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Abstract: Regime channels are important for stable canal design and to determine river response
to environmental changes, e.g., due to the construction of a dam, land use change, and climate
shifts. A plethora of methods is available describing the hydraulic geometry of alluvial rivers in the
regime. However, comparison of these methods using the same set of data seems lacking. In this
study, we evaluate and compare four different extremal hypothesis-based regime methods, namely
minimization of Froude number (MFN), maximum entropy and minimum energy dissipation rate
(ME and MEDR), maximum flow efficiency (MFE), and Millar’s method, by dividing regime channel
data into sand and gravel beds. The results show that for sand bed channels MFN gives a very high
accuracy of prediction for regime channel width and depth. For gravel bed channels we find that
MFN and ‘ME and MEDR’ give a very high accuracy of prediction for width and depth. Therefore
the notion that extremal hypotheses which do not contain bank stability criteria are inappropriate for
use is shown false as both MFN and ‘ME and MEDR’ lack bank stability criteria. Also, we find that
bank vegetation has significant influence in the prediction of hydraulic geometry by MFN and ‘ME
and MEDR’.
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1. Introduction

An alluvial channel, either artificial or natural, persists to deform its boundary by itself while
transporting water and sediments. Nevertheless, if water and sediment rate remain constant,
the deformation ceases after a certain period to achieve regime state or dynamic equilibrium or
quasi-equilibrium [1]. In regime state, the hydraulic geometry characteristics of the channel remain
invariant with time, thus having many economic and ecological benefits. Regime channels have been
used for stable canal design [2,3] and to determine river response to environmental changes like climate
shifts, construction of dams, land use changes, and river training [4–7].

A plethora of methods is available describing the hydraulic geometry of alluvial rivers in the
regime. American Society of Civil Engineers (ASCE) Task Committee [8] has grouped regime methods
into empirical (regime theory and power law), rational, or mechanistic and extremal hypotheses.
Review of regime methods can be found in [9–13]. There is progressive development in the methods
where old regime methods act as stepping stones for new methods which try to define dominant
physical processes forming the regime channels. For example, in the development of empirical methods,
Kennedy [14] was the first to observe that stable canals, neither aggrading nor degrading, exhibited
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power-law relations between velocity and depth. Subsequently, Lacey [15] incorporated boundary
materials in Kennedy’s relations, while Blench [16] further developed Lacey’s method by defining
separate factors describing bed and bank composition. While previous empirical regime equations were
only for sand bed channels, Hey and Thorne [2] and Davidson and Hey [17] extended regime equations
to gravel bed channels. Similarly, in rational methods, Lane [18] gave the tractive force approach to
predict regime channels but could not explain sediment transport in the channel. This deficiency was
solved by Parker [19,20] by postulating lateral diffusion of suspended sediment and then used single
perturbation techniques to calculate regime channel characteristics. Ikeda et al. [21] modified Parker’s
model for heterogeneous materials and Ikeda and Izumi [22] for vegetation influence.

Empirical regime methods have many drawbacks in that they are site-specific and dimensionally
inhomogeneous [8]. Therefore, their validity is constrained to basins and data where they are
developed. Farias et al. [23] have shown that regime methods based on extremal hypotheses predict
regime channels better than empirical methods. Similarly, rational methods also have many drawbacks,
for example, only regime channel depth can be readily determined from Parker’s model, which yields
larger depth for smaller channels and smaller depth for larger channels. Moreover, Nanson and
Huang [13] argued that rational regime models can only be used for stable profiles at an individual
cross-section of a channel. Of late, Khodashenas [24] found that rational methods did not give
satisfactory results in predicting regime channels and proposed an additional study of these methods.

Although extremal methods have been called the illusion of progress [25], they have been used
for stable canal design and to determine channel pattern [26], river response to land use changes,
and channel changes [4], and to predict the equilibrium geometry of a river [27]. However, which
extremal hypothesis should be used remains a topic of debate because there is no convincing theoretical
explanation for any of the hypotheses [13,28].

