equation (13):

εy = 0.6H
√

gHi f (13)

The adoption of suitable scales for length, velocity, time and concentration, respectively,
Equation (14):

λL = B
λV = U
λT = B

U
λC = C0 = C(x = 0, t = 0) = M

BH
√

4πDxt′0

(14)

leads to the following (Equation (15)) dimensionless version of Equation (10):

∂c̃
∂t̃

+
∂c̃
∂x̃

=
1

Pe
∂

∂ỹ

[
ψ(ỹ)

∂c̃
∂ỹ

]
− ũ(ỹ)

∂C̃
∂x̃

(15)

where, Equation (16):
x̃ = x

B
ỹ = y

B
t̃ = tU

B
ũ = u′

U
c̃ = c′

C0

C̃ = C
C0

ψ =
(

h
H

)3/2

(16)
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and function Ψ has to be defined according to the assumed flow-section shape. When Pe is very
large, its inverse δ can be adopted as the small parameter of a perturbation expansion of the solution,
Equation (17):

c̃
(

x̃, ỹ, t̃
)
= c̃0

(
x̃, ỹ, t̃

)
+ δc̃1

(
x̃, ỹ, t̃

)
+ δ2 c̃2

(
x̃, ỹ, t̃

)
+ . . . (17)

Substituting Equation (17) into Equation (15), one finds that, at order δ0, the equation to be solved
is, Equation (18):

∂c̃0

∂t̃
+

∂c̃0

∂x̃
= −ũ(ỹ)

∂C̃
∂x̃

(18)

while at order δ1 one has, Equation (19):

∂c̃1

∂t̃
+

∂c̃1

∂x̃
=

∂

∂ỹ

[
ψ(ỹ)

∂c̃0

∂ỹ

]
(19)

with initial condition (uniform cross-sectional strip injection at x = 0 and t = 0), Equation (20):

c̃0(x̃, ỹ, 0) = c̃1(x̃, ỹ, 0) ≡ c̃(x̃, ỹ, 0) = 0 (20)

Let us consider a parabolic flow-section shape, Equation (21):

h(y) =
6H
B

y
(

1− y
B

)
(21)

and a velocity profile expressed by the generalized Manning’s formula [34] transformed into the
equivalent depth-averaged velocity, Equation (22) [9]:

u(y) =

1
h

0∫
−h

u(y, z)dz

 h
Heq

= θU
(

h
H

)2/3 h
Heq

(22)

where θ = θ(B/H) is a calibration coefficient accounting for the difference between average flow depth
and hydraulic radius. In the case of large cross-sections and large aspect ratios (B>>H), θ ~1 and
Heq ~H. Thus, Equation (23):

∂c̃0

∂t̃
+

∂c̃0

∂x̃
= −

{
65/3[ỹ(1− ỹ)]5/3 − 1

}∂C̃
∂x̃

(23)

and, Equation (24):
∂c̃1

∂t̃
+

∂c̃1

∂x̃
= 63/2 ∂

∂ỹ

{
[ỹ(1− ỹ)]3/2 ∂c̃0

∂ỹ

}
(24)

In a longitudinal reference frame moving with the section-averaged velocity, Equation (25):

x̃∗ = x̃− t̃ (25)

Equations (23) and (24) respectively become, Equation (26):

∂c̃0

∂t̃
= −

{
65/3

[
ỹ(1− ỹ)5/3 − 1

]} ∂C̃
∂x̃∗

(26)

and, Equation (27):
∂c̃1

∂t̃
= 63/2 ∂

∂ỹ

{
[ỹ(1− ỹ)]3/2 ∂c̃0

∂ỹ

}
(27)
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whose general solutions are, Equation (28):

c̃0
(

x̃∗, ỹ, t̃
)
= −

{
65/3[ỹ(1− ỹ)]5/3 − 1

} t̃∫
0

∂C̃
∂x̃∗

dt̃1 (28)

and, Equation (29):

c̃1
(

x̃∗, ỹ, t̃
)
= −5

3
619/6[ỹ(1− ỹ)]7/6

{
13
6
(1− 2ỹ)2 − 2ỹ(1− ỹ)

} t̃∫
0

t̃1∫
0

∂C̃
∂x̃∗

dt̃2dt̃1 (29)

In dimensionless terms, the gradient of the section-averaged concentration (7) is given by
Equation (30):

∂C̃
∂x̃∗

= −PeM
√

t̃0

2
x̃∗(

t̃ + t̃0
)3/2 exp

[
− x̃2

∗PeM

4
(
t̃ + t̃0

)] (30)

