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Abstract: Global sensitivity analysis is the key to establishing advanced and complex water quality 

models and measurements of ecological parameters. In this paper, the Sobol’s sensitivity analysis 

method was applied to a quantitative analysis of the important factors governing a water quality 

model, which has been developed to simulate algal dynamics in Caotang Bay, one of the tributary 

bays in the Three Gorges Reservoir, China. The analysis focused on the response of chlorophyll-a 

and dissolved oxygen to 11 parameters. The results show that chlorophyll-a is influenced mainly by 

the maximum phytoplankton growth rate, the lower optimum temperature for algal growth, the 

phosphate half-saturation constant, and the phytoplankton linear mortality rate; while dissolved 

oxygen is influenced mainly by the maximum phytoplankton growth rate, the lower optimum 

temperature for algal growth, the phytoplankton basal respiration rate, and the detritus 

remineralization rate. These parameter sensitivities change with time and have a marked seasonal 

pattern. The parameter sensitivity differences between a shallow lake or reservoir and a deep 

reservoir suggest that mechanisms of cycling in nutrients and dissolved oxygen are different. 

Keywords: global sensitivity analysis; water quality model; chlorophyll-a; dissolved oxygen; deep-

water embayment; Three Gorges Reservoir 

 

1. Introduction 

Water quality models are valuable tools for the quantitative analysis of a water system’s 

evolution processes [1–3]. Research on water quality models is aimed at exploring the varying 

mechanisms of the ecosystem, simulating or predicting its changes, and providing scientific and 

decision-making rationales in order to maintain its health and recover its injured parts. Parameters 

are an important component of the ecological model, ranging from ten to dozens of variables [4–7] 

depending on the complexity of the model. It is very difficult to increase the precision of each 

parameter at the same time, as surface water is a highly nonlinear system, so each ecological process 

will be subject to various uncertain factors. 

The model is the mathematical expression of the ecological process, and Sensitivity Analysis 

(SA) aims to characterize the impact that changes in the model’s input factors (e.g., parameters, initial 

states, input data, time/spatial resolution grid) have on the model’s output (e.g., a statistic of the 

simulated time series, such as the average simulated stream flow, or an objective function, such as 

the Root Mean Squared Error). SA represents how the sensitive the modeled ecological process 

response is to the environmental condition input to the model. SA methods can be classified based 

on their scope, applicability, and characteristics. The simplest and most common classifications are 
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local sensitivity analysis (LSA) and global sensitivity analysis (GSA) [8–10]. LSA is focused on the 

effects of uncertain inputs around a point (or base case), whereas GSA is focused more on the 

influences of uncertain inputs over the whole input space [11]. LSA identifies the changes in model 

output resulting from a small perturbation of one of the model parameters while holding the other 

parameters constant [12,13]. The advantages of LSA are its simplicity and generally lower 

computational costs, while its disadvantage is that it does not represent the full impact of the 

uncertainty of a parameter on model output [12,14]. GSA gives a better estimate of uncertainty [14] 

to express the uncertainty of model parameters, rather than by perturbing these parameters. The 

Sobol’s method [15] is a variance-based GSA method that can quantitatively analyse the parameters’ 

impacts. This method quantifies sensitivity exactly rather than to identify which input variables are 

contributing significantly to the output uncertainty in high-dimensionality models, compared with 

other GSA methods, such as Morris [16,17]. In other words, the Sobol’s method not only represents 

the full impact of the uncertainty of a parameter on model output, but also is a quantitative analysis 

method, so it is a valid method for uncertain parameter analysis in a water quality model. Besides, 

the qualitative analysis method has been selected and applied to aquatic ecosystem models [18–20] 

in previous studies, but few studies focus on the quantitative analysis of a large and deep reservoir 

water quality model. 

The Three Gorges Reservoir (TGR) is a large and deep reservoir. The impacts of the TGR on the 

ecosystem and environment have been widely discussed, and increasingly serious eutrophication 

and multiple occurrences of algal blooms of tributary bays in the TGR are the most severe water 

environmental issues in China [21,22]. Previous studies have mainly focused on how phytoplankton 

grow rapidly under favorable environmental conditions, including nutrients limits, appropriate light 

and temperature, and low flow velocity [23–26], but few studies have focused on water ecosystem 

model sensitivity analysis. The sensitivity analysis is one of the key steps in a water quality model’s 

establishment and an important base for parameter optimization. Furthermore, the parameter 

sensitivity differences between the TGR and other surface water systems can show the biochemistry 

and geochemistry differences in different types of water bodies. 

In this study, the Sobol’s method was selected and applied to one of the TGR tributary bays with 

a water quality model. The parameter impact variations with time for the water quality model of the 

TGR tributary bay were studied. The result of this study will be used to establish and direct the 

optimization of a biochemical process in a three-dimensional water quality model. The paper is 

organized as follows. Descriptions of the Yangtze River, TGR are presented in Section 2. The 

theoretical background of the water quality model and the sensitivity analysis method are introduced 

briefly in Section 3. Section 4 describes in detail the GSA results. Section 5 discusses the ecological 

implications of parameter sensitivities. A summary of the findings is provided in Section 6. 