Extremal methods or optimality theory is based on the assumption that regime state is achieved
when a certain energy or mechanistically related parameter, K∗, is either maximized or minimized [1].
Generally regime channel characteristics BR, hR and SR are determined by simultaneously solving the
following three equations [1]:

Q = fQ(BR, hR, SR, cR) (Resistance equation) (1)

Qs = fQ(BR, hR, SR, cR) (Bed load transport equation) (2)

dK∗ = 0 (Optimization criteria) (3)

where Q is the bankfull discharge, BR is the regime channel width, hR is the regime channel depth, SR

is the regime channel slope, Qs is the bed load, and cR is the Chézy resistance coefficient at regime state
defined by cR = fc(hR, SR). Based on the parameter of optimization K∗ the following extremal methods
are found in the literature: maximum sediment transport capacity (MSTC) [29–31], minimum stream
power (MSP) [26,32], minimum energy dissipation rate (MEDR) [33], minimum unit stream power
(MUSP) [34], maximum friction factor (MFF) [35], and maximum flow efficiency (MFE) [27,28,36,37].

Though developed by different researchers, some of these methods tend to be equivalent.
For example, MSP and MSTC give identical results [28,38]. MFE is the general case of MSP and
MSTC [15,27,28]. MEDR is the general case of MSP and MUSP [35]. Davies and Sutherland [35] have
shown that under certain circumstances, MFF is the general case of MEDR, MSP, and MUSP. In our
study we have taken MFE as a typical representative of these methods because it has been widely used
for regime channel computation [27] and to determine river channel pattern [13]. Moreover, MFE has
been proven using the principle of least action [28].

In other developments, MSTC, MSP, MEDR, MUSP, MFF, and MFE have been criticised by
Millar and Quick [38], Eaton and Millar [39], and Millar [40] for predicting very low regime channel
width/depth ratios and thus resulting low values for regime channel width BR and high values for
depth hR. For example, MFE yields a width/depth ratio of 2.5 while MEDR yields 2 [40]. This low
prediction of width/depth ratio has been attributed to lack of bank stability or bank strength criteria
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in their formulation [38–40]. Millar and Quick [38] thus developed a model which incorporated bank
stability criteria in the model of MSTC which has the form

Q = fQ(BR, hR, SR, cR) (Resistance equation) (4)

Qs = fQ(BR, hR, SR, cR) (Bed load transport equation) (5)

dK∗ = 0 (Optimization criteria) (6)

τbank ≤ τbankc (Bank stability criteria) (7)

where τbank is the shear stress of the bank, and τbankc is the critical shear stress of the bank. Eaton and
Millar [39], using the model of Millar and Quick [38], have shown that regime models that are not
constrained by bank stability are only suitable for highly resistant boundaries. Millar [40] again refined
the model of Millar and Quick [38] with a different sediment transport equation and dimensionless
form of MSTC. The model developed by Millar [40] is named as Millar’s method for this article.

In contrast to MSTC, MSP, MEDR, MUSP, MFF, and MFE, minimization of Froude number (MFN)
uses a width equation instead of a sediment transport equation. Yalin and Da Silva [1] contend that
the value of bed load Qs in Equation (2) is not known beforehand except in controlled laboratory
experiments. Moreover, there is large uncertainty in the calculation of Qs [26,41]. Thus, they developed
a width equation by using dimensional analysis and calculated regime channel characteristics and
incorporating a resistance equation, width equation, and an optimization criteria.

Singh et al. [42], influenced by the work of Deng and Zhang [43], developed a regime method by
combining principles of maximum entropy and minimum energy dissipation rate (ME and MEDR).

The purpose of this work is to evaluate and compare four different extremal hypothesis-based
regime methods, namely minimization of Froude number (MFN), maximum entropy and minimum
energy dissipation rate (ME and MEDR), maximum flow efficiency (MFE), and Millar’s method,
by dividing the regime dataset into sand and gravel. All of the four methods are different in their
procedure to compute regime channel characteristics which are described in Section 2. The dataset is
divided into sand and gravel bed for evaluation.

2. Description of Methods

2.1. Maximum Flow Efficiency (MFE)

Huang and Nanson [28,36] defined MFE as maximum sediment transport capacity per unit
available power and expressed as

Max Fe(ζ) = Max
QS
Ωa (ζ) (8)

where Fe is a measure of flow efficiency, Ω is the total energy of flow in the form of the product of
flow discharge and energy slope (=γQS, where γ is the specific weight of water and Q is the bank full
discharge), ζ is the width to depth ratio, and α is an exponent of less than 1.0 and also varies with bed
load transport equations adopted.