In Equation (30) and in what follows, PeM represents the macro-Peclet number PeM = UB/Dx.
Equation (28) has the following closed-form solution, Equation (31):

c̃0
(

x̃∗, ỹ, t̃
)
=

√
πt̃0PeMỸ0(ỹ)X̃0

(
x̃∗, t̃

)
(31)

with, Equation (32):
Ỹ0 = 65/3[ỹ(1− ỹ)]5/3 − 1 (32)

and, Equation (33):

X̃0 = Erf

[
x̃∗
2

√
PeM

t̃0

]
− Erf

[
x̃∗
2

√
PeM(

t̃ + t̃0
)] (33)

where “Erf” indicates Error Function (e.g., [35]).
Equation (29) then yields Equation (34):

c̃1
(

x̃∗, ỹ, t̃
)
=

√
πt̃0PeMỸ1(ỹ)X̃1

(
x̃∗, t̃

)
(34)

with, Equation (35):

Ỹ1(ỹ) = −
5
3

619/6[ỹ(1− ỹ)]7/6
{

13
6
(1− 2ỹ)2 − 2ỹ(1− ỹ)

}
(35)

and, Equation (36):

X̃1
(

x̃∗, t̃
)
= Erf

[
x̃∗
2

√
PeM

t̃

](
t̃ + t̃0

)
+

x̃2
∗PeM

2
√

π

{
Ei
(

x̃2
∗PeM

4t̃0

)
− Ei

[
x̃2
∗PeM

4
(
t̃ + t̃0

)]} (36)

where “Ei” indicates Exponential-Integral Function (e.g., [35]). See Figures 1–6 for a graphical
illustration of the solution with reference to two different macro-Peclet numbers (1 and 0.01,
respectively) assuming t̃0 = 0.1. Specifically, Figure 1a,b display Ỹ0(ỹ) and Ỹ1(ỹ), respectively;
Figure 2a,b display X̃0

(
x̃∗, t̃

)
and X̃1

(
x̃∗, t̃

)
, respectively, as a function of x̃∗; finally, Figure 3a,b display

X̃0
(

x̃∗, t̃
)

and X̃1
(

x̃∗, t̃
)
, respectively, as a function of t̃. Note that Equations (31) and (34) consistently

give zero at the section-averaged concentration maximum (x̃∗ = 0) and at the section-averaged
concentration tails (x̃∗ = ±∞). Additionally, they would reproduce the typical two-peaked
longitudinal structure detected in previous studies on concentration variance in heterogeneous velocity
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fields (e.g., [7,36–38]). Indeed, since concentration spatial variance in constant-width stream flows by
definition is, Equation (37):

σ2
c = c′2 =

1
B

∫ B

0
c
′2dy (37)

for example, at order zero, we have, Equation (38):

σ2
c0 =

C2
0

B

∫ B

0
c̃0

2dy (38)

or, Equation (39):

σ2
c0 =

C2
0π t̃0

B
PeMX̃0

2
∫ B

0
Ỹ0

2
dy (39)

Therefore, the longitudinal variability of the leading-order variance coincides with the

longitudinal variability of function X̃0
2
. As one can see from Figure 2a,b, function X̃0 (like function

X̃1) is characterized by a maximum (positive) and a minimum (negative), with the same absolute
value and the same distance from the origin. Its square is therefore characterized by two equal and
symmetrical positive peaks. Their distance is, Equation (40):

dp
(
t̃
)
=

4√
PeM

√√√√( t̃2
0

t̃
+ 1

)
ln
(

t̃ + t̃0

t̃0

)
(40)

Both c̃0 and c̃1 are obtained as the product of a function of x̃∗ and t̃ (X̃0 or X̃1) and a function
of ỹ (Ỹ0 or Ỹ1). Where X̃0 or X̃1 is positive, the sign of c̃0 or c̃1 as a function of ỹ coincides with the
sign of Ỹ0 or Ỹ1. Where X̃0 or X̃1 is negative, the sign of c̃0 or c̃1 as a function of ỹ is opposite of Ỹ0

or Ỹ1’s. Thus, for example, where X̃0 is negative (and that happens for x̃∗ = (x−Ut)/B < 0, that is,
in the raising branch of the section-average Gaussian bell), we have c̃0 < 0 in the central part of the
cross-section and c̃0 > 0 near the side boundaries. That means that, at order δ0, while in the central part
of the cross section total concentration is lower than the average, at the side boundaries it is higher.
Vice versa for positive X̃0. That means that, while at the back of the section-average Gaussian wave
(7) solute mass is concentrated at the boundaries (the slower part of flow field), at the front of the
section-average Gaussian wave (7) solute mass is concentrated at the center (the faster part of flow
field). Specifically, along the transverse direction, c̃0 exhibits two (positive) maxima at the banks and a
(negative) minimum at the channel axis for x̃∗ < 0, where X̃0 < 0; it is > 0 for ỹ > 0.5 + 1/2

