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Abstract: Urban water demand is influenced by a variety of factors such as climate change, population
growth, socio-economic conditions and policy issues. These variables are often correlated with
each other, which may create a problem in building appropriate water demand forecasting model.
Therefore, selection of the appropriate predictor variables is important for accurate prediction of
future water demand. In this study, seven variable selection methods in the context of multiple
linear regression analysis were examined in selecting the optimal predictor variable set for long-term
residential water demand forecasting model development. These methods were (i) stepwise selection,
(ii) backward elimination, (iii) forward selection, (iv) best model with residual mean square error
criteria, (v) best model with the Akaike information criterion, (vi) best model with Mallow’s Cp

criterion and (vii) principal component analysis (PCA). The results showed that different variable
selection methods produced different multiple linear regression models with different sets of predictor
variables. Moreover, the selection methods (i)–(vi) showed some irrational relationships between
the water demand and the predictor variables due to the presence of a high degree of correlations
among the predictor variables, whereas PCA showed promising results in avoiding these irrational
behaviours and minimising multicollinearity problems.

Keywords: variable selection; principal component analysis; multiple regression; multicollinearity;
long-term water demand forecasting; urban water

1. Introduction

Water demand forecasting is a vital element in urban planning and sustainable development
of a city. Many important decisions in regards to water demand management, environmental
planning and optimum utilization of water resources depend on accurate water demand forecasting.
Future water availability is expected to reduce in many urban cities [1] due to several factors such
as population growth, changing climatic conditions, pollution of water, scarcity of untapped water
sources and increased frequency of droughts [2,3]. Therefore, it is important to have the accurate
future water demand projections to ensure adequate water supply to the cities by adopting various
strategies such as capacity expansion of existing water supply systems, building new infrastructure and
implementation of water demand management policies. Water demand forecasting can be achieved
by developing suitable mathematical water demand models based on the predictor variables that
influence water demand.

Urban water demand is influenced by a variety of factors such as demographic (e.g., number
of population and number of dwellings), climatic (e.g., rainfall, temperature and evaporation),
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socioeconomic (e.g., household income and water price) and strategic (e.g., water use restriction
and household water conservation programs) [4–10]. Identification of the most important and
relevant variables among these candidate variables is crucial in the development of the water
demand forecasting model, as the prediction accuracy of the models depends on the selection of
an appropriate set of predictor variables. Moreover, many of these variables are highly correlated
with each other, which can create multicollinearity problems during the regression-based model
development. The multicollinearity problem may lead to unrealistic and biased prediction.

Multiple linear regression analysis has been used widely in developing water demand models
since the 1960s; for example, by Gottlieb [11] to develop water demand models for the state of
Kansas in the USA to assess the link between water demand and price; by Conley [12] to develop
water demand models as a function of water price and number of rainy days in Southern California;
by Howe and Linaweaver [13] to examine the relationship among in-house and sprinkler water uses;
by Turnovsky [14] to develop household and industrial water demand models in Massachusetts;
and by Hankle [15] to assess the impact of introducing meters on residential water demand.
More recently, the multiple linear regression technique has been adopted to develop water demand
forecasting models by many researchers [16–18]. As noted by Donkor et al. [19], neural networks and
hybrid models are more suitable for short-term water demand forecasting, while regression-based
models are more appropriate for long-term forecasting.

To deal with the non-linearity in the water demand and predictor variables’ data, logarithmic
transformation of these variables is widely adopted in multiple linear regression modelling [19,20].
Artificial intelligence-based methods such as artificial neural network (ANN) [7], fuzzy- and
neuro-fuzzy-based methods [21] and support vector regression [22,23] can also be used to deal with
the non-linearity; however, these methods are more appropriate for short-term forecasting (e.g., daily
or weekly water demand).