Using the Manning–Strickler flow resistance Equation (9) and Meyer–Peter and Müller bed load
Equation (10) modified by MFE theory, Huang et al. [27] derived regime channel width BR given by
Equation (13) and depth hR given by Equation (14) using MFE as an optimization criteria. This method
is typically representative of methods using bed load transport to calculate regime channel.

V = cf
√

gRS(
R

D50
)

1/6
(Flow resistance equation) (9)
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where V is the flow velocity (m/s), g is acceleration due to gravity (m/s2), R is the hydraulic radius
(m), S is the slope, D50 is median bed sediment size (m), and cf is the frictional coefficient, which has

relation with Manning’s coefficient (n), given by cf =
D50

1/6

ng1/2 .

∅ = cb(τ
∗
b − τ∗c )

β (Bed load equation) (10)

where ∅ is the dimensionless sediment transport rate expressed by Equation (11), cb is the coefficient
whose value is 6, τ∗b is a dimensionless flow strength parameter given by Equation (12), τ∗c is the
dimensionless critical shear stress of flow for the incipient motion of bed sediments whose value is
0.047, and β is an exponent whose value is 5/3.

∅ =
qb

γs

√(
γs
γ − 1

)
gD3

50

(11)

τ∗b =
τo

(γs − γ)D50
(12)

where qb is the rate of bed load discharge in dry volume per unit channel width, τo is the shear stress
of the flow and γs is the specific weight of the sediments.

BR = (
Q

Cf
√

gS
)

3
8
D50

1
16 ζm

3
8 (ζm + 2)

1
4 (13)

hR = (
Q

Cf
√

gS
)

3
8
D50

1
16 ζm

−13
8 (ζm + 2)

1
4 (14)

where ζm is the optimum channel width/depth ratio which can be determined by solving the
Equation (15)

k2
ζm

3
8

(ζm + 2)
3
4
− τ∗c =

3β(ζm − 2)τ∗c
6(1 + β) + (5− 3β)ζm

(15)

The maximum bed load discharge can be determined by Equation (16).

Qs = k1ζ
3
8 (ζ+ 2)

1
4

[
k2

ζ3/8

(ζ+ 2)3/4 − τ∗c

]β
(16)

where k1 and k2 are coefficients given by Equations (17) and (18), respectively.

k1 = cb

√(
γs
γ
− 1
)

gd25/16(
Q

cf
√

gS
)

3/8
(17)

k2 =
S13/16

(γs
γ − 1)d15/16 (

Q
cf
√

g
)

3/8
(18)

2.2. Minimization of Froude Number (MFN)

For calculating regime channel characteristics BR and hR, Yalin and Da Silva [1] used resistance
Equation (19), width Equation (20), and minimization of Froude number Equation (21) as an
optimization criteria. The optimization criteria of minimization of Froude number was derived
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from principles of thermodynamics. In contrast to other extremal hypotheses, the bed load transport
equation is supplanted by a width equation.

(Fr)R =
Q2(

gB2
Rh3

R

) (Resistance equation) (19)

BR = αB

√
Q

v∗cr
(Width Equation) (20)

(Fr)R = c2
RSR → min(Minimum Froude number) (21)

The detailed procedure for solving Equations (19)–(21) is shown in [1] (p. 95).

2.3. Maximum Entropy and Minimum Energy Dissipation Rate (ME and MEDR)

Singh et al. [44] used two hypotheses for calculating stable hydraulic geometry. The first
hypothesis is that “the spatial variation of the stream power of a channel for a given discharge
is accomplished by the spatial variation in channel form (flow depth and channel width) and hydraulic
variables, including energy slope, flow velocity, and friction”. Using this hypothesis, they derived the
following relations:

Pn =
2nγQ3

B2h10/3
[dn/dx]

[d(SP)/dx]
(22)

PB =
2n2γQ3

B3h10/3
[dB/dx]

[d(SP)/dx]
(23)

Ph = − 10γn2Q3

3B2h13/3
[dh/dx]

