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Abstract: Climate change and urbanization have led to an increase in the frequency of extreme water
related events such as flooding, which has negative impacts on the environment, economy and
human health. With respect to the latter, our understanding of the interrelationship between flooding,
urban surface water and human health is still very limited. More in-depth research in this area is
needed to further strengthen the process of planning and implementation of responses to mitigate
the negative health impacts of flooding in urban areas. The objective of this paper is to assess the
state of the research on the interrelationship between surface water quality, flood water quality and
human health in urban areas based on the published literature. These insights will be instrumental in
identifying and prioritizing future research needs in this area. In this study, research publications
in the domain of urban flooding, surface water quality and human health were collated using
keyword searches. A detailed assessment of these publications substantiated the limited number of
publications focusing on the link between flooding and human health. There was also an uneven
geographical distribution of the study areas, as most of the studies focused on developed countries.
A few studies have focused on developing countries, although the severity of water quality issues is
higher in these countries. The study also revealed a disparity of research in this field across regions
in China as most of the studies focused on the populous south-eastern region of China. The lack of
studies in some regions has been attributed to the absence of flood water quality monitoring systems
which allow the collection of real-time water quality monitoring data during flooding in urban areas.
The widespread implementation of cost effective real-time water quality monitoring systems which
are based on the latest remote or mobile phone based data acquisition techniques is recommended.
Better appreciation of health risks may lead to better flood risk management. In summary, there is
still a limited understanding of the relationship between urban surface water quality, flood water
quality and health impacts. This also holds true for Chinese cities. Given the widespread and frequent
occurrence of urban flooding, further research into this specific cross-cutting field is mandatory.

Keywords: urban water quality; floodwater; human health; water quality monitoring and
assessment system

1. Introduction

Urban flooding occurs when surface water cannot be drained quickly through drainage systems,
streams and rivers. A reduction in permeability, which is a result of an increase of impervious

Water 2018, 10, 240; doi:10.3390/w10030240 www.mdpi.com/journal/water

http://www.mdpi.com/journal/water
http://www.mdpi.com
https://orcid.org/0000-0003-3785-7713
https://orcid.org/0000-0003-0907-1764
http://dx.doi.org/10.3390/w10030240
http://www.mdpi.com/journal/water


Water 2018, 10, 240 2 of 18

surface area (i.e., road, building, parking lot, sidewalk), increases run off, peak discharge and flood
frequency [1]. The analysis of urban flood risk is mostly based on an assessment of the underlying
hydrological and physical features of an urban area. For example, flood risk maps are usually drawn
from an assessment of the recorded and/or predicted rainfall intensities and frequencies in conjunction
with a detailed land-use analysis revealing relevant spatial information of the urban fabric [2–4].
In these risk analyses, it is common practice to use the estimated damage due to flooding as a proxy [5].
The estimated flood damage includes the direct and ephemeral impact of flooding, and does not
include the associated human health influences which are perennial and implicit.

The quality of flood water is generally overlooked, even in comprehensive flood risk assessments
such as the European Union directive on the assessment and management of flood risks [6].
For example, in Section 4, Article 6, Chapter III of the EU directive 2007/60/EC [6] on the assessment
and management of flood risk, the various aspects of flooding pertain to flood extent, water depth,
and flow velocity, whereas there is no mention of flood water quality [6]. This is due to the fact that
deterioration of surface water quality is considered acceptable as an exception during flooding [7].
Floods also endanger human health through wound infections, diarrheal illness and post-traumatic
stress disorder in evacuees [8]. This paper aims to collate and analyze research papers which address
the link between urban flooding, urban water quality and public health.

The paper presents an overview and a comparison of studies on public health, urban flooding
and surface water quality from a global perspective, but with emphasis on China. The latter is relevant
in the context of contemporary flood resilient city initiatives such as the “Sponge Cities” program,
which aims to enhance infiltration, evapotranspiration, and the capture and reuse of storm water
in Chinese cities [9]. The general objectives of the Sponge Cities concept are to ‘restore’ the city’s
capacity to absorb, infiltrate, store, purify, drain and manage rainwater and ‘regulate’ the water cycle
as much as possible to mimic the natural hydrological cycle. This paper is divided into five sections:
(i) background, where an overview of research on urban flooding, surface water quality and public
health is presented; (ii) methodology section which elaborates on the literature review procedure; (iii)
results section where the assessment outcomes are presented; (iv) discussion section were the results
are discussed in relation to the contemporary urban context in China; and (v) conclusion.