The main objective of a variable selection procedure is to identify the correct predictor variables,
which have an important influence on the response variable and could provide robust model prediction.
A number of different variable selection methods such as stepwise selection, backward elimination,
forward selection and principal component analysis (PCA) and different selection criteria have been
adopted in the literature to find the optimal set of predictor variables in the model [24–29]. However,
Raffalovich et al. [30] and Murtaugh [31] mentioned that no general superior variable selection method
exists; some methods are more applicable under certain circumstances, depending on the nature of
the problem at hand and the availability of the information. There are several studies on variable
selection methods in different fields, for example in ecology [31], in flood estimation [32] and on load
forecasting [33]. However, a limited number of studies exist in the literature on variable selection
methods in water demand forecasting when multicollinearity is present. A recent study [23] on
correlation analysis of variables in modelling short-term water demand has also stressed the need for
appropriate variable selection methods for both short-term and long-term water demand modelling in
the presence of multicollinearity.

The main focus of this paper is to compare different variable selection methods with respect to
eliminating the multicollinearity problem in the linear regression-based water demand forecasting
models. In this study, the model will be used to predict long-term water demand. Based on the
forecast horizon, water demand forecasting can be divided into short-term (e.g., up to 48 h) and
long-term forecasting (e.g., monthly and yearly) [34,35]. In the literature, it has been found that for
short-term water demand forecasting, artificial neural networks and time series models are adopted,
and for long-term forecasting, multiple linear regression analysis has been used by many studies [19].
The numbers and types of predictive variables are also dependent on the forecast horizon; for example,
for short-term forecasting, climate variables are not important, whereas for long-term forecasting,
climate variables are important variables to consider as they are likely to have a higher influence
on water demand. In this study, seven variable selection methods are examined to find the optimal
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variable set in the development of the long-term water demand forecasting model. Data from the Blue
Mountains Water Supply System in the New South Wales, Australia, are used.

The methods compared include: (i) stepwise selection; (ii) forward selection; (iii) backward
elimination; (iv) best model with the criteria of residual mean square error; (v) best model with
Mallow’s Cp criterion; (vi) best model with the Akaike information criterion (AIC); and (vii) the model
with selected variables based on preprocessing by PCA. The performance of various models is assessed
for an independent validation period. This is one of the comprehensive studies in comparing the
performance of variable selection methods in long-term water demand forecasting. Moreover, this is
one of the few papers that has discussed the multicollinearity problem in water demand forecasting
and has highlighted how to resolve the problem. Results of the study are expected to provide important
insights into the variable selection methods in water demand modelling to produce more accurate
water demand projections. The findings of this study would be useful in enhancing the sustainability
of urban water resources and water supply systems in a given region by providing a better tool to
estimate future water demand.

2. Study Area and Data

The Blue Mountains region in New South Wales, Australia, has been adopted as the study area,
which has a latitude of 33.7◦ S and a longitude of 150.3◦ E. Blue Mountains Water Supply System
(BMWSS) supplies water to a population of about 48,000 from Faulconbridge to Mount Victoria
(Figure 1) in the Blue Mountains region, Australia.

As Mount Victoria is over 1000 m above sea level, the temperature is normally 7 ◦C lower than
the coastal Sydney. The average temperature in the Upper Blue Mountains area is around 5 ◦C and
18 ◦C in winter (June–August) and summer months (December–February), respectively. The Upper
Blue Mountains area has an annual average rainfall of 1050 mm [36].

Figure 1. Blue Mountains region in Australia [37].
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A large number of water demand variables was adopted in this study: monthly total rainfall
(mm), number of rainy days in a month, monthly mean maximum temperature (◦C), monthly average
temperature (◦C), monthly total evaporation (mm), monthly solar exposure (MJ/m2), water price
(AUS $/Kilolitre(KL)), conservation program participation (CPP) and three water restriction levels
(i.e., Levels 1, 2 and 3) imposed in the study area during previous drought periods (2003–2009).

