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Abstract: Rectangular short-crested weirs are widely used for simple structure and high discharge
capacity. As one of the most important and influential factors of discharge capacity, side slope can
improve the hydraulic characteristics of weirs at special conditions. In order to systemically study
the effects of upstream and downstream slope coefficients S1 and S2 on overflow discharge coefficient
in a rectangular short-crested weir the Volume of Fluid (VOF) method and the Renormalization
Group (RNG) κ-ε turbulence model are used. In this study, the slope coefficient ranges from V to
3H:1V and each model corresponds to five total energy heads of H0 ranging from 8.0 to 24.0 cm.
Comparisons of discharge coefficients and free surface profiles between simulated and laboratory
results display a good agreement. The simulated results show that the difference of discharge
coefficients will decrease with upstream slopes and increase with downstream slopes as H0 increases.
For a given H0, the discharge coefficient has a convex parabolic relation with S1 and a piecewise
linearity relation with S2. The maximum discharge coefficient is always obtained at S2 = 0.8. There
exists a difference between upstream and downstream slope coefficients in the influence range of free
surface curvatures. Furthermore, a proposed discharge coefficient equation by nonlinear regression
is a function of upstream and downstream slope coefficients.

Keywords: short-crested weir; slope coefficient; discharge coefficient; free overflow; numerical
simulation

1. Introduction

As common hydraulic engineering structures, low weirs are widely used to measure discharge in
irrigation systems and to increase upstream water level in hydroelectric projects. Flat-topped weirs of
finite crest length are classified into four types: long-crested weir (0 < H/δ ≤ 0.1), broad-crested weir
(0.1 ≤ H/δ ≤ 0.4), short-crested weir (0.4 ≤ H/δ ≤ 1.5–1.9), and sharp-crested weir (1.5–1.9 ≤ H/δ),
depending on the relative length of crest H/δ, where H is the crest depth over weir at free overflow
condition and δ is the length of weir crest in the streamwise direction [1]. The flat-topped low
weirs generally include broad-crested weir and short-crested weir. Under the same inflow condition,
the discharge coefficient of short-crested weir is approximately 0.33–0.46, while that of broad-crested
weir is 0.32–0.385, hence the former is stronger than the latter in terms of discharge capacity.
The short-crested weirs are designed into curvilinear profile and broken-line profile according to the
longitudinal profile. The former is usually used as a high weir and the latter as a low weir. Considering
as the small overflow weirs, although the discharge coefficient of former is larger, the latter is widely
used in view of the convenience of construction. The broken-line short-crested weir is classified
into rectangular profile and trapezoidal profile according to the longitudinal profile [2]. Moreover,
the rectangular short-crested weir is insensitive to the downstream submergence, and in special
situations the geometrical configuration could be flexibly modified so as to increase discharge capacity
and avoid cavitation damage of weir flow structures [3].
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Extensive experimental and numerical studies on weir height and weir crest length of the
short-crested weir were carried out [4–7], and the corresponding discharge coefficient formulae have
been derived [1,8–10]. Although the existing research displays a close relation between slope coefficient
and discharge coefficient of broad-crested weirs [10–12], recently there has been little research on
the effect of slope coefficient on short-crested weirs[4,6]. Azimi et al. [13] found that flow separated
from the entrance of crest, and this part of flow would reattach to the weir crest with curvilinear flow
existing over the entire weir before it left the crest again. Goodarzi et al. [14] showed that the size
of flow separation space at the entrance of weir crest varied with upstream slope, which indirectly
resulted in variation of discharge coefficients. Bos [4] found that a higher streamline curvature above
the weir crest and a smaller size on separation region had a positive influence on the head-discharge
relationship of weirs. Farhoudi et al. [15] concluded that decreasing upstream slope angle increased
the discharge coefficient until it reached the maximum value at α = 25◦ (2.1H:1V). Compared with
a rectangular weir with a sloped upstream weir face, Sargison et al. [16] found that the weir with
sloped downstream weir face could improve the discharge capacity. Recently, Tong et al. [10,17] have
carried out much work on investigating the flow characteristics of short-crested weir and concluded
that the maximum discharge coefficient existed at S1 = 2.0–3.0. Chen et al. [18,19] analyzed the effect
of upstream slope on the discharge coefficient by combining experiments and numerical simulations.
Li et al. [20] pointed that the discharge coefficient of rectangular short-crested weir with S1 = 0.5 is 2.0%
larger than that of the rectangular short-crested weir, and the flow regime of the former was better
than the latter. Haun et al. [21] applied computational fluid dynamics (CFD) software Flow-3D [22]
to simulate the free overflow over the trapezoidal broad-crested weir, and the results were in good
agreement with the experimental data [16]. Paik et al. [23] used the RNG κ-ε turbulent model to
calculate the two flow separation zones for free overflow over the rectangular broad-crested weir,
which fit well with those of physical models. In conclusion, the approach of numerical simulation
meets the requirement of studying the hydraulic characteristics of the free surface weir flow.