√
3 and

< 0 for ỹ < 0.5− 1/2
√

3. Conversely, c̃0 exhibits two (negative) minima at the banks and a (positive)
maximum at the channel axis for x̃∗ > 0, where X̃0 > 0; it is > 0 for 0.5− 1/2

√
3 < ỹ < 0.5 + 1/2

√
3

and < 0 for ỹ < 0.5− 1/2
√

3 and ỹ > 0.5 + 1/2
√

3 (see Figure 1a combined with Figure 2a). Unlike
the leading order component, the first-order diffusive contribution is characterized by four zeros
(ỹ = 0, ỹ = 1, ỹ ∼= 0.28, ỹ ∼= 0.72). Thus, depending on the local sign of function X̃1 (> 0 for x̃∗ > 0 and
< 0 for x̃∗ < 0), it has its maximum at the centre of the cross-section or within more peripheral layers,
for 0 < ỹ < 0.28 and 0.72 < ỹ < 1 (see Figure 1b combined with Figure 2b). This asymmetry would
justify an anomalous delay in the breakthrough curves between first particle arrivals and last particle
arrivals. It should also be noted that, whereas c̃0, viewed as a function of time, tends to a constant
proportional to PeM, c̃1 tends to increase linearly. In term of the deviatory first order concentration
solution (according to Equation (17)), this continuous increase is partially balanced by the small value
of δ = 1/Pe (see Figure 3).
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Figure 1. (a) Function Ỹ0; (b) Function Ỹ1.

Figure 2. (a) Function X̃0 for two different macro-Peclet numbers at t̃ = 10; (b) Function X̃1 for two
different macro-Peclet numbers at t̃ = 10.

Figure 3. (a) Function X̃0 for two different macro-Peclet numbers at x̃∗ = 1; (b) Function X̃1 for two
different macro-Peclet numbers at x̃∗ = 1.

3. Numerical Lagrangian Simulations

A numerical investigation of dispersion within straight reaches of open channel flows was already
discussed in previous authors’ work [9]. The study focused on the analysis of solute cloud spatial
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moments reconstructed by 2-D particle tracking based on input experimental data collected along six
rivers of southern Italy [39]. The six study cases were equally distributed among compact rectangular
(CR), bi-rectangular (BR), and triangular cross-sections (T), characterized by width-to-depth ratio B/H
ranging between ~15 and ~56. At the time of the field survey, the six channels were characterized
by relatively large bed grain size, with no suspended load and no relevant bed-forms. In order to
work on a more dense and regular grid, a larger number of depth values was derived from field data
by 3 to 5 level linear interpolation. Each river was discretized into a variable number of transverse
elements (from 80 to 320). Each element was characterized by the suitable value of u and εy according
to Equations (22) and (11), respectively. A high number of particles (NP = 200,000) was instantaneously
released at x = 0 and y = B/2 and then tracked based on Equations (41) and (42):

X(t + ∆t) = X(t) + u[Y(t)]∆t (41)

Y(t + ∆t) = Y(t) +
{√

2εy∆t
}

Gζ(0, 1) (42)

with εy = εy[Y(t)] (depth-dependent transverse mixing) or, for the sake of comparison, εy = εy =

const (uniform mixing). In Equations (41) and (42), Gζ(0, 1) represents the generic element of a
normal distribution (i.e., a zero-mean and unit-variance Gaussian), and the length of the time step
∆t was selected in such a way as to minimize the number of diffusive multiple-element jumps while
keeping the computational time within reasonable limits. Indeed, to avoid tracking the particle with
wrong velocity values, ∆Y must not exceed the transverse dimension of the computational grid ∆n,
Equation (43):

∆Y = Y(t + ∆t)−Y(t) ≤ ∆n (43)

Thus, Equation (44):
2εy[Y(t)]∆t

[
Gζ(0, 1)

]2 ≤ ∆n2 (44)

Since, Equation (45):

Gζ(0, 1) =
1√
2π

exp
(
− ζ2

2

)
(45)

we had, Equation (46):

∆t ≤ 2π∆n2

2εymaxexp(−ζ2)
(46)

With ζ = 5, G5(0, 1) ∼= 10−6. The total number of tracked particles was NP = 200,000. Setting,
Equation (47):

∆t =
∆n2

2εymax10−12 (47)

we were certain that only 0.2 of 200,000 displacements had the probability to be performed with the
wrong velocity at each time step.