[d(SP)/dx]
(24)

where Pn, PB and Ph are the proportions of the adjustment of stream power by friction, channel width,
and flow depth, respectively, and n, γ, Q, SP, h, B and x are Manning’s roughness coefficient, weight
density of water, flow discharge, stream power, flow depth, channel width, and the direction of flow,
respectively. Then they applied the second hypothesis that is the principle of maximum entropy
and minimum energy dissipation to show Pn = PB = Ph, which resulted in four sets of possibilities;
(1) Pn = PB, (2) Ph = PB, (3) Pn = Ph, and (4) Pn = PB = Ph. These four sets of possibilities were solved
to obtain a family of hydraulic geometry relations. The calibration of derived hydraulic geometry
relations and morphological coefficients determination were carried out for an assumed V-shaped
channel cross-section. It was found that possibility (2) Ph = PB, is most prevalent in nature and it was
used to validate the hypotheses. The stable hydraulic relations from possibility (2) Ph = PB are

BR = 0.50z
Q0.462

S0.231 (25)

hR = 1.52(
n
z
)

0.6 Q0.323

S0.161 (26)

where Q is the bankfull discharge(m3/s), z is the stable side slope, and n is the Manning’s coefficient.

2.4. Millar’s Method

Millar and Quick [38] incorporated bank stability criteria, which are influenced by vegetation, in
the model of MTC. They found that bank stability criteria have a significant influence on the hydraulic
geometry of the channel with the vegetated channel being narrower, deeper, and less steep. Based
on the model of Millar and Quick [38], Eaton and Millar [39] argued that extremal models which do
not incorporate bank stability criteria are inappropriate for use. Millar [40] derived stable hydraulic
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geometry characteristics BR, hR in dimensionless form using maximum sediment-transport efficiency
as optimization criteria with consideration of dimensionless bankfull discharge (Q∗), slope (S), and
bank strength (µ′) as independent variables. The relations have the form

B∗R = 28Q∗0.7S0.6µ′−1.10 (27)

h∗R = 0.125 Q∗0.16S−0.62µ′0.64 (28)

BR

hR
= 0.155Q∗0.53S1.23µ′−1.74 (29)

where B∗R is the dimensionless regime channel width (B∗R = BR/D50), h∗R is the dimensionless regime
channel depth (h∗R = hR/D50), Q∗ is dimensionless bankfull discharge given by Equation (30), S is the
slope, and µ′ is the relative bank strength defined as the ratio of critical shear stress for bank to bed
sediments given by Equation (31)

Q∗ =
Q

D2
50
√

gD50(s− 1)
(30)

µ′ =
τbankc
τbedc

(31)

where s is the specific gravity of the sediment particle (s = 2.65), τbankc is the dimensional critical stress
(Pa) for the bank sediments, and τbedc is the dimensional critical stress (Pa) for the bed sediments.

3. Data Selection

Regime channel data for sand bed, in total 266, were assembled from [27,45–47]. Each regime
channel entailed observed values of bankfull discharge Q (m3/s), median bed sediment size D50

(mm), width B (m), depth h (m), and slope S. Ackert [46] collected regime data from various journals
and technical reports. These data were from both laboratory and field channels. Huang et al. [27]
collected regime channel data from six different reaches of the middle and lower Yangtze river.
Huang et al. [27] used these data to test the predictive capability of MFE. Valentine et al. [46] and
Wolman and Brush Jr. [47] collected regime data from self-formed laboratory channels. The description
of the sand bed data is shown in Table 1.

Table 1. Description of the Regime Data.

Observed Variables Range Type of Bed References

Bankfull Discharge Q, m3/s 0.004–46,000
Median Bed Sediment Size D50, mm 0.07–2

Width B, m 0.35–2190 Sand [27,45–47]
Depth h, m 0.02–23
Slope S, % 0.78–0.00152

Bankfull Discharge Q, m3/s 0.697–424
Median Bed Sediment Size D50, mm 13.9–175.8

Width B, m 2.32–83.8 Gravel [2,17,48,49]
Depth h, m 0.201–3.21
Slope S,% 0.088–2.6

Vegetation Type I, II, III, IV, Thin, Thick

Regime channel data for gravel bed, in total 127, were collected from [2,17,48,49]. Each regime
channel data entailed observed values of bankfull discharge Q (m3/s), median bed sediment size D50

(mm), width B (m), depth h (m), and slope S. In addition to these observations, information about bank
vegetation was also present. Hey et al. [2] and Davidson and Hey [17] divided the bank vegetation
into four different classes, namely Type I, which represented grassy banks with no trees or bushes;
Type II, 1–5% tree/shrub cover; Type III, 5–50% tree/shrub cover; and Type IV, greater than 50%
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tree/shrub cover. Similarly, Andrews [48] divided the bank vegetation into thin and thick categories.
The description of the gravel data is shown in Table 1.