Metered water consumptions in a monthly step and the number of dwellings data for the period
of 2003–2011 in the Blue Mountains regions were obtained from Sydney Water. The monthly water
consumption values were divided by the number of dwellings to get the ‘per dwelling monthly
water consumption (PDMWC)’, which was taken as the response/dependent variable in the analysis.
Water price and CPP data were also obtained from Sydney Water. The number of dwellings that
were participating in the water demand management programs (e.g., installation of showerheads,
flow restrictors, rainwater tanks, water-efficient washing machines and toilets) was referred to as CPP
in this study.

The New South Wales Government enforced three levels of water restriction during the
millennium drought periods (2003–2009) to manage the limited water supply. Levels 1 and 3 were the
most liberal (i.e., minimum restriction on water use) and the most severe level (i.e., high restriction on
water use) of restrictions, respectively. These restrictions were mainly imposed on outdoor water use
such as garden watering and car washing. The detailed description of the restriction levels and scopes
of the levels can be found in Haque et al. [38]. Level 1, 2 and 3 water restrictions were applied to three
separate periods during 2003–2009 in the Sydney region based on the severity level of the drought
conditions. In this study, these three levels of water restriction were represented by dummy variables
(Level 1 dummy variable, Level 2 dummy variable and Level 3 dummy variable); the value of the
dummy variables was considered as one when it was in place, otherwise its value was considered to
be zero in the data matrices. Meteorological data such as total monthly rainfall, number of rainy days
in a month, monthly mean maximum temperature, monthly average temperature, evaporation and
solar exposure were obtained from the Sydney Catchment Authority.

3. Methods

In this study, seven variable selection methods were adopted to identify the influential predictor
variables in the Blue Mountains Water Supply System for modelling long-term residential water
demand. The prediction ability of these methods was evaluated using a split-sample validation
technique [39]. The total data period (March 2003–September 2011) was divided into two subsets:
(i) March 2003–December 2009 to develop the multiple linear regression (MLR) models and (ii) January
2010–September 2011 to validate the developed models. Sydney Water [40] and Abrams et al. [8]
found that despite the existence of no mandatory water restrictions in Sydney, water uses did not
increase significantly, i.e., it was increased by only 2–3% during the post restriction periods (2009–2011).
It seems that people are preserving their water efficiency behaviours to some degree established during
the drought periods. Therefore, during the forecasting of the water demand values for the period of
January 2010–September 2011 in the Blue Mountains regions, water use patterns were assumed to be
the same as the period of restriction (i.e., the coefficient of Level 3 dummy variables was considered
for these periods).

The MLR technique develops a model by establishing a linear relationship between two or more
independent variables with a dependent variable. The MLR equation can be expressed as below:

Y = a0 + a1x1 + a2x2 + . . . + aixi + ε (1)

where Y is the dependent variable, a0 . . . ai are the coefficients generally estimated by the least squares
method, x1 . . . xi are the independent variables, i = the number of independent variables and ε is
the error term related to each observation. Normally, the multiple linear regression models can be
of three forms: linear, semi-log and log-log [41]. In this study, the semi-log form was considered to
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develop the MLR models by the seven variable selection methods as the semi-log model was found
to perform better in modelling water demand in the BMWSS as noted by Haque et al. [38]. In the
semi-log multiple linear regression models in this paper, the dependent variable was taken in the
logarithmic form, and the independent variables were incorporated into the model as it lacks any
log transformation. The brief descriptions of the seven variable selection methods are given in the
following sections.

3.1. Forward Selection

The forward selection method starts with no predictor variables in the model. Then, variables are
added, if needed, in the model one by one, and the forward selection method calculates the p-value
(i.e., significance) for each of the variables. If the calculated p-value for the variable is found to be less
than the critical value, then the forward selection method keeps the variable in the model, otherwise
the variable is removed from the model. This is done iteratively until all the variables in the model
have a p-value less than 0.1. In this study, a partial F criterion [31] was used to add or delete variables
in the multiple linear regression models. The partial F statistic was calculated by Equation (2) and
compared with an F distribution to estimate the p-value. A critical threshold p-value of 0.1 was adopted
in this study.