Almost all of the above conclusions are premised on the inflow discharge, whereas this study is
premised on the total energy head H0 over the crest to realize the flexible manipulation in engineering.
Besides, the previous research on the discharge coefficient has not taken the slope coefficients into
consideration [1,10]. In order to meet the demand of high accuracy on applicability and construction
design, performing research on the effect of slope coefficients on discharge capacity is necessary.
The present paper uses the Flow-3D software to simulate the free overflow over the rectangular
short-crested weir with varying upstream and downstream slope coefficients, and systematically
studies the effects of slope coefficients on the discharge capacity of short-crested weir. Moreover,
a calculation formula of discharge coefficient including the variables of upstream and downstream
slope coefficients is derived by the nonlinear regression method, which provides references for the
engineering design of short-crested weir.

2. Theoretical Analysis of Influential Factors of Discharge Coefficient

Figure 1 showed the definition sketch of short-crested weir constructed from three parts in the
longitudinal cross-section: the upstream weir face U, the rectangular crest R and the downstream weir
face D. The axis of x and y were along the longitudinal direction and vertical direction, respectively.
The weir width B was equal to the flume width without considering lateral contraction. The common
practice to determine discharge coefficient in most discharge measuring structures is based on the
method of dimensional analysis. The discharge coefficient of the short-crested weir depends on
hydraulic conditions, geometrical parameters and fluid properties [24]. Considering these influential
factors one could end up with the following relation:

F(Q, H0, B, δ, P, S1, S2, g, σ, ρ, µ) = 0 (1)
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where Q is inflow discharge, m3/s; H0 is total energy head over crest, H0 = H + U2/2g, m; U is the
approaching velocity, m/s; B is the width of weir, m; δ is the length of weir crest, m; P is the height of
weir, m; S1 and S2 are up- and downstream slope coefficients, respectively; g is gravity acceleration,
m/s2; σ is surface tension of fluid, N/m; ρ is mass density of fluid, kg/m3; µ is dynamic viscosity of
fluid, Pa·s. Based on Buckingham’s Π theorem, the three variables of H0, g and ρ are selected as the
basic dimensions, and the relations between dimensionless numbers could be expressed as follows:

Q
B
√

2gH3/2
0

= f
(

δ/H0, P/H0, S1, S2, ρ0.5g0.5H0/σ0.5, ρg0.5H0
1.5/µ

)
(2)
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Figure 1. Definition sketch of free overflow over rectangular short-crested weir with sloped weir faces.

The left term represents the fundamental weir formulae (Equation (3)) where m is the
discharge coefficient.

m =
Q

B
√

2gH3/2
0

(3)

The first four terms on the right of Equation (2) describe the effect of the geometrical properties on
the discharge capacity, while the last two terms respectively describe the effects of surface tension and
viscosity on the discharge capacity. Isaacs [25] and Ranga Raju et al. [26] concluded that the influence
of viscosity and surface tension on the water flowing through weirs could be ignored if the flow depth
over the crest was greater than 5.0 cm. Regarding the above conclusion the experiments select the flow
depths over the crest between 8.0 cm and 24.0 cm. Regardless of the influence of surface tension and
viscosity, Equation (2) is simplified as:

m = f1(δ/H0, P/H0, S1, S2) (4)

Four dimensionless numbers are included in Equation (4): π1 = δ/H0, π2 = P/H0, π3 = S1

and π4 = S2, which show the effects of the geometrical parameters and hydraulic conditions on the
discharge coefficient of short-crested weir. A good deal of research has studied the influence of weir
crest length and weir height on discharge coefficient in detail, so in this study the two elements are
settled as constants and the research only focuses on the effect of varying upstream and downstream
slope coefficients on discharge coefficient of short-crested weir.
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3. Numerical Modeling

A brief introduction to the numerical models is given below, including governing equations, grids
layout, and the calculation of the free water surface.