In addition to the observed values, some more parameters like Manning’s n and critical side
slope z are needed in the methods ‘ME and MEDR.’ These were calculated based on observed values.
For example, Manning’s n was calculated using observed bankfull discharge, width, depth, and
slope [39] while critical side slope z was determined as in [43].

4. Results and Discussion

4.1. For Sand Bed

Predicted regime channel widths BR are plotted against observed widths BR, with
log10–transformation applied to both, in Figure 1, and predicted regime channel depths hR are plotted
against observed depths hR in Figure 2. Similarly, the disparity ratio, defined as the ratio of predicted
to observed value, for width BR and depth hR, is plotted against bankfull discharge in Figures 3 and 4,
respectively. The data used are from sand bed channels obtained from [27,45–47]. Of the four methods,
Miller’s method could not be used because it uses a bed load equation developed only for gravel beds.
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Concordance correlation coefficient (CCC) [50] is used to measure the agreement between
predicted and observed values. The value of CCC lies between 0 and 1. Mathematically, CCC is
given by

CCC =
2σ1σ2σ12

σ2
1 + σ2

2 + (µ1 − µ2)
2 (32)

where σ1 is the standard deviation of the observed values, σ2 is the standard deviation of the predicted
values, µ1 is the mean of the observed values, µ2 is the mean of the predicted values, and σ12 is
the Pearson correlation coefficient between the observed and predicted values. In addition to CCC,
the percentages of predicted widths and depths falling under a specific error range (say ±30%) is
calculated to access the accuracy of the methods. This is important because sediment-transport-related
data inevitably plot with a certain degree of scattering along a perfect agreement line. The statistics
computed for the three methods are shown in Table 2.
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Table 2. Statistics computed for MFE, MFN, and ‘ME and MEDR’ based on sand bed data.

Method
CCC Width BR Depth hR Predicted

Width BR Depth hR
30% Error

Range
50% Error

Range
30% Error

Range
50% Error

Range
BR
hR

MFN 0.96 0.96 59% 75% 72% 87% 6.8–63
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Figure 4. Scatter plot of disparity ratio hR against bankfull discharge for sand bed channels [27,45–47].
(A) MFN; (B) MFE; (C) ME and MEDR. Same legend as on Figure 1 applies here.

4.1.1. Regime Channel Width

The predicted widths by MFN are well scattered around the perfect agreement line y = x
(Figure 1A) with CCC value of 0.96. MFE (Figure 1B) and ‘ME and MEDR’ (Figure 1C) underpredict the
regime channel width when the observed width is less than 1m. The CCC value for MFE is 0.95, and
that for ‘ME and MEDR’ is 0.95. Also, the percentage of predicted width for MFN falling within ±30%
error range is 59% while that for MFE is 26% and ‘ME and MEDR’ is 44% (see Table 2). Similarly, the
predicted width to depth ratio for MFN is in the range of 6.8–63 while that for MFE is 2–154, and ‘ME
and MEDR’ is 4.2–61 (see Table 2). It is clear from observation of the figures and statistics that MFN
gives high accuracy for prediction of regime channel width.

4.1.2. Regime Channel Depth

The predicted depths by MFN are well scattered around the perfect agreement line y = x
(Figure 2A) with CCC value of 0.96. Also, the percentage of predicted depths for MFN falling
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within ±30% error range is 75%. MFE (Figure 2B) and ‘ME and MEDR’ (Figure 2C) overpredict the
regime channel depth when the observed width is less than 0.1 m. The CCC value for MFE is 0.95,
and that for ‘ME and MEDR’ is 0.95. Also, the percentage of predicted depth within ±30% error range
for MFE is 56% while that for ‘ME and MEDR’ is 70% (see Table 2). It is clear from observation of the
figures and statistics that MFN gives high accuracy for prediction of regime channel depth.