Fi =
(SSEi−1 − SSEi)

SSEi
× n − k − 1

k
(2)

where SSEi−1 and SSEi are the sum of square errors before and after the exclusion of a predictor
variable, n is the number of data points and k is the number of predictor variables.

3.2. Backward Elimination

The backward elimination method starts with all the predictor variables in the model and removes
one variable at a time using a p-value. In the first step, the p-value is calculated for all the predictor
variables, and the variable with the largest p-value that exceeds the critical p-value is deleted. In the
second step, the p-value is calculated for the remaining variables, and again, the variable with the
highest p-value that exceeds the critical p-value is deleted. The process is iterated until the highest
p-value of a variable is less than the critical p-value, indicating that the corresponding variable is not
redundant in the presence of the other variables in the model.

3.3. Stepwise Selection

The stepwise selection method combines certain aspects of forward selection and backward
elimination methods. Like the forward selection method, it starts with no variable in the model,
and variables are added one by one to the model by fulfilling the p criteria (p < 0.1). After a variable is
added in the model, the stepwise selection method examines all the variables in the model and deletes
any variable that show a p-value greater than the critical value. The next variable is added in the model
only after checking the model and deleting any variables if necessary. This process continues till none
of the variables outside the model have a p-value less than the critical value and every single variable
in the model satisfies the p criteria.

3.4. Best Model with Residual Mean Square Error Criteria

If there are k potential predictor variables, then the possible number of prediction models would
be 2k. The number of independent variables considered in this study was 11. In the best model with
MSE criteria, all the possible models (211) were evaluated, and the model with the lowest value of
MSE was selected. The MSE measures the variance for each of the models and is calculated by the
following equation:

MSE =
∑
(
Y − Yp

)2

n − p
(3)
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where Y and Yp are the observed and predicted water demand value, respectively, n is the number of
data points and k is the number of independent variables.

3.5. Best Model with the Akaike Information Criterion

The AIC procedure was proposed by Akaike [42], and it selects the model with the minimum
value of the AIC, which can be calculated by the following equation:

AIC = nlog(MSE) + 2k (4)

3.6. Best Model with Mallow’s Cp Criterion

The Cp criterion was proposed by Mallow [43] for univariate regression analysis, and it selects
the model with the minimum value of the Cp statistic. The Cp statistic can be calculated by the
following equation:

Cp =
SSEk

S2 − (n − 2k) (5)

where S2 is the MSE for the full model (i.e., when all the predictor variables are included in the model)
and SSEk is the residual sum of squares for the subset model that contains k number of predictor
variables in the model.

3.7. Principal Component Analysis

Principal component analysis transforms a data-set of original variables into a new a dataset of
uncorrelated derived variables. These new derived variables are called principal components (PCs),
which are the results of linear functions of the original variables. During the PCA analysis, sums of
the variances are equal for both the original and derived variables. The highest amount of variance
in the data is explained by the first PC, and then, the second PC explains the next highest variance,
and so on, for all the remaining PCs. The value of PC 1 and PC 2 can be obtained by Equations (6)
and (7). The remaining PCs can be obtained in the same way. In PCA analysis, the first few PCs
generally explain most of the variance in the data matrices that can be used to characterize the original
observations [44,45]. The dimensionality of the original dataset can be reduced by considering the first
few PCs in the PCA analysis. More details on the PCA method can be found in Haque et al. [29].

PC1 = a11x1 + a12x2 + . . . + a1kxk =
k

∑
j=1

a1jxj (6)

PC1 = a21x1 + a22x2 + . . . + a2kxk =
k

∑
j=1

a2jxj (7)

where x1, x2,...,xk represent the original variables in the data matrix and aij represent the eigenvectors.