2. Background: Connections between Urban Surface Water, Floods and Human Health

A wide spectrum of contaminants such as heavy metal (copper, zinc, lead, and chromium),
halogenated aliphatics (gasoline), polycyclic aromatic hydrocarbons (chloroform, benzene, etc.),
pesticides, phenol (chlordane, lindane, etc.), and associated macro pollutants (phosphorus, nitrogen,
etc.) accumulate in the urban environment (air, land and water bodies) due to local emissions of these
contaminants driven by urbanization (c.q. transportation and power production) and industrial
development [10]. These contaminants are known to be associated with cancer, cardiovascular,
gastrointestinal, kidney, liver and neurological diseases [11]. A significant fraction of these contaminants
eventually accumulates in bodies of water, such as lakes, rivers and streams, in the event of runoff or
flooding after precipitation [12]. An additional source of contamination of these water bodies are the
outflows from sewage treatment plants leading to eutrophication [13].

Fluvial and pluvial flooding can impact the urban surface water quality. However, the effect
of inundation on urban surface water quality is usually temporary. Depending upon the type and
concentration of the contaminants of the receiving surface waters and flood water and their dilution
rate, inundation may improve or deteriorate the water quality of the receiving surface waters [14].
Suspended Solids (SS), Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD) and
Dissolved Organic Carbon (DOC) usually tend to increase during the flood phase and then return
to pre-flood levels [15]. In Botic Creek, Prague, agglomeration, that is, heavy metal remobilization
from sediments, during flooding has been observed, which has led to an increase in the heavy metal
concentration in the surface waters. After the flood water receded, the concentration subsequently
decreased to a level lower than the former level, probably because of depletion of the adsorbed fraction
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of heavy metals due to remobilization, followed by removal of these constituents via surface water
flow. Though urban flooding may have negative impacts (as it may serve as a source of contamination),
it also may have positive impacts on the surface water quality (as it may cause dilution and/or removal
of contaminants) [16]. It follows from the above that floodwater may have an impact on the urban
surface water quality. These impacts result in temporary changes in contaminant concentration of
urban surface waters. Given the dynamic and temporary nature of flood water, continuous monitoring
is required to better assess these impacts. This certainly holds for the long-term impacts.

There is a growing body of research directed to assessing the contaminant concentrations of
storm water. For example, a nine-year long monitoring program of urban storm water runoff in
Vilnius, Lithuania, has revealed that the mean values of suspended solids (SS) and total petroleum
hydrocarbons (TPH) are most likely to exceed the permissible limits [17]. The results from an
investigation of the Liangshui River in Beijing has indicated that the concentration of NH4–N increased
rapidly during an intense rainfall event [18]. An assessment of the water quality of runoffs from an
urban road in in Guangzhou showed NH4-N concentrations around 30 mg/L [19], which indicates
that road runoff is a significant contributor to pollution of urban water bodies [18]. Contaminations
associated with traffic, such as toxic metals Zn, Cr, Cu, Hg, Ni, Cd and Pb [20] and polycyclic aromatic
hydrocarbons (PAHs), can lead to a deterioration of the water quality of urban rivers [21]. However,
biological oxygen demand (BOD) and chemical oxygen demand (COD) from road runoffs does not
seem to result in urban surface water concentrations which exceed the acceptable limits [16]. In this
literature review no further research has been found which provides additional information on the
correlation between the water quality of urban water bodies and runoff [15]. With respect to the
sediment quality of urban water bodies, it should be noted here that high concentrations of heavy
metals and PAHs concentrations have been found in sediments of urban small streams [14]. These high
concentrations may adversely impact the surface water quality in the longer term. However, due to
their complexity, our understanding of the underlying desorption and weathering processes causing
mobilization of these contaminants is still very limited [14].