4.1.3. Underprediction of Width and Overprediction of Depth by MFE

MFE underpredicts the width and overpredicts the depth for certain data points portrayed by +,
∆ (Figures 1B and 2B). These data points are from [46,47]. Such results occurred because of these data
points’ width/depth ratio ζm → 2 in Equation (15), which also gives bed load Qs → 0 in Equation (16).
The width/depth ratio ζm → 2 because for these data points, the shear stress on the bed at regime
state is either equal to or less than the critical shear stress for the incipient motion. This is the result of
the linear relationship between shear stress and the width/depth ratio [51] given by

τo − τc

τc
= χ[ζm − (ζm)c] (33)

where χ is a coefficient, (ζm)c is the width/depth ratio at the critical state of motion whose value is 2.
However, Eaton and Millar [39] and Millar [40] have argued that this low prediction of width/depth
ratio is due to lack of bank strength or bank stability criteria in the formulation of MFE.

4.2. For Gravel Bed

Predicted regime channel widths BR are compared with observed width with log10–transformation
applied to both in Figure 5 and predicted regime channel depths hR are compared with observed
depth in Figure 6. Similarly, the disparity ratio for width BR and depth hR is plotted against bankfull
discharge in Figures 7 and 8, respectively. All of the four methods are applicable here. Regime data
compiled by Hey et al. [2], Andrews [48], Davidson and Hey [17], and Mueller et al. [49] are used.
The vegetation classes as described in Section 3 are again divided into two categories, namely sparse
vegetation which contains Type I, II, and Thin, and dense vegetation which contains Type III, IV, and
Thick, as in [40]. It is essential to divide the regime data into sparse and dense vegetation classes
because bank strength µ′, which depends upon vegetation density in Millar’s method, is difficult to
measure. However, for sparse vegetation class, µ′ = 1 can be considered [40]. Here only the sparse
vegetation category which consists of 82 sets of regime data is used.
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Regime Channel Width and Depth

MFE gives the poorest prediction for regime channel width and depth with CCC values for width
0.39 and depth 0.52. Similarly, the percentage of predicted width and depth within ±30% error range
is 3% and 3%, respectively. Also, the predicted width to depth ratio is very narrow and is in the range
of 2–12. Millar’s method gives a moderately good prediction for regime channel width and depth with
CCC values for width 0.83 and depth 0.85. The percentage of predicted width and depth within ±30%
error range is 57% and 66%, respectively. The predicted width to depth ratio by Millar’s method is in
the range of 4–130. MFN and ‘ME and MEDR’ give an excellent prediction for regime channel width
and depth. For MFN the CCC value for width is 0.92 and for depth is 0.91, while for ‘ME and MEDR’
the CCC value for width is 0.94 and for depth is 0.93. Similarly, the percentage of predicted width and
depth within ±30% error range is 70% and 82%, respectively, for MFN while for ‘ME and MEDR’ it is
60% and 93%, respectively.

MFE underpredicts the width and overpredicts the depth (Figures 5B and 6B). The predicted
width/depth ratio is in the range of 2–12 (see Table 3) which is very low for gravel bed channels
because natural gravel tends to have a width/depth ratio greater than 10 [40]. This low prediction of
width/depth ratio may be due to a linear relationship between shear stress and width/depth ratio as
governed by Equation (33). When the shear stress on the bed surface decreases, then accordingly the
width/depth ratio decreases. Nevertheless, Eaton and Millar [39] and Millar [40] have asserted that
this low prediction of width/depth ratio is because MFE does not account for bank stability or bank
strength criteria in its formulation. Moreover, they argue that optimization or extremal models which
are not comprised of bank stability are inappropriate for use in the prediction for regime channels.

Table 3. Statistics computed for Millar’s method, MFE, MFN, and ‘ME and MEDR’ based on sparse
gravel data.