4. Results

Standardized coefficient values of the predictor variables for the developed water demand
forecasting models are presented in Figure 2, and the results from the developed water demand models
are presented in Table 1. Standard coefficients are calculated by subtracting the mean for the variable
and dividing by its standard deviation. This indicates the strength of the effect of each individual
independent variable on the dependent variable. It can be seen that in the stepwise regression model,
a total of five variables out of 11 were found to be statistically significant. The most influential variable
was found to be the CPP variable. The second most important variable was found to be water price and,
thereafter, evaporation. Rainfall and Level 1 dummy variables were found to have minimum influence
on water demand. The rest of the variables, i.e., mean maximum temperature, Level 2 and Level 3
dummy variables, average temperature, solar exposure and number of rainy days, were found to be
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statistically insignificant in stepwise regression analysis. Water price and Level 1 dummy variables
were found to have positive coefficients, which indicates that the water demand will increase with
the increase of these two variables. However, this relationship is irrational as water demand would
go down with an increase of water price and restriction levels. Variables in the forward selection
regression models were found to be the same as the stepwise regression model.

Figure 2. Standardized coefficients of the independent variables for each variable selection method.

In the backward elimination regression model, a total of seven predictor variables out of 11 were
found to be statistically significant. In this model, rainfall, number of rainy days, solar exposure
and Level 1 dummy variables showed no correlation with water demand. Water price and average
temperature were found to have positive and negative coefficients, respectively, which indicates that
water demand would increase with the increase of water price and that water demand would reduce
with the increase of average monthly temperature. However, these relationships are irrational, as in
real life, the behaviour of the water demand pattern is normally opposite these relations. In the best
model with the MSE criterion, all of the variables except solar exposure were found to have some
effects on water demand. Water price, number of rainy days and Level 1 dummy variables were found
to have positive coefficients, which indicates that the water demand would go up with the increase
of these variables. However these relationships are not logically correct in practice as water demand
should go down with the increasing values of these variables. Moreover, the average temperature
variable was found to be negatively correlated with water demand in the MSE model, which is also
not acceptable for the reason described earlier.
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Table 1. Modelling results from the developed models adopting different variable selection methods. CPP, conservation program participation.

Model Stepwise Selection Forward Selection Backward Selection MSE Criterion Mallow’s Cp Criterion AIC Criterion

Dependent variable: log10(PDMWC) log10(PDMWC) log10(PDMWC) log10(PDMWC) log10(PDMWC) log10(PDMWC)
N 82 82 82 82 82 82

Independent variables: Coefficients p-value Coefficients p-value Coefficients p-value Coefficients p-value Coefficients p-value Coefficients p-value

Constant 1.0907 <0.0001 1.0907 <0.0001 1.0495 <0.0001 1.0327 <0.0001 1.0427 <0.0001 1.0495 <0.0001
Rainfall −0.0001 0.0040 −0.0001 0.0040 - - 0.0000 0.2621 - - - -

Mean Max Temp - - - - 0.0189 0.0005 0.0204 0.0019 0.0189 0.0005 0.0189 0.0005
Water Price 0.0744 0.0229 0.0744 0.0229 0.0812 0.0172 0.0904 0.0114 0.0898 0.0111 0.0812 0.0172

Num_Rainy D. - - - - - - 0.0009 0.1650 - - - -
Evaporation 0.0004 <0.0001 0.0004 <0.0001 0.0003 0.0153 0.0002 0.0253 0.0003 0.0185 0.0003 0.0153

Level 1 (dummy) 0.0217 0.0132 0.0217 0.0132 - - 0.0115 0.2792 0.0102 0.3352 - -
Level 2 (dummy) - - - - −0.0311 0.0002 −0.0243 0.0186 −0.0251 0.0148 −0.0311 0.0002
Level 3 (dummy) - - - - −0.0269 0.0094 −0.0204 0.1064 −0.0200 0.1121 −0.0269 0.0094