2. Study Area 

The construction of the Three Gorges Dam (TGD) is one of the most intense anthropogenic 

impacts on surface water in China. As the third longest river in the world and the longest river in 

Asia, the Yangtze River, extending from the Tibetan Plateau to eastern China, spans a total length of 

6300 km and drains an area of 1,800,000 km2 [27]. Its annual flow is 951.3 km3. The TGD, located at 

the end of the upper Yangtze River, is 185 m high. Construction began in 1998 and was completed in 

2003. The TGR is currently the one of the largest reservoirs in the world, with a capacity of 39.3 billion 

m3 over a length of 663 km and an average width of 1.1 km [28,29]. 

After the impoundment in 2003, the TGR was formed along the Yangtze River, starting from 

Chongqing to the dam site at Yichang. Approximately 40 tributaries were transformed into tributary 

bays and became a part of the TGR. The total area of these bays accounts for 1/3 of the whole surface 

area of the TGR. It has dramatically changed the aquatic ecosystem from a continuous lotic ecosystem 

to a huge reservoir. 

The Caotang River is a primary tributary of the north bank of the Yangtze River (Figure 1), 

located in the middle of the TGR. It is 156 km away from the TGD. It has a watershed area of 394 km2, 

a length of 33 km, and an annual average discharge of 7.5 m3 s−1. After impoundment of the TGR, a 



Water 2018, 10, 153 3 of 14 

 

7-km-long bay was formed, which was influenced by TGR regulation, which ranges the water level 

from 145 m to 175 m. Hereafter, this area is called Caotang Bay (CB) in this paper. The CB’s average 

depth is 18.39 m when the TGR is at the lowest level in the summer (up to 145 m). The CB’s average 

depth is 33.54 m and its maximum depth is 70 m when the TGR is at the highest level in the winter 

(up to 175 m). 

 

Figure 1. Study area and sampling sites. YR: Yangtze River. 

3. Materials and Methods 

3.1. Tributary Bay Water Quality Model 

The Land Ocean Interaction Zone model [30] was applied to dynamic mass balances (Figure 2). 

The water budget is 

𝑑𝑉

𝑑𝑡
= 𝑉𝑄 + 𝑉𝑃+𝑉𝐺 + 𝑉𝑂 + 𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡 − 𝑉𝐸 (1) 

where V is the water storage, VQ is the stream runoff, VP is the direct precipitation, VG is the 

groundwater, VO is the set of other inflows, such as sewage, Vin is the hydrographically driven 

advective inflow, Vout is the advective outflow of water from the system, and VE is the evaporation. In 

this study, precipitation, groundwater, other inflows, and evaporation are smaller than 5% of VQ, so 

we assume VP = VG = VO = VE = 0. 

 

Figure 2. Generalized box diagram illustrating the budget for water and material. 

The material balance is 
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𝑑𝐶𝑉

𝑑𝑡
= 𝑉𝑄𝐶𝑄 + 𝑉𝑖𝑛𝐶𝑖𝑛 − 𝑉𝑜𝑢𝑡𝐶𝑜𝑢𝑡 + Δ𝐶 (2) 

where C represents the phytoplankton, ammonium, nitrate, phosphate, dissolved silicon, dissolved 

oxygen (DO), and detritus. 

The CB ecological water quality model is based on the observed features, and the structure of 

the water quality model and the interactions between state variables are illustrated in Figure 3. The 

mathematical formula of these are given in detail in Appendix A. All of the bio-parameters and their 

values [1,31–33] are listed in Table 1. 

 

Figure 3. Schematic of the water quality model in TGR. P, DET, DO, NO3, NH4, PO4 and Si are 

phytoplankton, detritus, dissolved oxygen, nitrate, ammonium, phosphate, and dissolved silicon, 

respectively. 

Table 1. The parameter values of the ecological water quality model applied in the Caotang Bay (CB). 

Parameter Description Value Unit 
Selected to 

GSA (Y/N) 

𝑟0 
Maximum phytoplankton growth 

rate 
3.039 d−1 Y 

𝑇1 
Lower optimum temperature for 

algal growth 
24 °C Y 

𝑇2 
Upper optimum temperature for 

algal growth 
29 °C Y 

𝐾𝑊 

Light extinction coefficient for all 

absorption components (except 

algae) 