Method
CCC Width BR Depth hR Predicted

Width BR Depth hR
30% Error

Range
50% Error

Range
30% Error

Range
50% Error

Range
BR
hR

Millar’s
method 0.83 0.85 57% 76% 66% 84% 4–130

MFE 0.39 0.52 3% 16% 3% 11% 2–12
MFN 0.92 0.91 70% 98% 82% 100% 12.5–28.9

ME and MEDR 0.94 0.93 60% 86% 93% 100% 11.4–75

However, methods of MFN and ‘ME and MEDR’ do not show such bias towards low prediction of
width/depth ratio (see Table 3.) and also do not account for bank strength. The predicted width/depth
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ratio is in the range of 12.5–28.9 for MFN and 11.4–75 for ‘ME and MEDR’. This may be because MFN
and ‘ME and MEDR’ both lack the bed load transport equation as a contrast to MFE for computation of
regime channel. MFN uses a width equation instead of the sediment transport equation, while ‘ME and
MEDR’ use bankfull discharge, slope, Manning’s coefficient (n), and side slope (z) to calculate regime
channel dimensions. The results obtained by MFE and ‘ME and MEDR’ can also be corroborated by
empirical regime relations for gravel bed rivers established by Davidson and Hey [17]. They found that
regime channel width and depth are independent of bed load but influenced by vegetation. Thus the
claim of Eaton and Millar [39] that regime models not comprised of bank strength are inappropriate for
use is found to be false because both MFN and ‘ME and MEDR’ give a very high accuracy of prediction
for regime channel width and depth.

4.3. Influence of Vegetation in Hydraulic Geometry

Bank vegetation has significant influence on the hydraulic geometry relations of the alluvial
channels [2,39,40,48,52]. Bank vegetation affects the coefficient of the hydraulic geometry relations,
not the exponent. Strong bank vegetation results in narrow, deep, and steep alluvial channels [10].

In order to show the influence of the vegetation on the regime models of MFN and ‘ME and
MEDR’, a similar framework as in [40] is used here. The disparity ratio for width BR and depth hR is
plotted against bankfull discharge in Figures 9 and 10, respectively. Millar [40] used bank strength
µ′ = 1 in Equations (27) and (28) to calculate regime channel widths and depths and subsequently
found that predicted regime channel widths for the denser vegetation class were wider than their
observed counterparts. The predicted depths were shallower than their observed counterparts. These
results are vivid in Figure 9A in which the BR disparity ratio for width is greater than 1 for denser
vegetation and in Figure 10A, the hR disparity ratio for width is less than 1 for denser vegetation.
MFN (Figures 9B and 10B) and ‘ME and MEDR’ (Figures 9C and 10C) also give similar results. This
signifies that regime models of MFN and ‘ME and MEDR’ should also incorporate bank vegetation in
their computation.Water 2018, 10, x FOR PEER REVIEW  15 of 19 
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5. Conclusions

Four extremal hypothesis-based regime methods, namely, minimization of Froude number (MFN),
maximum flow efficiency (MFE), maximum entropy and minimum energy dissipation rate (ME and
MEDR), and Millar’s method, are evaluated and compared by dividing regime channel data into sand
and gravel beds. The regime channel data are obtained from various published journal articles.

For sand bed channels, MFN gives a very high accuracy of prediction for regime channel width
and depth. This method can be used for river restoration works or to determine channel changes in
rivers due to natural or anthropogenic activities. Also, MFN provides a unique advantage among other
extremal methods in that bed load is not required to compute regime channel width and depth for
both sand and gravel beds. It is important to know that bed load is challenging to measure [40]. MFN
requires only bankfull discharge and bed sediment size to compute regime channel characteristics.

The claim that regime models which do not explicitly account for bank strength or bank stability
are inappropriate for use is shown false since both MFN and ‘ME and MEDR’ give a very high accuracy
of prediction for regime channel width and depth for gravel bed channels. Therefore, these two
methods can be used for regime channel computation when the bank is unvegetated and consists
of loose gravel (i.e., Bank strength µ′ = 1). However, when the bank has a significant amount of
vegetation, these two methods will give erroneous results.
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Predicted regime channel widths and depths obtained by MFN and ‘ME and MEDR’ are influenced
by bank vegetation. However, these two methods do not account for vegetation influence in their
computation. Additional study is required to account for vegetation influence in both MFN and ‘ME
and MEDR’. For example, width equation can be redefined in MFN to account for vegetation.

More regime data for both sand and gravel bed is required to evaluate regime methods so attempts
should be made to collect data from a large number of sources. This is because regime channel data
from the individual source are not fully reliable [1] (p. 93).
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