3.1. Governing Equations

In the Cartesian coordinate system, the incompressible continuity (5) and Reynolds-Averaged
Navier–Stokes (RANS) (6) equations are used to solve the water motion for turbulent flow.

∂ui

∂xi
= 0 (5)

∂ui

∂t
+ uj

∂ui

∂xj
= fi −

1
ρ

∂p
∂xi

+
1
ρ

∂

∂xj
(µ

∂ui

∂xj
− ρu′iu

′
j ) (6)

where ui and uj are average velocity components, m/s; xi and xj are Cartesian coordinate axes; f i is
body force, m/s2; p is pressure, Pa; −ρu′iu

′
j is the term of Reynolds shear stress with i, j = 1, 2, 3. In this

study, the turbulence is predicted by the renormalization group (RNG) κ-ε turbulent model (turbulent
kinetic energy κ and its dissipation ratio ε) [27]. This model could dispose of the high shear and
curvature area with higher accuracy and showed better performance in the simulated area with flow
separation [28,29]. The wall function method was used for the flow close to the wall and the flow with
the lower Reynolds number.

3.2. Disposal of Free Water Surface

In this study, the Volume of Fluid (VOF) method proposed by Hirth et al. [30] is used to accurately
predict the variation of the free water surface. The transport Equation (7) of fluid fraction is expressed
as follows:

∂F
∂t

+
∂(uiF)

∂xi
= 0 (7)

where F is the fraction of fluid in a cell. This is a two-phase approach where fluid and air are simulated
in a structured grid of the finite difference algorithm. The method is based on the concept that every
cell has a fraction of fluid (F), which is 0 when the element is full of air and 1 when the element is
totally full of fluid. If the value is between 0 and 1, the element contains the free fluid surface.

3.3. Boundary Conditions

In this study, the laboratory experiments were conducted in order to validate the Computational
Fluid Dynamics (CFD) model results. Thus, the boundary conditions in numerical models should
consist with the real boundaries in laboratory experiments. Stagnation pressure is used as inflow and
outflow boundary, and the corresponding flow depths are specified respectively. Moreover, keep the
outflow depth as low as possible to ensure the tail water will not influence the upstream inflow. In view
of the symmetry of the weir model and the existence of free surface, the symmetry boundary conditions
are set at the symmetrical face and on the top of the flume, respectively. All the solid walls—including
the side wall and the flume bed—are considered as the no-slip wall boundary conditions. Moreover,
the initial fluid level is specified to save the computational time.

3.4. Grids Layout

The gridding of computational field was shown in Figure 2. The whole computational domain
was gridded by nonuniform mesh blocks consisting of rectangular elements. In Table 1 the gridding
characteristics of numerical models for free surface profiles were provided. To check the accuracy
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of numerical model the statistical variables of the Root Mean Square Error (RMSE) and the Mean
Absolute Percent Error (MAPE) were calculated using the following equations:

RMSE% = 100×

√√√√ 1
N

N

∑
i=1

(Rm − Rs)
2 (8)

MAPE% =
100
N

N

∑
i=1

∣∣∣∣Rm − Rs

Rm

∣∣∣∣ (9)

where Rm and Rs are the laboratory results and simulated results, respectively.
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Table 1. Gridding characteristics, RMSE and MAPE for the simulated profiles of free surface.

Meshing Number of Cells RMSE MAPE

1 195,600 8.30% 7.53%
2 283,360 6.21% 4.97%
3 568,800 2.93% 0.57%
4 652,500 2.75% 0.45%

As shown in Table 1, the differences between the results of meshing 3 and meshing 4 were
negligible and gridding 3 was chosen. Therefore, the whole computational domain was gridded by
632, 18, 50 rectangular elements in the direction X, Y and Z, respectively. Moreover, the number of
grids in x and z direction will be adjusted properly according to the geometry of the weir model and
the upstream water depth.