1 m−1 Y 

𝐾𝐶 
Factor for light extinction coefficient 

for algae 
0.01 m−1·mmolC−1 N 

𝐼𝑜𝑝𝑡 Optimum light intensity 80.0 W·m−2 Y 

𝐾𝑁𝑂3
 

Nitrate half saturation constant for 

algae 
0.040 mmolN·m−3 N 

𝐾𝑁𝐻4
 

Ammonia half saturation constant 

for algae 
0.030 mmolN·m−3 N 

𝐾𝑃 
Phosphate half saturation constant 

for algae 
0.285 mmolP·m−3 Y 
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𝐾𝑆 
Silica half saturation constant for 

algae 
1.16 mmolSi·m−3 N 

𝜇1 Phytoplankton linear mortality rate 0.335 d−1 Y 

𝜇2 
Phytoplankton second order 

mortality rate 
0.001 mmolC·d−1 Y 

𝛼𝑃 Phytoplankton excretion rate 0.15 d−1 N 

𝑏𝑃 Phytoplankton basal respiration rate 0.2 d−1 Y 

𝛾𝑃 
Phytoplankton active respiration 

rate 
0.1 d−1 N 

𝑂𝑐𝑟  
Oxygen critical concentration for 

nitrification 
11.161 mmolO2·m−3 Y 

𝑑𝑐𝑟 
Oxygen confinement factor for 

nitrification 
6.0 -- N 

𝑟𝐷𝐸𝑇  Detritus remineralization rate 0.127 d−1 Y 

𝑇𝑠𝑐𝑑  
Temperature confinement factor for 

remineralization 
20.0 -- N 

𝑇ℎ𝑠𝑟  
Reference temperature for 

remineralization 
13.0 °C N 

𝑟𝑛𝑖𝑡  Nitrification rate 0.045 d−1 N 

𝑟𝑑𝑒𝑛 Denitrification rate 0.01 mmolN·m−3·d−1 N 

𝐾𝐷𝐸𝑇  Detritus half saturation constant 6.625 mmolC·m−3 N 

𝑑𝐷𝑁 Denitrification ratio of detritus 1.25 -- N 

𝑑𝑁𝑁 
Ammonia release ratio for 

denitrification 
0.189 -- N 

𝑑𝑃𝑁 
Phosphate release ratio for 

denitrification 
0.012 -- N 

𝑑𝑆𝑁 Silica release ratio for denitrification 0.259 -- N 

𝑅𝑃𝐶 Redfield ratio P:C 1:106 -- N 

𝑅𝑁𝐶 Redfield ratio N:C 16:106 -- N 

𝑅𝑆𝐶 Redfield ratio Si:C 22:106 -- N 

𝑚𝐶𝑂 
Stoichiometric number of carbon to 

oxygen 
1 mmolO2·mmolC−1 N 

𝑚𝑁𝑂 
Stoichiometric number of nitrogen to 

oxygen 
2 mmolO2·mmolN−1 N 

GSA: global sensitivity analysis. 

3.2. Global Sensitivity Analysis 

Sobol’s method is based on the decomposition of the output variance of the model, which can 

be represented by 

𝑌 = 𝑓(𝑋) = 𝑓(𝑋1, … , 𝑋𝑘) (3) 

where Y is the model output, and 𝑋 = (𝑋1, … , 𝑋𝑘) is the set of factors. The variance decomposition of 

f is 

𝑉(𝑌) = ∑ 𝑉𝑖

𝑘

𝑖=1

+ ∑ ∑ 𝑉𝑖𝑗

𝑘

𝑗>𝑖

𝑘−1

𝑖=1

+ ∑ ∑ ∑ 𝑉𝑖𝑚𝑛

𝑘

𝑛>𝑚

𝑘−1

𝑚>𝑖

𝑘−2

𝑖=1

+ ⋯ + 𝑉12…𝑘 (4) 

where Vi is the variance contribution of individual parameter Xi to the total variance, Vij is a part of 

the total variance caused by the interactions between Xi and Xj, and V12…k is the variance due to the 

interactions between all parameters. Using this variance decomposition, the first-order sensitivity Si 

and the total sensitivity index Sti are given as (see notations in Table 2): 
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𝑆𝑖 =
𝑉𝑋𝑖

[𝐸𝑋~𝑖
(𝑌|𝑋𝑖)]

𝑉(𝑌)
 (5) 

𝑆𝑡𝑖 =
𝐸𝑋~𝑖

[𝑉𝑋𝑖
(𝑌|𝑋~𝑖)]

𝑉(𝑌)
= 1 −

𝑉𝑋~𝑖
[𝐸𝑋𝑖

(𝑌|𝑋~𝑖)]

𝑉(𝑌)
. (6) 

Table 2. Notations used in the text. 

Symbol  Description 

N Sample size 

k Number of factors 

Xi Generic factor 

X N × k matrix of input factors 

𝑋~𝑖 N × (k − 1) matrix of all factors but Xi 

𝑉𝑋𝑖
(⋅), 𝐸𝑋𝑖

(⋅) Variance or mean of argument (·) taken over Xi 

𝑉𝑋~𝑖
(⋅), 𝐸𝑋~𝑖

(⋅) Variance or mean of argument (·) taken over all factors but Xi 

A Monte-Carlo-based procedure [16], using a quasi-random sampling of model factors, was 

used to obtain the total effects indices for each factor. Table 3 heuristically classifies the input 

parameters [34]. 