Natural disasters, namely floods, droughts and earthquakes often have a dramatic impact on
human society, such as loss of lives, and economic and ecological losses [22]. In the past two decades,
our understanding of these risks and how to manage them have increased significantly. However, very
little is known about the impacts of these disasters on human health. This especially holds true for
those associated with flooding. It is still common practice, to express the severity of a flood disaster by
the number of deaths and injured [23]. The impacts of flooding on human health encompassing the
physical and psychological effects, are excluded from these assessments as they are often remote and
difficult to assess.

A review investigating the literature on flooding and human health impacts before 2012, indicated
that there has been an increase in disease outbreaks, such as hepatitis E, gastrointestinal disease and
leptospirosis, particularly in areas with poor hygiene and displaced populations [11]. For instance, in
Bangladesh, with seventy percent of the population living in flood prone low-land regions, diarrhea is
the major illness cause, which accounted for thirty-five percent of the 45.000 hospital admissions and
twenty-seven percent of 154 reported deaths [23]. The most common pathogens causing waterborne
outbreaks that have been reported during extreme water-related weather events, are Vibrio spp. (21.6%)
and Leptospira spp. (12.7%) [23].

Also, Cann et al. (2013) [24] concluded that outbreaks of waterborne infectious disease do occur
after an extreme water-related weather event in both developed and developing countries. A study on
the quality of urban floodwater in Utrecht, the Netherlands, has shown that the floodwater quality is
similar to that of sewage [25]. This is to be expected as some of the old urban areas have a combined
sewer system which overflows during periods of excessive rainfall, resulting in a pollution outbreak.
Similarly, a study on the quality of floodwater in Can Tho City, Vietnam, has shown that the pathogen
and contaminant levels of the flood water are almost as high as that of the sewers [26]. From Figure 1
it can be seen that the Salmonella concentration in flood water are as high as in sewage and hence
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wading through flood water of this type is likely to affect health [26]. Hence flood water quality is a
concern in both developed and developing countries.Water 2018, 10, 240 4 of 18 
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Figure 1. Salmonella concentration in flood water (FL), sewage (SE) and surface water (SU) bodies in
Can Tho observed during October 2013 flood event [26].

3. Methodology/Approach

In order to review relevant published literature around the world, especially for China, databases
comprising scientific literature on the crossroad of human health, urban flooding and urban water
quality were selected and keyword searches were performed. The detailed research methodology is
presented in Figure 2.
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Categorization: As the main focus of the paper is to assess flood water impacts on human health,
the literature in the following broad categories were identified for further assessment: (i) urban water
quality; and (ii) urban flood and human health.

Keyword identification: In order to narrow down the search, specific keywords were used
to identify and filter the literature for a thorough assessment. The keywords pertaining to water
quality are: “drinking water quality”, “potable water quality”, “urban water quality”, “flood water
quality”, “urban water quality and health”, “flood water quality and health” and “floodwater quality”.
The keywords pertaining to urban flood and human health are: “health risk”, “flood”, “urban”, “water
quality”, “waterlogging and flood” and “urban stream (creek) water quality”.

Keyword search: A keyword search was executed across a variety of scientific journals and
international databases and Chinese libraries to ascertain the global context and the Chinese context,
respectively, on public health during flooding. International scientific journal repositories, such as
Water Research, Water Science and Technology, Environmental Monitoring and Assessment, Journal
of Hydrology and Water, were accessed and searched using the keywords mentioned in Step 2 and
the number of identified papers were further downsized using a detailed assessment. Also, Chinese
libraries, such as Chinese Science Citation Database (CSCD) and Chinese Core Journal of Peking
University [27] were also assessed and the number of papers were narrowed down using the keywords.

Literature analysis: The selected literature (following from the keywords search) between 1999 and
2017 was assessed in detail based on the content and geographical focus of the literature. In this manner,
the number and geographical location of the studies reported in the literature on drinking/potable
water quality; flood water quality; urban water quality; flood and health; and, urban water and health
have been assessed.

Presenting and interpreting results: After assessing the number and location of these studies the
papers were analyzed and collated.