3.5. Numerical Simulation

In this study, the flume with a length of 10.0 m, width of 0.3 m, and height of 0.5 m was defined.
The weir model was located at a distance of 4.0 m from the inlet. In Table 2, the schemes of numerical
simulation were listed. The schemes were expressed as Mij, in which i = 1–7 correspond to seven
simulated upstream slope coefficients S1 of V, 0.3H:1V, 0.5H:1V, 0.8H:1V, 1.0H:1V, 1.5H:1V and 2.0H:1V
respectively, while j = 1–9 correspond to nine downstream slope coefficient S2 of V, 0.4H:1V, 0.8H:1V,
1.0H:1V, 1.3H:1V, 1.5H:1V, 1.8H:1V, 2.0H:1V and 3.0H:1V—all with effective square edges at the joins.
Based on the definition of the short-crested weir by Tong et al. [10] the short-crested weir was limited to

0.67 < δ/H ≤ 1.5 ∼ 2.0,0.5 ≤ P/H < 3.0 (10)

According to the above criteria, the height of weir P, the length of weir δ and the width of weir B
were constant during this study and the values are 24.0 cm, 16.0 cm and 30.0 cm, respectively. There
were 63 weir models in total, and each weir model was calculated corresponding to five total energy
heads H0 of 8.0 cm, 12.0 cm, 16.0 cm, 20.0 cm, and 24.0 cm over the crest. The discharge coefficients of
the numerical results could be obtained according to Equation (3).
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Table 2. List of design schemes of numerical simulation.

Configuration Scheme Upstream Side
Slope Coeff. S1

Downstream
Slope Coeff. S2

No. of Models Interpretation

VRV Mij
i = 1, j = 1 0.0 0.0 1 Rectangular short-crested weir

URV Mij
i 6= 1, j = 1

0.3, 0.5, 0.8, 1.0,
1.5, 2.0 0.0 6

Only study the effect of the varying S1 on the
discharge coefficient of rectangular

short-crested weir

VRD Mij
i = 1, j 6= 1 0.0 0.4, 0.8, 1.0, 1.3,

1.5, 1.8, 2.0, 3.0 8 Only study the effect of the varying S2 on the
discharge coefficient of short-crested weir

URD Mij
i 6= 1, j 6= 1

0.3, 0.5, 0.8, 1.0,
1.5, 2.0

0.4, 0.8, 1.0, 1.3,
1.5, 1.8, 2.0, 3.0 48

Study the combinational effect of the varying
S1 and S2 on discharge coefficient of

rectangular short-crested weir

4. Results and Discussion

4.1. Validation of Numerical Models

To validate the numerical model results, the laboratory experiments were conducted. The physical
model consisted of a self-circular, horizontal, rectangular flume with a short-crested weir. The side
walls and weirs were made of Plexiglas. The upstream water level was measured with an accuracy of
±0.1 mm using a needle water level gauge and the volume flow rate with ±0.1 mm using 90◦ V-notch
weir. The tail water depth was selected in a way that would not affect the incoming flow. Table 3 listed
the selected geometrical and hydraulic characteristic parameters used to validate the accuracy of the
numerical models.

Table 3. Range of variables for laboratory measurements.

Scheme Upstream Slope
Coeff. S1

Downstream
Slope Coeff. S2

Weir Height
P (cm)

Crest Length δ
(cm)

Weir Width
B (cm)

Total crest Head
H0 (cm)

M11 0.0 0.0
24.0 16.0 30.0

8.0, 12.0, 16.0,
20.0, 24.0

M71 2.0 0.0
M73 2.0 0.8

The comparison of discharge coefficients between simulated and laboratory results at free overflow
condition are shown in Figure 3. The discharge coefficients gradually increase as the total energy head
H0 increases, and the simulated results are slightly larger than those of laboratory results. Figure 4
shows the comparisons of free surface profiles between the simulated and laboratory results, in which
the origin locates at the entrance of the weir crest and h is the fluid level along the streamwise direction
and ξ = H0/(P + δ) is the relative total energy head. The deviation from free surface profiles might
result from flow separation and the slightly less accurate simulation for the shapely varied free-surface
profile. As shown in Figure 5, the changing trend of free surface elevation is nearly identical for
simulated and laboratory results and the bottom roll backflow zone simultaneously appear in back
of downstream weir face. Table 4 lists the RMSE and MAPE for the discharge coefficients and free
surface profiles. In consideration of the comparative results it is obvious that the numerical model
is able to accurately predict the water surface over the short-crested weir and the directly linked
discharge coefficient.