SolasEx - - - - - - - - - - - -
CPP −0.1243 <0.0001 −0.1243 <0.0001 −0.1201 0.0009 −0.1319 0.0006 −0.1302 0.0006 −0.1201 0.0009

Average Temp - - - - −0.0213 0.0002 −0.0232 0.0011 −0.0213 0.0002 −0.0213 0.0002

Model performance

R2 69.80% 69.80% 74.60% 75.70% 75.00% 74.60%
Adj. R2 67.80% 67.80% 72.20% 72.30% 72.20% 72.20%
RMSE 0.02 0.02 0.019 0.019 0.019 0.019
MAPE 1.331 1.331 1.231 1.214 1.222 1.231

Bold marked values represent statistically insignificant variables, (-) sign indicate no relationship. PDMWC = per dwelling monthly water consumption.
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In the best model with Mallow’s Cp criterion, eight predictor variables out of 11 were found to
be statistically significant. Rainfall, number of rainy days and solar exposure showed no effect on
water demand. This model also showed some irrational relationship like earlier models as water
price and Level 1 dummy variables showed positive correlation with water demand, and average
temperature showed negative correlation. In the best model with the AIC criterion, seven variables
out of 11 were found to be statistically significant. Rainfall, number of rainy days, Level 1 dummy
and solar exposure showed no relation with water demand. This model also had some irrational
characteristics like earlier models. It can be seen in Figure 2 and Table 1 that all of the selection
methods considered different sets of variables to be taken as final input in their regression models.
Moreover, all of them had some irrational relationships with the water demand. The more likely
reason for these irrational relationships is the presence of multicollinearities among the independent
variables. In terms of modelling results’ statistics as shown in Table 1, the best model with the MSE
criterion was found the best among those six models as it had the highest R2 and Adjusted(Adj.) R2

values and the lowest RMSE (root mean square error) and MAPE (mean absolute percentage error)
values. However, the models from 3–6 ((iii) backward elimination; (iv) best model with the criteria of
residual mean square error; (v) best model with Mallow’s Cp criterion; (vi) best model with the Akaike
information criterion (AIC)) all had comparable results with each other.

Table 2 presents the Pearson correlation matrices of the water demand variables, which can be used
to identify the existence of the multicollinearities between the independent variables and the strong and
weak relationship between them. Notable correlation coefficients between the variables are highlighted
in bold. The maximum correlation coefficient was found to be 0.99, which was between monthly
mean maximum temperature and monthly average temperature. The second maximum correlation
coefficient was found between CPP and water price, which was 0.95. Evaporation, mean maximum
temperature and average temperature were found to be highly correlated with solar exposure. Rainfall
and number of rainy days were also found to be highly correlated with each other. These high
correlations among the independent variables indicate the presence of a strong multicollinearity, which
is more likely to produce biased results or unrealistic relationships in the regression analysis.

The results of PCA on the 11 independent variables to explain water consumption level are
presented in Figure 3 and Table 3. Eigen values of each PC’s and cumulative variance explained by the
PC’s are presented in Figure 3, where it can be seen that the first four PC’s explained around 85% of the
variability and had eigenvalues greater than one. Therefore, in this study, PC 1–PC 4 were chosen to
find the important variables to estimate water demand. The ‘bold marked loads’ in Table 3 represent
a high correlation between the variables and corresponding PC.