Table 3. Relevance of an input parameter from its global sensitivity index. 

Condition  Description  

0.8 ≤ Sti ≤ 1 Very important 

0.5 ≤ Sti < 0.8 Important 

0.3 ≤ Sti < 0.5 Unimportant 

0 ≤ Sti < 0.3 Irrelevant 

3.3. Design of Numerical Experiments 

We started our numerical experiments at a 1-D site located at the CT02 station, where algae 

blooms frequently occurred. The daily water temperature was interpolated based on monthly 

observations. As the N:P (weight) is greater than 15, CB is a phosphorus-controlled water body. 

Therefore, 11 parameters (Table 1) were selected for the GSA in order to reduce the computational 

cost of Sobol’s method. A free GSA tool for Sobol’s method, which has been developed by Cannavó 

[34], was used in this paper. 

The required sample size N is function of model complexity [35]. The sample size has been 

estimated by performing stochastic simulations for an increasing sample size and comparing mean 

value profiles for the main differential variables. In this study, we chose 2000 in GSA. The Sobol 

method’s total sensitivity indices have been calculated on a daily basis within a time horizon of one 

year, starting at the beginning of 1 January 2014. 

3.4. Initial Conditions 

The initial distributions for temperature and the biological variables were specified using the 

monthly observation data in 2014, in which water temperature: 12.5 °C; chlorophyll-a: 0.97 μg L−1; 

detritus: 0.24 mmolC L−1; dissolved oxygen: 9.11 mg L−1; nitrate: 1.76 mg L−1; ammonium: 0.08 mg L−1; 

phosphate: 0.11 mg L−1; and dissolved silicon: 8.16 mg L−1. The physical and biological state variables 

were assumed to be vertically and horizontally homogenous in the numerical domain. 

4. Results 

Chlorophyll-a and DO concentrations are important ecological and environmental indexes in 

lake water systems. The respective parameter sensitivities of these two outputs were calculated. 
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4.1. Simulation Result for the Water Quality Model 

The simulation results of the water quality model are shown in Figure 4. The simulation result 

of the chlorophyll-a concentration and the observational result have the same tendency, which both 

show that the main growth stage of algae is from May to October. The simulation result of DO 

concentration and the observational result also have similar trends, which stay at a higher 

concentration throughout the year, and there is no hypoxia. The model reflects the main change of 

the water environment, so the parameters reflect the water environment’s condition and process. The 

root mean square error (RMSE) is widely used to evaluate model performance. The RMSE of 

Chlorophyll-a is 12.51 μg L−1 and the RMSE of DO is 1.92 mg L−1. The parameter sensitivity will be 

analyzed in the following section. 

 

Figure 4. Sti profiles for Chlorophyll-a concentration and dissolved oxygen (DO). 

4.2. Parameter Sensitivity Temporal Variation for Chlorophyll-a 

The numerical results from the global sensitivity analysis are shown in Figure 5, which show the 

temporal variation of the total effect sensitivity indices (Sti) for chlorophyll-a. 

Chlorophyll-a is a state variable that shows the temporal variation throughout the entire time 

horizon. In summer, most of the parameters have an influence on the chlorophyll-a profile, but the 

main factors are r0 (maximum phytoplankton growth rate), T1 (lower optimum temperature for algal 

growth), Kp (phosphate half saturation constant for algal), and μ1 (phytoplankton linear mortality 

rate). Although none of these parameters can be classified as an important parameter according to 

Table 3, the summation over these four parameters explains around 82% of chlorophyll-a variance. 

The remaining parameters are irrelevant during this season. These indicate that the algae growth in 

summer is a combined effect of several factors instead of one key factor. In the early autumn, it is the 

same as in the summer, while in the middle and later autumn, T1 becomes a very important 

parameter. In winter and spring, T1 and μ1 become very important parameters alternatively. 
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Figure 5. Sti profiles for Chlorophyll-a concentration. 

4.3. Parameter Sensitivity Temporal Variation for DO 

DO concentration is also a state variable that shows the temporal variation throughout the entire 

time horizon (Figure 6), whereas it is different from phytoplankton. From July to November, which 

is from the middle summer to late autumn, the main factors are T1, μ1, bp (Phytoplankton basal 

respiration rate), and rDET (Detritus remineralization rate). The summation over these four parameters 

explains around 93% of DO concentration variance. The remaining parameters are irrelevant during 

this period. During the rest of the year, T1 and μ1 become very important parameters alternatively. 

 

Figure 6. Sti profiles for DO concentration. 