This research used the following definitions for urban surface water, flooding, surface water
quality, flood water quality, drinking water quality and urban water quality: (i) Urban surface water
pertains to the water bodies in urban areas such as ponds, lakes, streams, canals, rivers, swales and
wetlands; (ii) flooding is the undesirable consequence that pertains to the covering or submerging
of normally dry land with a large amount of water; (iii) surface water quality pertains to the water
quality of the surface water bodies in urban areas; (iv) flood water quality pertains to the water quality
of flood water in urban areas; (v) drinking water quality pertains to the quality of drinking water in
the drinking water distribution systems and in places where drinking water is consumed; and (vi)
urban water quality pertains to the quality of drinking water, quality of surface bodies and quality of
flood water in urban areas.

4. Results

The keywords used for the literature search and few papers based containing those keywords are
presented in Table 1. The number of papers published in each year between the year 1997 and 2017,
containing the keywords, are presented in Figure 3. It can be seen from Figure 3 that the number of
publications containing the five keywords has increased over time.

Table 1. Select literature based on keyword search.

Keywords Literature

Drinking/potable water quality [28–37]
Flood water quality [38–47]
Urban water quality [48–57]
Flood water & health [58–67]
Urban water & health [68–77]
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Figure 3. Number of papers published in each year on urban surface water, human health and flooding
based on keyword search.

From Figure 3 it can be seen that there is no significant increase in publications related to
drinking/potable water quality and urban water quality between 1999 and 2010 with the number
of publications containing these two keywords increasing from 2000 to 4000 in this period. Figure 3
also shows that there has been an increase in emphasis on urban water quality related research after
2011 as the number of publications attributed to urban water quality is steadily increasing. The latter
can be attributed to the developments in technology and/or a (global) rising concern about water
security [78,79]. Also, the number of studies on flood water quality are less than those on urban water
quality. This may be due to the following practical reasons: (i) floods are infrequent and short lasting,
which complicate the design and management of a flood water quality monitoring system; and (ii)
flood events pose a threat to human life, hence it can be a risky undertaking to collect flood water
samples in order to assess the flood water quality in real time [26]. As a result, the number of studies
comprising both water quality of urban water and health and water quality of flood and human health
are much less compared to the number of studies on the water quality of drinking water, flood water
and urban surface water.

Research publications from five journals (Water Research, Water Science and Technology,
Environmental Monitoring and Assessment, Journal of Hydrology and Water) in the field of human
health impact were retrieved, which include direct exposure to flood water (Table 2). Three papers
from Water Research and one paper from the Journal of Hydrology have addressed the human risk due
to direct exposure to floods [25,58,80,81]. Most papers in these journals concern the health risk from
potable water or agricultural water [82,83], which are due to direct and indirect consumption of water
and cutaneous absorption. A paper on the analysis of floodwater quality in Utrecht, the Netherlands,
indicates that fecal indicator organism concentrations, such as Campylobacter, Cryptosporidium and
Giardia, are similar to those found in raw sewage under high-flow conditions [25]. In the Netherlands
the risk for children of infection when exposed to flooding originating from combined sewers, storm
sewers and rainfall generated surface runoff are 33%, 23% and 3.5% respectively; whereas the risk of
infection for adults are 3.9%, 0.58% and 0.039% respectively [58]. A study on water quality from a
water plaza in Rotterdam, the Netherlands, shows that the Campylobacter infection risks for children
playing in a water plaza are higher than the annual average figure for the general population through
all exposure pathways [80]. Mosquito breeding in rain water harvesting systems has been reported
as a significant public health threat in Melbourne, Australia [84]. Mosquito breeding in storm water
storage systems is also a public health threat in China [85]. All these health risks are likely to increase
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with an increase in frequency and severity of urban flooding due to an increase of intense rainfall
events and temperature driven by climate change [86].

Table 2. Research papers connecting flooding and health risk in select journals.