Table 4. RMSE and MAPE for discharge coefficients and flow surface profiles.

Statistical Object ξ Scheme RMSE MAPE

Discharge coefficient 0.2–0.6
S1 = 0.0, S2 = 0.0 0.37% 0.91%
S1 = 2.0, S2 = 0.0 0.49% 1.11%
S1 = 2.0, S2 = 0.8 0.36% 0.85%

Free surface profile 0.6
S1 = 0.0, S2 = 0.0 2.95% 2.80%
S1 = 2.0, S2 = 0.0 2.68% 2.86%
S1 = 2.0, S2 = 0.8 1.84% 2.20%
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4.2. Calculation Formula of Discharge Coefficient

Sixty-three weir models and 315 numerical simulations are conducted. From the dimensional
analysis of Equation (4) a monotonically increasing linear relation between m and lnξ for different weir
models is expressed as follows:

m′ = α ln
(

H0

P + δ

)
+ β (11)

where m′ is the fitted discharge coefficient and α and β are dimensionless parameters determined by S1

and S2. In Figure 6a–b the effects of S2 on α and β are shown for all of the upstream slope coefficients
S1, and the corresponding values are listed in Table 5. Both of α and β firstly increase until they reach
the maximum of αmax and βmax at S2 = 0.8, and then decrease until they reach the minimum of αmin

and βmin at S2 = 3.0. Moreover, a good linear relation between αmax and S1 and a good parabolic
relation between βmax and S1 are shown in Figure 6c,d, and the relations could be expressed as follows:

αmax = −0.013S1 + 0.0809 (12)

βmax = −0.0086S1
2 + 0.0079S1 + 0.4935 (13)

with R2 = 0.989 and 0.979 respectively. The data are normalized by introducing the variables of
α′ = α/αmax and β′ = β/βmax as shown in Figure 6e,f. Both of α′ and β′ have good piecewise linear
relations with S2, which could end up with the expressions:

α′ =
{

0.2862S2 + 0.7658 0.0 ≤ S2 ≤ 0.8
−0.1797S2 + 1.1355 0.8 < S2 ≤ 3.0

(14)

β′ =
{

0.0533S2 + 0.9574 0.0 ≤ S2 ≤ 0.8
−0.0424S2 + 1.0328 0.8 < S2 ≤ 3.0

(15)

Combining Equations (12)–(15), the calculation formula of discharge coefficient of rectangular
short-crested weir with varying upstream and downstream slope coefficients (URD) is derived as
Equation (11), where

α =

{
(−1.3S1 + 8.09)(2.862S2 + 7.658)× 10−3 0.0 ≤ S1 ≤ 2.0, 0.0 ≤ S2 ≤ 0.8

(−1.3S1 + 8.09)(−1.797S2 + 11.355)× 10−3 0.0 ≤ S1 ≤ 2.0, 0.8 < S2 ≤ 3.0
(16)

β =

{ (
−8.6S2

1 + 7.9S1 + 493.5
)
(5.33S2 + 95.74)× 10−5 0.0 ≤ S1 ≤ 2.0, 0.0 ≤ S2 ≤ 0.8(

−8.6S2
1 + 7.9S1 + 493.5

)
(−4.24S2 + 103.28)× 10−5 0.0 ≤ S1 ≤ 2.0, 0.8 < S2 ≤ 3.0

(17)

The Equation (11) is valid for 0.0 ≤ S1 ≤ 2.0, 0.0 ≤ S2 ≤ 3.0, 0.67 ≤ δ/H ≤ 2.0, 1.0 ≤ P/H ≤ 3.0
and −1.61 ≤ lnξ ≤ −0.51. The range out of simulated results should be verified further. The deviation
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from m is plotted in Figure 7. The RMSE, MAPE and R2 for discharge coefficient are computed with the
values 0.36%, 0.02% and 0.977, respectively. Recently, it has not have a discharge coefficient formula
including S1 and S2. The discharge coefficient m1 calculated by Equation (11) at S1 = 0 and S2 = 0 is
compared with the Equation (18) proposed by Govinda Rao and Muralidhar [1], and comparative
results are shown in the Figure 8 with the maximum relative error 1.92%.