An important feature of the dynamic sensitivity analysis is that the influential parameter set 

changes with time, which indicates changes in the dynamic behavior of the model throughout the 

time horizon. As can be seen in these figures, the sum of Sti is seldom equal to 1, because the 

summation of the sensitivity indices is a measure of model additivity [8].  
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5. Discussion 

5.1. Ecological Implication from Parameter Sensitivity for Chlorophyll-a 

Previous studies have shown that background light attenuation, light limitation of 

phytoplankton growth-related parameters, and algae growth rates have been classified to be the main 

parameters in a number of freshwater and marine models with both local [36–39] and global [40,41] 

analyses. In our study, the maximum phytoplankton growth rate, the lower optimum temperature 

for algal growth, the phosphate half saturation constant for algae, and the phytoplankton linear 

mortality rate (r0, T1, Kp, and μ1) have a greater influence compared with other parameters, which 

indicates that the TGR tributary bay is similar to other water bodies and has difference with them as 

well. A GSA on Lake Dianchi [42], which is a shallow lake with an average depth of 5.2 m in China, 

shows that the max growth rate of algae, the basal respiration rate, the chlorophyll-a induced light 

extinction coefficient, and the lower bound of optimal temperature for algae have an important 

influence on Chlorophyll-a. These indicate that there are sufficient nutrient or no nutrient limits in 

Lake Dianchi. A GSA on the Paso de las Piedras Reservoir [43], which is a shallow reservoir with an 

average depth of 8.2 m in Argentina, shows that the most important parameters for phytoplankton 

are the organic phosphorus mineralization rate, phytoplankton death and respiration, and the 

background light attenuation coefficient. These indicate that there are also no nutrient limits due to 

organic phosphorus mineralization in the Paso de las Piedras Reservoir. Therefore, light is not an 

important parameter in the TGR compared with shallow lakes and reservoirs. 

The sensitivity differences between the shallow lake and reservoir and the deep reservoir 

suggest that the mechanisms of nutrient supply and the nutrient cycle are different. For the large 

deep reservoir, due to slow changes in nutrient supplies, the algae growth rely on external loading. 

In this case, nutrition limits have a great influence on the Chlorophyll-a and the phosphate half 

saturation constant becomes an influential parameter. For the shallow lake and reservoir, changes in 

nutrient supplies are relatively fast, external loading and the release of internal loading may be 

sufficient for algae growth, and the nutrition limits have a slight influence on the Chlorophyll-a; 

simultaneously, other environmental conditions, such as light, become more influential to the 

ecological system. 

Since none of the four parameters are a decisive factor, this suggests that the algae blooms in the 

TGR tributary bay may be caused by several factors and that its eutrophication mechanism is more 

complex. 

5.2. Ecological Implication from Parameter Sensitivity for DO 

Oxygen concentrations reflect the momentary balance between supply from photosynthesis on 

one hand and the metabolic processes that consume oxygen on the other. Previous studies have 

shown that the sensitive parameters for DO concentration are almost same as those for Chlorophyll-

a in shallow lakes [42], which are the algae growth rate, the Chlorophyll-a-induced light extinction 

coefficient, and the lower bound of optimal temperature for algae. The most influence parameters on 

DO concentration are different from Chlorophyll-a in this study, and these indicate that the DO bio-

chemistry processes may be different in this two-water system. 

The sensitivity differences between the shallow lake or reservoir and the deep reservoir suggest 

that the mechanism of DO supply and the DO cycle is different. For the large deep reservoir, the 

oxygen consumption by organic carbon remineralization has a great influence on the DO, and at some 

special time in the year, the oxygen consumption cannot be neglected compared with the supply by 

photosynthesis and external loading. For the shallow lake, the oxygen consumption by 

remineralization can be neglected compared with the supply by photosynthesis and external loading; 

in this case, algae growth has a great influence on the DO concentration, and they have the same 

sensitive parameters. 

6. Conclusions 
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In this study, Sobol’s method was applied to conduct a global sensitivity analysis for a water 

quality model of a TGR tributary bay. This method provides a quantitative analysis on factor 

sensitivity and interactions. The analysis focused on the response of chlorophyll-a and dissolved 

oxygen to 11 parameters. We developed the following conclusions: the results show that the 

chlorophyll-a is influenced mainly by the maximum phytoplankton growth rate, the lower optimum 

temperature for algal growth, the phosphate half saturation constant, and the phytoplankton linear 

mortality rate, while dissolved oxygen is influenced mainly by the maximum phytoplankton growth rate, 

the lower optimum temperature for algal growth, the phytoplankton basal respiration rate, and the 

detritus remineralization rate. Although none of these parameters can be classified as a single important 

parameter, the summation over the four parameters explains around 82% of chlorophyll-a and 93% of 

dissolved oxygen variance, respectively. The remaining parameters are irrelevant during the summer 

growth season. These indicate that the algae bloom in summer is a combined effect of several factors, 

instead of one key factor. The parameter sensitivity differences between the shallow lake and 

reservoir and the deep reservoir suggest that the mechanisms of the nutrient and dissolved oxygen 

cycles are different. 
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Appendix A 