In the present study, we resorted to the same methodology for the numerical reconstruction of
the breakthrough curves referred to in three of the six study cases (Table 1) in the presence of uniform
and non-uniform turbulent mixing at four different downstream cross-sections (x1 = 2Utd, x2 = 4Utd,
x3 = 6Utd, x4 = 9Utd, with td = B2/εy indicating the average diffusive time).

Table 1. Summary of the main geometric and hydrodynamic parameters for the cases under
investigation.

River B (m) H (m) U (m/s) u∗ (m/s) Pe

R1: Crati (CR) 26.2 0.47 0.96 0.136 656
R2: Lao (BR) 24 0.45 1.46 0.2 649

R3: Follone (T) 13.5 0.38 0.92 0.136 400
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It is well known that the breakthrough curves are a measure of the percentage solute mass that
has crossed a given section at a given time and allow us to establish whether, and to what extent,
concentration distribution is affected by tails and decelerations. As a matter of fact, their use by-passes
the evaluation of the actual c(x, y, t), which is analytically accessible only in approximate forms
(an example was shown above) and is numerically affected by unavoidable errors due to discretization
issues and virtual diffusion. Following the mentioned Lagrangian approach, we evaluated the
cumulate of concentration by counting the percentage number of particles that, at the generic time t,
were characterized by X(t) > xi. Figures 4a, 5a and 6a show the breakthrough curves for the three
cases under investigation in conditions of uniform turbulent mixing; Figures 4b, 5b and 6b do the
same in the presence of non-uniform mixing (for R1, R2 and R3, respectively). The time on the abscissa
corresponds in every case to 2 average diffusive times. Finally, for the sake of comparison, Figure 7a–c
display the theoretical cumulative distributions corresponding to the one-dimensional Gaussian in the
presence of uniform mixing, Equation (48):

Φxi (t) = 1−
xi∫
−∞

C(x, t)dx = 1− 1
2

[
1 + Erf

(
xi −Ut√

4Dxt

)]
(48)

Figure 4. Breakthrough curves for R1. (a) Uniform mixing; (b) Non-uniform mixing.

Figure 5. Breakthrough curves for R2. (a) Uniform mixing; (b) Non-uniform mixing.
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Figure 6. Breakthrough curves for R3. (a) Uniform mixing; (b) Non-uniform mixing.

Figure 7. Theoretical Taylor-like breakthrough curves for uniform mixing. (a) R1, (b) R2, and (c) R3.

The longitudinal macro-dispersion coefficients Dx used in Equation (48) (110, 220, and 105 m2/s,
respectively, for the three cases under investigation), were consistently obtained as one-half of the
time-derivative of the cloud central inertia moment Sx, Equation (49) [9]:

Dx(t) =
1
2

dSx

dt
=

1
2NP

d
dt

NP

∑
i=1

[Xi(t)− < X(t) >]2 (49)

where, Equation (50):

< X(t) >=
1

NP

NP

∑
i=1

Xi(t) (50)
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indicates longitudinal average trajectory. Note that the reconstruction of the theoretical breakthrough
curves based on Equation (48) implicitly assumes a transversally uniform distribution, with c′ = 0.