m2 = 0.08
H
δ
+ 0.329 (18)

The application range of Equation (18) is 0.4 ≤ H/δ ≤ 1.5–1.9. Analyzing Equation (11) concludes
that the geometrical configuration corresponding to the maximum discharge coefficient relates closely
to the value range of lnξ. In the range −1.06 < lnξ ≤ −0.51 (13.8 cm < H0 ≤ 24 cm), m′ reaches
m′max = (7.43lnξ + 49.53) × 10−2 at S1 = 0.459 − 0.75lnξ and S2 = 0.8; in the range −1.61 ≤ lnξ ≤ −1.06
(8.0 cm ≤ H0 ≤ 13.8 cm), m′ reaches m′max = (5.46lnξ + 47.49) × 10−2 at S1 = 2.0 and S2 = 0.8. And the
maximum discharge coefficient is always obtained at S2 = 0.8. The existence of a maximum discharge
coefficient at S2 = 0.8 relates to the flow regime in back of downstream weir face. Comparisons of
the velocity fields and free-surface elevations of weirs at S1 = 1.0 with H/δ = 1.41 for S2 = 0.0, 0.8
and 2.0 are shown in Figures 9 and 10, respectively. In Figure 9a, a bottom roll backflow zone forms
between the downstream weir face and the nappe at S2 = 0.0, and air is entrained into it simultaneously.
The backflow will lift the nappe, resulting in the rise of downstream free surface profile, and reduce the
discharge capacity. Moreover, the outline of backflow zone roughly forms an isosceles triangle on the
side view, which is identical to the test observation. In Figure 9b, the backflow zone disappears and the
downstream free surface profile falls after a rise at S2 = 0.8 compared with the weir at S2 = 0.0. In this
situation the nappe attached on the weir face perfectly, which improves the discharge capacity. With
increasing S2, the reattachment point produced by the combined action of inertial force and gravity
is gradually covered by the downstream weir side, and the downstream free surface profile is lifted
higher by the weir face than the weir at S2 = 0.0 as shown in Figures 9c and 10.
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Table 5. Values of α and β in different combinations of upstream and downstream slope coefficients.

Parameter Upstream Slope
Coefficient

Downstream Slope Coefficient

S1 = 0.0 S1 = 0.3 S1 = 0.5 S1 = 0.8 S1 = 1.0 S1 = 1.5 S1 = 2.0

α

S2 = 0.0 0.0619 0.0596 0.0586 0.0546 0.0524 0.0468 0.0421
S2 = 0.4 0.0679 0.0678 0.0657 0.0626 0.0588 0.0529 0.0481
S2 = 0.8 0.0794 0.0774 0.0751 0.0719 0.0682 0.0609 0.0546
S2 = 1.0 0.0770 0.0746 0.0734 0.0694 0.0663 0.0594 0.0540
S2 = 1.3 0.0712 0.0693 0.0676 0.0647 0.0620 0.0559 0.0499
S2 = 1.5 0.0676 0.0658 0.0649 0.0615 0.0591 0.0529 0.0477
S2 = 1.8 0.0594 0.0606 0.0573 0.0576 0.0525 0.0469 0.0426
S2 = 2.0 0.0593 0.0584 0.0574 0.0551 0.0529 0.0480 0.0439
S2= 3.0 0.0458 0.0476 0.0466 0.0456 0.0421 0.0381 0.0339

β

S2 = 0.0 0.4697 0.4725 0.4740 0.4727 0.4716 0.4656 0.4591
S2 = 0.4 0.4786 0.4845 0.4852 0.4845 0.4814 0.4750 0.4692
S2 = 0.8 0.4925 0.4957 0.4959 0.4955 0.4920 0.4843 0.4757
S2 = 1.0 0.4883 0.4913 0.4929 0.4913 0.4894 0.4817 0.4743
S2 = 1.3 0.4798 0.4828 0.4849 0.4839 0.4832 0.4767 0.4689
S2 = 1.5 0.4736 0.4776 0.4798 0.4791 0.4780 0.4715 0.4650
S2 = 1.8 0.4606 0.4692 0.4674 0.4723 0.4669 0.4617 0.4562
S2 = 2.0 0.4602 0.4652 0.4676 0.4683 0.4676 0.4630 0.4578
S2 = 3.0 0.4377 0.4467 0.4490 0.4516 0.4486 0.4460 0.4407
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and 2.0.