The governing equations of CB ecological water quality model are given as: 

𝑑𝑃

𝑑𝑡
|

𝑏𝑖𝑜
=

𝑑𝑃

𝑑𝑡
|

𝑂2

𝑔𝑝𝑝

−
𝑑𝑃

𝑑𝑡
|

𝐷𝐸𝑇

𝑚𝑜𝑟

−
𝑑𝑃

𝑑𝑡
|

𝐷𝐸𝑇

𝑒𝑥𝑐

−
𝑑𝑃

𝑑𝑡
|

𝐶𝑂2

𝑟𝑒𝑠

 (A1) 

𝑑𝐷𝐸𝑇

𝑑𝑡
|

𝑏𝑖𝑜
=

𝑑𝐷𝐸𝑇

𝑑𝑡
|

𝑃

𝑚𝑜𝑟

+
𝑑𝐷𝐸𝑇

𝑑𝑡
|

𝑃

𝑒𝑥𝑐

−
𝑑𝐷𝐸𝑇

𝑑𝑡
|

𝐶𝑂2

𝑟𝑚𝑛

−
𝑑𝐷𝐸𝑇

𝑑𝑡
|

𝐶𝑂2

𝑑𝑒𝑛𝑖𝑡

− 𝑠𝑛𝑘(𝐷𝐸𝑇) (A2) 

𝑑𝐷𝑂

𝑑𝑡
|

𝑏𝑖𝑜
=

𝑑𝐷𝑂

𝑑𝑡
|

𝑃

𝑔𝑝𝑝

−
𝑑𝐷𝑂

𝑑𝑡
|

𝐶𝑂2

𝑟𝑒𝑠

−
𝑑𝐷𝑂

𝑑𝑡
|

𝑁𝑂3

𝑛𝑖𝑡

−
𝑑𝐷𝑂

𝑑𝑡
|

𝐶𝑂2

𝑟𝑚𝑛

+ 𝑎𝑖𝑟𝑓𝑙𝑢𝑥(𝐷𝑂) + 𝑠𝑒𝑑𝑓𝑙𝑢𝑥(𝐷𝑂) (A3) 

𝑑𝑁𝑂3

𝑑𝑡
|

𝑏𝑖𝑜
= −

𝑑𝑁𝑂3

𝑑𝑡
|

𝑃

𝑢𝑝𝑡

+
𝑑𝑁𝑂3

𝑑𝑡
|

𝑁𝐻4

𝑛𝑖𝑡

−
𝑑𝑁𝑂3

𝑑𝑡
|

𝑁2

𝑑𝑒𝑛𝑖𝑡

+ 𝑠𝑒𝑑𝑓𝑙𝑢𝑥(𝑁𝑂3) (A4) 

𝑑𝑁𝐻4

𝑑𝑡
|

𝑏𝑖𝑜
= −

𝑑𝑁𝐻4

𝑑𝑡
|

𝑃

𝑢𝑝𝑡

−
𝑑𝑁𝐻4

𝑑𝑡
|

𝑁𝑂3

𝑛𝑖𝑡

+
𝑑𝑁𝐻4

𝑑𝑡
|

𝐷𝐸𝑇

𝑟𝑚𝑛

+
𝑑𝑁𝐻4

𝑑𝑡
|

𝑃

𝑟𝑒𝑠

+
𝑑𝑁𝐻4

𝑑𝑡
|

𝐷𝐸𝑇

𝑑𝑒𝑛𝑖𝑡

+ 𝑠𝑒𝑑𝑓𝑙𝑢𝑥(𝑁𝐻4) (A5) 

𝑑𝑃𝑂4

𝑑𝑡
|

𝑏𝑖𝑜
= −

𝑑𝑃𝑂4

𝑑𝑡
|

𝑃

𝑢𝑝𝑡

+
𝑑𝑃𝑂4

𝑑𝑡
|

𝐷𝐸𝑇

𝑟𝑚𝑛

+
𝑑𝑃𝑂4

𝑑𝑡
|

𝑃

𝑟𝑒𝑠

+
𝑑𝑃𝑂4

𝑑𝑡
|

𝐷𝐸𝑇

𝑑𝑒𝑛𝑖𝑡

+ 𝑠𝑒𝑑𝑓𝑙𝑢𝑥(𝑃𝑂4) (A6) 