All the eleven independent variables were incorporated in the four selected PCs. However,
only a few variables indicated high loadings within each PC (Table 3), such as the first PC being
heavily loaded with monthly mean maximum temperature, monthly average temperature, monthly
total evaporation and monthly solar exposure. The second PC was heavily loaded with the number of
rainy days, water price, CPP, Level 2 and Level 3 dummy variables. Similarly, rainfall and number of
rainy days were found to be the most significant variables in the third PC, and Level 1 and Level 2
dummy variables were found to be the most significant variables in the fourth PC. However, since PC
1 is mostly occupied by the temperature-related variables and they are highly correlated with each
other, the variables with the highest loading (mean maximum temperature) were chosen from PC 1 to
include in the regression analysis to avoid the multicollinearity problem. From the correlation matrix
(Table 2), it was found that the CPP and water price were highly correlated. However, both of them
were considered in the regression analysis as predictor variables because of their different natures,
and it could not be identified which variables would have much more effect on water demand from
the PCA analysis (their variable loadings were found to be close to each other).
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Table 2. Pearson correlation matrix of the independent variables.

Variables Rainfall Num_Rainy D. Mean Max
Temp

Average
Temp Evaporation SolarEx Water Price CPP Level 1

(Dummy)
Level 2

(Dummy)
Level 3

(Dummy)

Rainfall 1.00 0.68 0.21 0.27 0.01 0.10 0.14 0.13 −0.05 −0.01 0.11
Num_Rainy D. 1.00 0.26 0.32 0.02 0.20 0.26 0.25 −0.12 −0.12 0.23

Mean Max Temp 1.00 0.99 0.79 0.86 0.07 0.07 0.19 0.00 0.02
Average Temp 1.00 0.75 0.82 0.08 0.07 0.19 −0.01 0.02
Evaporation 1.00 0.86 −0.12 −0.14 0.37 0.07 −0.25

SolarEx 1.00 0.19 0.22 0.10 0.00 0.08
Water Price 1.00 0.95 −0.34 −0.37 0.70

CPP 1.00 −0.37 −0.38 0.80
Level 1 (dummy) 1.00 −0.14 −0.47
Level 2 (dummy) 1.00 −0.59
Level 3 (dummy) 1.00

It can be seen in Table 3 that rainfall had greater variable loading in PC 3 than in the number of
rainy days. Therefore, rainfall was chosen to be in the regression model, and the number of rainy days
was discarded to avoid the multicollinearity problem. After removing the highly correlated variables,
rainfall, mean maximum temperature, CPP, water price, Level 1, Level 2 and Level 3 dummy variables
were considered in the regression analysis. To select the best variable between water price and CPP,
three separate models were developed with the dataset of3 March–9 December and compared with
each other in estimating water demand for the independent data period (10 January–11 September).

• Model 1: Rainfall, mean maximum temperature, CPP, Level 1, Level 2, Level 3
• Model 2: Rainfall, mean maximum temperature, water price, Level 1, Level 2, Level 3
• Model 3: Rainfall, mean maximum temperature, CPP, water price, Level 1, Level 2, Level 3

During the development of the regression model for the above three conditions, the Level 1
dummy variable was found to be statistically insignificant for all of the cases as the p-value of the
regression coefficient was found to be more than 0.4 (Table 4). Therefore, the Level 1 dummy variable
was discarded from the above three models. Simulation results of Models 1, 2 and 3 for the independent
data period are presented in Figure 4. It can be seen that the model with water price (Model 2) produced
better simulation results than the other two models. Even Model 3 (with water price and CPP together)
was found to produce poorer results than Model 1 and Model 2 due to the effect of the multicollinearity
problem of the variables. These results indicate that inclusion of many variables in the model does
not necessarily increase the model efficiency. In addition, Model 2 did not show any counter-intuitive
relation with the temperature and water price variables, as can be seen in Table 4.

Figure 3. Eigenvalues and cumulative variability of the PC’s.
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Table 3. Variable loadings (correlations between original variables and the first four PCs).