4.3. Effects of Slope Coefficients on Discharge Coefficient

When S2 = 0.0, Equation (11) would be simplified as:

mU′ =
[
(−0.9991S1 + 6.2172) ln ξ − 0.8234S2

1 + 0.7563S1 + 47.2477
]
× 10−2 (19)

where mU
′ is the fitted discharge coefficient for S2 = 0.0. Analyzing the fitted equation indicates that

for a given lnξ, mU
′ firstly increases until it reaches the maximum at S1 = 0.5822 − 0.7055lnξ, and then

decreases with S1.
In Figure 11, the difference in discharge coefficients for different values of S1 shows a decreasing

trend with increasing lnξ. In view of energy conservation law, the difference is produced by
the frictional head loss of hf and local head loss of hj in the progress of free overflow. When
lnξ holds constant, the gradually slowing upstream slope increases the flow run and reduces the
streamline curvature of inflow, accordingly hf is increasing and hj is decreasing. In this progress,
the increment of the former is less than the decrement of the latter, so mU

′ continues increasing till
S1 = 0.5822 − 0.7055lnξ. When the upstream slope continued slowing, the increment of hf exceeds
the decrement of hj, so the discharge coefficient is gradually decreasing. With increasing total energy
head of H0 over the crest the difference in the total head loss of hw where hw = hf + hj is gradually
decreasing, so the difference in discharge coefficients is gradually decreasing for different values of S1.

When S1 = 0.0, Equation (11) would be simplified as:

mD′ =
{

[(2.315 ln ξ + 2.63)S2 + 6.195 ln ξ + 47.248]× 10−2 0.0 ≤ S2 ≤ 0.8
[−(1.454 ln ξ + 2.09)S2 + 9.186 ln ξ + 50.969]× 10−2 0.8 < S2 ≤ 3.0

(20)

where mD
′ is the fitted discharge coefficient for S1 = 0.0. It reveals that the maximum of discharge

coefficient mD
′
max depends on both of S2 and ξ. In the range −1.29 < lnξ ≤ −0.51, mD

′ reaches the
maximum of mD

′
max = (7.85lnξ + 49.17) × 10−2 at S2 = 0.8; while in the range −1.61 ≤ lnξ ≤ −1.29 it

reaches the maximum of mD
′
max = (6.101lnξ + 46.89) × 10−2 at S2 = 0.0.
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with growing x/δ in all cases. The free surface profile can be divided into two parts due to the 
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separation phenomenon happening around x/δ = 0.0 (at the entrance of weir crest) produces large 
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In Figure 12, the difference in discharge coefficients for different values of S2 shows an increasing
trend with increasing lnξ. Similarly, the difference is caused by hf and hj, in which the local head loss
is mainly produced by inflow dropping into the downstream with forming the bottom roll backflow
zone between the downstream weir face and the nappe. Moreover, the size of the backflow zone is
proportionate to the local head loss. In the range −1.29 < lnξ ≤ −0.51, increasing S2 will gradually
decrease the size of the backflow zone until it disappears at S2 =0.8, and the local head loss plays the
decisive role in this progress. Continuing increasing S2, hf tends to be dominant with increasing flow
run. In the range −1.61 ≤ lnξ ≤ −1.29, although the backflow zone cannot be formed due to the lower
crest depth, the subpressure zone is formed around the downstream weir face. Smaller the value
of S2 is, larger the maximum of subpressure zone is. Although it increases the discharge coefficient,
the instability of subpressure zone can lead to the instability of weir flow. Therefore, the design of
short-crested weir should take the downstream slope into consideration.
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4.4. Effects of Slope Coefficients on Free Surface Profiles