𝑑𝑆𝑖

𝑑𝑡
|

𝑏𝑖𝑜
= −

𝑑𝑆𝑖

𝑑𝑡
|

𝑃

𝑢𝑝𝑡

+
𝑑𝑆𝑖

𝑑𝑡
|

𝐷𝐸𝑇

𝑟𝑚𝑛

+
𝑑𝑆𝑖

𝑑𝑡
|

𝑃

𝑟𝑒𝑠

+
𝑑𝑆𝑖

𝑑𝑡
|

𝐷𝐸𝑇

𝑑𝑒𝑛𝑖𝑡

+ 𝑠𝑒𝑑𝑓𝑙𝑢𝑥(𝑆𝑖) (A7) 

where P, DET, DO, NO3, NH4, PO4 and Si are phytoplankton, detritus, dissolved oxygen, nitrate, 

ammonium, phosphate, and dissolved silicon, respectively. Superscript represents the biochemistry 

process, subscript represents the related variables. gpp, mor, exc, res, rmn, denit, nit and upt 
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represent gross primary production, respiration, excretion, mortality, remineralization, 

denitrification, nitrification and uptake. 

The mathematical expression for each term in the model are given below. 

Phytoplankton growth 

𝑑𝑃

𝑑𝑡
|

𝑂2

𝑔𝑝𝑝

= 𝑟𝑃𝑃 (A8) 

𝑟𝑃 = 𝑟0𝑓𝑃
𝑇𝑓𝑃

𝐼𝑓𝑃
𝑁,𝑃,𝑆𝑖 (A9) 

𝑓𝑃
𝑇 = {

𝑒−0.1×(𝑇−𝑇1)2
𝑇 < 𝑇1

1 𝑇1 ≤ 𝑇 ≤ 𝑇2

𝑒−0.1×(𝑇−𝑇2)2
𝑇 > 𝑇2

 (A10) 

𝐼𝑍 = 𝐼0𝑒−(𝐾𝑊+𝐾𝐶⋅𝑃)𝐷 (A11) 

𝑓𝑃
𝐼 =

𝐼𝑍

𝐼𝑜𝑝𝑡

𝑒
(1−

𝐼𝑍
𝐼𝑜𝑝𝑡

)
 (A12) 

𝑓𝑃
𝑁𝑂3 =

𝑁𝑂3 𝐾𝑁𝑂3
⁄

1 + 𝑁𝑂3 𝐾𝑁𝑂3
⁄ + 𝑁𝐻4 𝐾𝑁𝐻4

⁄
 (A13) 

𝑓𝑃
𝑁𝐻4 =

𝑁𝐻4 𝐾𝑁𝐻4
⁄

1 + 𝑁𝑂3 𝐾𝑁𝑂3
⁄ + 𝑁𝐻4 𝐾𝑁𝐻4

⁄
 (A14) 

𝑓𝑃
𝑁,𝑃,𝑆𝑖 = 𝑚𝑖𝑛 (𝑓𝑃

𝑁𝑂3 + 𝑓𝑃
𝑁𝐻4 ,

𝑃𝑂4

𝐾𝑃 + 𝑃𝑂4

,
𝑆𝑖

𝐾𝑆 + 𝑆𝑖
) (A15) 

Phytoplankton mortality 

𝑑𝑃

𝑑𝑡
|

𝐷𝐸𝑇

𝑚𝑜𝑟

= 𝜇1𝑃 + 𝜇2𝑃2 (A16) 

Phytoplankton excretion 

𝑑𝑃

𝑑𝑡
|

𝐷𝐸𝑇

𝑒𝑥𝑐

= 𝛼𝑃

𝑑𝑃

𝑑𝑡
|

𝑂2

𝑔𝑝𝑝

 (A17) 

Phytoplankton respiration 

𝑑𝑃

𝑑𝑡
|

𝐶𝑂2

𝑟𝑒𝑠

= 𝑓𝑃
𝑇𝑏𝑃𝑃 + 𝛾𝑃(1 − 𝛼𝑃)

𝑑𝑃

𝑑𝑡
|

𝑂2

𝑔𝑝𝑝

 (A18) 

Detritus remineralization 

𝑑𝐷𝐸𝑇

𝑑𝑡
|

𝐶𝑂2

𝑟𝑚𝑛

= (1 −
1

(𝐷𝑂 𝑂𝑐𝑟⁄ )𝑑𝑐𝑟 + 1
) 𝑟𝐷𝐸𝑇 (1 + 𝑇𝑠𝑐𝑑

𝑇2

𝑇ℎ𝑠𝑟
2 + 𝑇2

) (A19) 

Nitrification process 

𝑑𝑁𝐻4

𝑑𝑡
|

𝑁𝑂3

𝑛𝑖𝑡

= 𝑟𝑛𝑖𝑡 (1 −
1

(𝐷𝑂 𝑂𝑐𝑟⁄ )𝑑𝑐𝑟 + 1
) 𝑒𝑇𝑠𝑐𝑛𝑇𝑁𝐻4 (A20) 

Phytoplankton uptake nutrients 

𝑑𝑃𝑂4

𝑑𝑡
|

𝑃

𝑢𝑝𝑡

=
𝑑𝑃

𝑑𝑡
|

𝑂2

𝑔𝑝𝑝

⋅ 𝑅𝑃𝐶 (A21) 