Variables PC 1 PC 2 PC 3 PC 4

Rainfall 0.35 0.33 0.75 0.24
Num_Rainy D. 0.34 0.53 0.62 0.21

Mean Max Temp 0.97 −0.01 −0.07 −0.08
Average Temp 0.96 0.03 −0.01 −0.04
Evaporation 0.88 −0.27 −0.22 −0.04

SolarEx 0.92 0.08 −0.18 −0.18
Water Price 0.00 0.86 −0.13 −0.07

CPP 0.02 0.92 −0.18 −0.10
Level 1 (dummy) 0.24 −0.49 −0.18 0.71
Level 2 (dummy) 0.01 −0.54 0.42 −0.62
Level 3 (dummy) −0.05 0.88 −0.23 −0.03

Table 4. Modelling results by the developed models adopting PCA analysis.

Model Model 1 Model 2 Model 3

Dependent variable: log10(PDMWC) log10(PDMWC) log10(PDMWC)
N 82 82 82

Independent variables: Coefficients p-value Coefficients p-value Coefficients p-value

Constant 1.1368 0.0000 1.1461 0.0000 1.1139 0.0000
Rainfall −0.0001 0.0020 −0.0001 0.0030 −0.0001 0.0020

Mean Max Temp 0.0025 0.0000 0.0025 0.0000 0.0025 0.0000
Water Price −0.0292 0.0760 0.0451 0.2660

CPP −0.0422 0.0150 −0.0866 0.0480
Level 1 (dummy) 0.0099 0.4230 0.0061 0.6210 0.0137 0.2850
Level 2 (dummy) −0.0285 0.0130 −0.0334 0.0040 −0.0240 0.0470
Level 3 (dummy) −0.0345 0.0090 −0.0460 0.0000 −0.0273 0.0590

Model performance

R2 63% 68% 66%
Adjusted(Adj.) R2 35% 42% 39%

Figure 4. Simulation results by Models 1, 2 and 3 for the period of 10 January–11 September.



Water 2018, 10, 419 12 of 15

Finally, the important predictor variables for estimating water demand in the BMWSS were found
to be monthly total rainfall, monthly mean maximum temperature, water price and Level 2 and Level 3
water restrictions. The comparison of the forecasted results by all the developed models (i.e., stepwise,
forward, backward, MSE, Mallow’s Cp, AIC and selection of variables after PCA (i.e., Model 2)) for
the independent data period is presented in Figure 5, which also shows that the regression model
with the selected independent variables performed better than all the other models. These results
indicate that the selected independent variables are capable of simulating monthly water demand
with a higher accuracy, and the developed model is largely free from the multicollinearity problem.
This also indicates that PCA performed better in selecting the independent variables than the other
methods adopted in this study, which has the potential to produce forecasting results with better
accuracy. This method is easy to implement and can be used in other water supply systems around the
world to identify the influential water demand variables and estimate water demand.

Figure 5. Comparison of modelled results of all the developed models (i.e., stepwise, forward,
backward, MSE, Mallow’s Cp, AIC and selective variable regression (Model 2)).

5. Conclusions

Seven variable selection methods in the context of linear regression (i.e., stepwise selection,
forward selection, backward elimination, MSE criterion, Mallow’s Cp criterion, AIC criterion and
principal component analysis (PCA)) were compared for long-term water demand forecasting for
the Blue Mountains Water Supply System located in New South Wales, Australia. The results
showed that different variable selection methods resulted in different sets of predictor variables.
Moreover, some selection methods (e.g., forward selection and backward elimination) resulted in
a set of irrational variables and regression equations. On the contrary, when the predictor variables’
datasets were preprocessed by PCA, the developed water demand model produced better simulation
results of the water demand than the other developed models. Moreover, the developed model after
doing PCA analysis did not show any counter-intuitive relationship with the independent variables.
The results also indicated that PCA has the potential to identify the influential variables in water
demand modelling in a better way than the other statistical methods adopted in this study. However,
the application of variable selection methods needs to be carefully scrutinized in the case of the
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presence of high degree of multicollinearities among the predictor variables. The findings of this paper
are directly applicable to the study area in Australia; however, the developed technique can be adapted
to other countries having different water use and climatic characteristics to develop water demand
forecasting models.
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