The comparison between the curves numerically obtained for uniform and non-uniform mixing
reveals that the uniform approximation (which is in qualitative agreement with the cumulate of
the section-averaged concentration (48)) yields totally misleading results. Indeed, in the case of
non-uniform mixing, and regardless of the morphological typology of the cross-section, even the
shape of the curves is anomalous and is characterized by a considerable delay with respect to the
theoretical one. This considerable and persistent delay can find a very reasonable explanation on
the basis of the first-order analytical solution presented in the previous section. As a matter of fact,
as above mentioned, both the leading order component and first order diffusion-related component
are characterized by (positive) maxima near the banks and (negative) minima at the centre of the
cross-section for x̃∗ < 0, that is, at the back of the C-wave. Conversely, they are characterized by a
(positive) maximum at the centre of the cross section and (negative) minima in the more peripheral
layers for x̃∗ > 0, that is, at the front of the C-wave. That means that solute mass is concentrated
in the faster areas of the cross-section at the front and in the slower areas of the cross-section at the
back, thus producing the detected delay in the breakthrough curves. Additionally, and unlike the
leading-order component of the solution c̃0, which tends to a constant different from zero for any
x̃∗ 6= 0, ±∞, the first-order diffusion-related component c̃1 linearly increases in time for any x̃∗ 6= 0,
meaning that its effect gets stronger and stronger as time elapses. Thus, the first-order analytical model
proposed by the present study and based on the analysis of depth-averaged concentration behaviour
in the presence of a symmetric parabolic cross-section characterized by a large aspect ratio and large
Peclet number, seems to be able to grasp the basic features of tracer dispersion also under the more
general conditions simulated by the numerical analysis. Additionally, since in the presence of shallow
waters (for which the problem of monitoring and predicting the fate of pollutant substances is even
more serious) a parabolic shape of the cross-section can be an acceptable approximation of reality,
the solution may be easily utilized to assess the maximum cross-sectional value of concentration and
its location.

4. Conclusions

The assessment of the value and position of chemical concentration peaks in river flows is a
fundamental requirement for the monitoring and the control of contamination events, which can be
very frequent along river reaches that cross urban or industrial areas. We have shown that, for large
aspect ratios, at the first order in the deviatory velocity and at least for large Peclet numbers, complete
transverse mixing is never achieved. Therefore, the commonly used one-dimensional Gaussian is not a
suitable predictor. The proposed analytical model allows evaluating the time-dependent deviatory
depth-averaged concentration at any location along the channel axis and within the cross section.
Assuming a large parabolic shape of the flow area, we found that, at the front of the section-averaged
wave, the mass is concentrated at the centre. Conversely, at the back of the section-averaged wave,
it is relegated near the banks. Additionally, while the large-time leading component of the solution
tends to a constant, the first-order diffusion-related component linearly increases in time. This peculiar
behaviour fully justifies what emerges from Lagrangian numerical simulations applied to three
real-field cases represented by more or less asymmetric cross-sections and finite Peclet numbers.
Indeed, all the reconstructed downstream breakthrough curves exhibited a considerable and highly
persistent delay as compared to those obtained from the one-dimensional Gaussian, thus validating
the theoretical conclusion even in more general and less restrictive cases.
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computational format; B.M. analysed the state-of-art (theoretical studies) and critically revised the paper.

Conflicts of Interest: The authors declare no conflict of interest.



Water 2018, 10, 478 13 of 15

Notation

A flow area
B free-surface width
c (time-mean) concentration
c depth-averaged concentration
c′ deviation of depth-averaged concentration
C section-averaged concentration
C0 initial section-averaged concentration
c̃ dimensionless c
C̃ dimensionless C
c̃0 zeroth order solution of c̃ perturbation expansion
c̃1 first order solution of c̃ perturbation expansion
d̃p dimensionless distance between the two peaks of concentration variance
Dx longitudinal macro-dispersion coefficient
∆t numerical time step
εx longitudinal mixing coefficient
εy transverse mixing coefficient
εz vertical mixing coefficient
εy depth-averaged transverse mixing coefficient
εy section-averaged transverse mixing coefficient
Ei Exponential-Integral Function
Erf Error Function
Φxi Cumulate of concentration at xi
g acceleration due to gravity
Gζ(0, 1) generic element of a normal distribution
h local flow depth
H average flow depth
Heq depth of the equivalent rectangular cross-section
if channel bed slope
M total mass
NP total number of particles
Pe Peclet number
PeM macro-Peclet number
Ψ flow section-shape function
Sx cloud longitudinal inertia moment
σ2

c concentration variance
t time
t̃ dimensionless t
t0 longitudinal relaxation time
t̃0 dimensionless longitudinal relaxation time
td average diffusive time
θ aspect ratio calibration coefficient
u (time-mean) longitudinal velocity
u depth-averaged longitudinal velocity
u′ deviation of depth-averaged longitudinal velocity
u∗ shear velocity
u∗ depth-averaged shear velocity
U section-averaged longitudinal velocity
x longitudinal spatial coordinate
y transverse spatial coordinate
z vertical spatial coordinate
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x̃ dimensionless x
ỹ dimensionless y
x̃∗ dimensionless x in a reference frame moving with the section-averaged velocity
X(t) longitudinal particle position at time t
<X(t)> longitudinal average trajectory
Y(t) transverse particle position at time t
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