In this numerical study, the variations of free surface profiles and Froude numbers over the crest
with various slope coefficients are investigated in overflow conditions. In Figure 13, the normalized
free surface elevation of (h − P)/H is plotted against x/δ for different values of H/δ. As shown,
the free surface profiles are self-similar. The range of (h− P)/H shows a decreasing trend with growing
x/δ in all cases. The free surface profile can be divided into two parts due to the gradient: a slow
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descending segment and a sharp descending segment. For the former the curvature is nearly 0, but
for the latter it descends quickly with hydraulic drop happening. The flow separation phenomenon
happening around x/δ = 0.0 (at the entrance of weir crest) produces large energy losses and results in
free surface profile descending sharply. Moreover, the range of the curvature of free surface profile
shows a decreasing trend with growing H/δ in all cases.
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In Figure 14, Fr is plotted against x/δ for different values of H/δ. The range of Fr shows an
increasing trend with growing x/δ in all cases. When Fr < 1, the value of Fr for the same x/δ decreases
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as H/δ decreases, which indicates that for a smaller flow rate, the inertial force on the flow is smaller.
Under the action of gravity, the free surface profile is easier to bend, resulting in a more curved surface
profile. When Fr > 1, the value of Fr for the same x/δ increases as H/δ decreases, indicating that
for a smaller flow rate, the ratio of inertial force to gravity is so large it can keep the higher profile
gradient. Moreover, for a given weir model, the position where supercritical flow takes place is
relatively rearward as H/δ decreases.
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Comparisons of free surface profiles and Fr over the weirs at S2 = 0.8 for S1 = 0.0, 1.0 and 2.0
are shown in Figures 13a–c and 14a–c. The plots reveal that increasing S1 leads to the increase of
surface curvature before the crest entrance and the decrease over the crest. When H/δ holds constant,
increasing S1 will accelerate supercritical flow taking place. Analyzing the effect of different S2 on
free surface profiles over crest at S1 = 1.0 in Figure 13b,d,e and the corresponding Froude numbers in
Figure 14, it can be concluded that increasing S2 leads to the decrease of free surface curvature over the
crest and it has no obvious influence on the curvature of free surface profile before the crest entrance.

5. Conclusions

The effects of varying upstream and downstream slope coefficients on discharge coefficients
of rectangular short-crested weirs were studied systemically by the combination of laboratory
experiments and numerical simulation. A calculation formula was proposed by using the dimensional
analysis between hydraulic parameters and geometrical parameters: height of weir, length of weir,
upstream overflow total energy head, and upstream and downstream slope coefficients. Moreover,
the free surface profiles over the weirs were numerically investigated.

The upstream overflow total energy head played a decisive role on the discharge coefficient of
rectangular short-crested weirs. For a certain configuration of a short-crested weir, the discharge
coefficient is slightly increased as the total energy head H0 increases. As H0 increases, the difference in
discharge coefficients for different values of S1 shows a decreasing trend with increasing lnξ, while the
trend is opposite for different values of S1. For a given total energy head over the crest, the rectangular
short-crested weir with varying upstream slope has a convex parabolic relation between S1 and the
discharge coefficient, while the weir with varying downstream slope has a relation of piecewise
linearity between the S2 and the discharge coefficient. For a higher H0, the maximum discharge
coefficient is always obtained at 0.8H:1V of downstream slope.

Increasing the upstream slope coefficients leads to the free surface curvature increasing before the
crest entrance and decreasing over the crest, while increasing the downstream slope coefficients leads
to the decrease of free surface curvature on the crest. In addition, the structural design for short-crested
weirs should take the downstream slope into consideration.

The calculation formula of the discharge coefficient was derived by the nonlinear regression. It is
a function of the upstream slope coefficient (S1), the downstream slope coefficient (S2), and the ratio of
total energy head to the sum of crest length and crest height (H0/(P + δ)). The RMSE, MAPE and R2

for the proposed equation are calculated, and the values are 0.36%, 0.02% and 0.977, respectively.
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Abbreviations

The following symbols are used in this paper:
B width of weir
Fr Froude number
g acceleration of gravity
hf frictional head loss
hj local head loss
hw total head loss
H overflow piezometric head upstream of weir
H0 upstream overflow total energy head, H0 = H + U2/2g
m discharge coefficient
m′ fitting discharge coefficient
P height of weir
Q inflow discharge
R correlation coefficient
S1 upstream slope coefficient (the ratio of horizontal to vertical)
S2 downstream slope coefficient (the ratio of horizontal to vertical)
U approaching velocity
α nondimensional coefficient
β nondimensional coefficient
δ length of weir
ξ relative total energy head over the crest, ξ = H0/(P + δ)
ρ mass density of water
σ surface tension of water
µ dynamic viscosity of water
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