Journal
Type

Health Risk Flood & Health Risk Direct Exposure to Flood Water

Water Research 2110 212 3
Water Science and Technology 398 51 0

Environmental Monitoring and Assessment 5706 747 0
Journal of Hydrology 406 224 1

Water 32 3 0

Numerous research papers on floodwater quality in China, with the keywords “urban”, “water
quality”, “urban runoff water quality”, “waterlogging” and “flood” were retrieved using the data from
CSCD and the Chinese core Journal of Peking University [28]. Three studies were found on urban
floodwater quality. Two studies pertain to mosquito breeding in Shanghai and Ningbo and one study
is about runoff quality in Xi’an [85,87,88]. The geographical distribution of these studies is presented
in Figure 4. There have been 32 studies on urban runoff water quality. None of these pertain to urban
flooding situations [89–120]. Although most of these studies focus on cities in the south-eastern part of
China, there has been four studies involving cities in other regions of the country, like Lanzhou [111],
Baoji [115], Chongqing [109] and Urumqi [117]. The urban water quality monitoring reported by these
publications are relevant to the major parameters, SS, Nitrogen (N), Phosphate (P) and COD/BOD,
which are associated with environmental problems and not health risk [105–107,110]. Two hundred
and two research papers were found using the keywords, “urban”, “river (stream, creek)” and “water
quality” of which 145 papers included urban water quality. China (Figure 5).
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From the assessment, it can be seen that the study locations are unevenly distributed, with most
of the studies in the densely populated eastern part of China (Figure 5). Most of the studies have a
focus on the water quality problems of Shanghai and Beijing, and predominantly include physical
and chemical parameters, such as N, P, DO and COD/BOD (Figure 6). These macro-constituents
have relevance to environmental health rather than health risk. There are a few studies that use other
parameters, i.e., environmental hormones [121], neuroactive substances [122], viruses and Escherichia
coli [123].
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Although the most populated provinces are Guangdong, Henan and Shandong, the two provinces
where water studies are predominant are Jiangsu and Zhejiang (Figure 6). Though these provinces
are relatively less urbanized, they are highly industrialized. This might be the reason for more water
quality studies being done in these two provinces.

5. Discussion

Floods are omnipresent but infrequent and short lasting, which may explain the practical
constraints to timely collection of samples. This explains in part the lack of flood water quality
data. From a global perspective, flood water quality assessments have been carried out only in few
countries (Figure 7). In Bangladesh, Vietnam, Sudan, Nigeria, Thailand and Indonesia, which are
prone to flooding, the number of studies on floodwater quality is less than in developed countries
such as United Kingdom, Australia and the Netherlands [25,38–43,61]. There are studies in Dhaka,
Bangladesh which model health risk from flooding exemplified by cholera, based on the mixing of
pollutants in flood water using a deterministic hydraulic model and data on human vulnerability
using dose response functions [124]. Initiatives such as Preparing for Extreme and Rare events in
coastal regions (PEARL) is developing holistic flood risk assessment for coastal communities that also
include health risks due to flooding [125]. Also, from Figure 7 it can be seen that there is no flood water
quality data publicly available in China. Availability of funding or enforcement of strict water quality
regulations may explain why more studies have been conducted in developed countries [126,127].
Whereas a lack of resources, delegation of resources to other needs such as evacuation or emergency
management and weak enforcement of water quality monitoring guidelines can be attributed to the
observed lack of water quality assessment studies and water quality monitoring during flood events in
developing countries [26]. The absence of water quality studies in the western part of China does not
mean that there are no water quality problems in this region of China [128,129]. Flooding is a problem
in China [130,131] and the lack of flood water quality studies in China is glaring (Figure 7).
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As the central and western parts of China are being industrialized, urban environmental problems
might increase in the near future and are likely to be exacerbated by climate change. Hence, it is likely
that more research and initiatives will be dedicated to urban water quality in these regions of China
in the near future. Urban water quality monitoring assessment and public health assessment can
be linked to the Sponge City initiative as this program aims to guide cities to follow a sustainable
pathway of urban development and transformation where water quality improvement is an essential
component [132]. In optima forma, the water quality component also captures human health
aspects during flooding. The cities selected in 2015 and 2016 as pilot Sponge Cities are presented in
Figure 8 [132]. Comparison of Figures 6 and 8 reveals that Sponge City pilot studies on urban water
quality are concentrated in the Eastern region. These studies are likely to provide a wealth of data
which can feed into a knowledge base on urban water quality in the coming years.

Water 2018, 10, 240 10 of 18 

 

 

Figure 7. Geographical distribution of flood water quality assessments in the world. 

As the central and western parts of China are being industrialized, urban environmental 

problems might increase in the near future and are likely to be exacerbated by climate change. Hence, 

it is likely that more research and initiatives will be dedicated to urban water quality in these regions 

of China in the near future. Urban water quality monitoring assessment and public health assessment 

can be linked to the Sponge City initiative as this program aims to guide cities to follow a sustainable 

pathway of urban development and transformation where water quality improvement is an essential 

component [132]. In optima forma, the water quality component also captures human health aspects 

during flooding. The cities selected in 2015 and 2016 as pilot Sponge Cities are presented in Figure 8 

[132]. Comparison of Figures 6 and 8 reveals that Sponge City pilot studies on urban water quality 

are concentrated in the Eastern region. These studies are likely to provide a wealth of data which can 

feed into a knowledge base on urban water quality in the coming years.  

 

Figure 8. Location of Sponge City pilots in China (Source: Li et al. (2017)) [132].  Figure 8. Location of Sponge City pilots in China (Source: Li et al. (2017)) [132].



Water 2018, 10, 240 11 of 18

Another explanation for the current knowledge gap is that there is still little attention to the
health impacts associated with floods because these impacts are generally remote and difficult to
assess. Monitoring flood water quality in real time is a labor-intensive process which needs elaborate
planning arrangements for anticipating flooded areas, collecting samples, transporting them to labs
and ensuring the safety of the personnel involved [26]. Some of the provincial capitals in China such
as Nanjing, Chongqing, Beijing, Guangzhou, Shanghai and Hangzhou have started extensive water
quality monitoring programs [133–138]. Real-time water quality data from 148 locations across China
are now available [139].

Recent advances in in situ water testing technology (such as smartphone-based sensors)
in conjunction with online data platforms allowing for rapid data analysis, visualisation and
decision-making, will further accelerate the deployment of real-time water quality monitoring systems
during flood events in Sponge Cities [140]. These developments will ultimately contribute to a rapid
increase in our understanding of the complex inter-relationship between water quality, flooding
and public health in pilot Sponge Cities. In addition to real-time flood water quality monitoring,
flood water quality can be simulated using models such as EPA Storm Water Management Model
(SWMM) [141] and Delft-FEWS [142] open data handling platform, which can be used to forecast water
quality. The water quality models validated and caliberated using real-time water quality systems can
be used in the context of the Sponge Cities. This can be futher extended to assess the microbal risk to
human health at a particular location or throughout the city based on methods such as Quantitative
Microbial Risk Assessment (QMRA) [143,144] based on hazard, dose-response, exposure, and risk
characterization [145].

6. Conclusions

This paper has assessed the scientific literature on the inter-relationship between surface water
quality, flood water quality and human health in urban areas around the world, and China in particular.
Even though flooding, surface water and human health in urban areas are interconnected, this
assessment reveals that the importance of flood risk and health impacts have generally been ignored
and underestimated. There is a growing body of evidence that the health impacts due to flooding
are becoming more important as more people are being exposed to floodwater every year. From our
assessment, it is clear that (i) most of the studies are focused on either water quality or health; (ii) the
number of cross-cutting studies on flood water quality and health are limited, but growing; and (iii)
the effects of flood water quality on health impacts in urban areas are still largely unknown, but are
receiving more attention in assessments of health risks in cities. However, based on this study, it can be
assumed that the health impacts in urban areas with high frequency low impact (direct damage) flood
events are more severe than those with low frequency high impact events. The first type of event is
often ignored in flood risk assessments. This study also reveals that water quality assessment studies in
China have focused on the highly populated south-eastern cities, albeit with particular attention to the
water quality parameters which have relevance to environmental assessments. These parameters have
no or limited value to health impact assessments. Expanding the current water quality monitoring
activities with the flood water quality parameters required to assess human health impacts in China is
needed and this is in alignment with the ambition of the Sponge Cities program. Hence, flood water
quality monitoring should be an integral part of the Sponge City program. Though collection and
sharing of flood water quality data are a challenge, the Sponge Cities program provides an opportunity
to make a leap forward in the application, testing, rolling out and upscaling of innovative flood water
quality monitoring technology and health impact analyses throughout China. Better appreciation of
flood induced health risks will lead to better flood risk management.
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