𝑑𝑁𝑂3

𝑑𝑡
|

𝑃

𝑢𝑝𝑡

=
𝑑𝑃

𝑑𝑡
|

𝑂2

𝑔𝑝𝑝

⋅
𝑁𝑂3 𝐾𝑁𝑂3

⁄

𝑁𝑂3 𝐾𝑁𝑂3
⁄ + 𝑁𝐻4 𝐾𝑁𝐻4

⁄
⋅ 𝑅𝑁𝐶 (A22) 
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𝑑𝑁𝐻4

𝑑𝑡
|

𝑃

𝑢𝑝𝑡

=
𝑑𝑃

𝑑𝑡
|

𝑂2

𝑔𝑝𝑝

⋅
𝑁𝐻4 𝐾𝑁𝐻4

⁄

𝑁𝑂3 𝐾𝑁𝑂3
⁄ + 𝑁𝐻4 𝐾𝑁𝐻4

⁄
⋅ 𝑅𝑁𝐶  (A23) 

𝑑𝑆𝑖

𝑑𝑡
|

𝑃

𝑢𝑝𝑡

=
𝑑𝑃

𝑑𝑡
|

𝑂2

𝑔𝑝𝑝

⋅ 𝑅𝑆𝐶 (A24) 

Release nutrient process of remineralization 

𝑑𝑁𝐻4

𝑑𝑡
|

𝐷𝐸𝑇

𝑟𝑚𝑛

=
𝑑𝐷𝐸𝑇

𝑑𝑡
|

𝐶𝑂2

𝑟𝑚𝑛

⋅ 𝑅𝑁𝐶 (A25) 

𝑑𝑃𝑂4

𝑑𝑡
|

𝐷𝐸𝑇

𝑟𝑚𝑛

=
𝑑𝐷𝐸𝑇

𝑑𝑡
|

𝐶𝑂2

𝑟𝑚𝑛

⋅ 𝑅𝑃𝐶 (A26) 

𝑑𝑆𝑖

𝑑𝑡
|

𝐷𝐸𝑇

𝑟𝑚𝑛

=
𝑑𝐷𝐸𝑇

𝑑𝑡
|

𝐶𝑂2

𝑟𝑚𝑛

⋅ 𝑅𝑆𝐶 (A27) 

Release nutrient process of phytoplankton respiration 

𝑑𝑁𝐻4

𝑑𝑡
|

𝑃

𝑟𝑒𝑠

=
𝑑𝑃

𝑑𝑡
|

𝐶𝑂2

𝑟𝑒𝑠

⋅ 𝑅𝑁𝐶 (A28) 

𝑑𝑃𝑂4

𝑑𝑡
|

𝑃

𝑟𝑒𝑠

=
𝑑𝑃

𝑑𝑡
|

𝐶𝑂2

𝑟𝑒𝑠

⋅ 𝑅𝑃𝐶 (A29) 

𝑑𝑆𝑖

𝑑𝑡
|

𝑃

𝑟𝑒𝑠

=
𝑑𝑃

𝑑𝑡
|

𝐶𝑂2

𝑟𝑒𝑠

⋅ 𝑅𝑆𝐶 (A30) 

DO ecological process 

𝑑𝐷𝑂

𝑑𝑡
|

𝑃

𝑔𝑝𝑝

=
𝑑𝑃

𝑑𝑡
|

𝑂2

𝑔𝑝𝑝

⋅ 𝑚𝐶𝑂 (A31) 

𝑑𝐷𝑂

𝑑𝑡
|

𝐶𝑂2

𝑟𝑒𝑠

=
𝑑𝑃

𝑑𝑡
|

𝐶𝑂2

𝑟𝑒𝑠

⋅ 𝑚𝐶𝑂 (A32) 

𝑑𝐷𝑂

𝑑𝑡
|

𝑁𝑂3

𝑛𝑖𝑡

=
𝑑𝑁𝐻4

𝑑𝑡
|

𝑁𝑂3

𝑛𝑖𝑡

⋅ 𝑚𝑁𝑂 (A33) 

𝑑𝐷𝑂

𝑑𝑡
|

𝐶𝑂2

𝑟𝑚𝑛

=
𝑑𝐷𝐸𝑇

𝑑𝑡
|

𝐶𝑂2

𝑟𝑚𝑛

⋅ 𝑚𝐶𝑂 (A34) 

Denitrification process 

𝑑𝑁𝑂3

𝑑𝑡
|

𝑁2

𝑑𝑒𝑛𝑖𝑡

= 𝑟𝑑𝑒𝑛

1

(𝐷𝑂 𝑂𝑐𝑟⁄ )𝑑𝑐𝑟 + 1
⋅

𝐷𝐸𝑇

𝐷𝐸𝑇 + 𝐾𝐷𝐸𝑇

⋅
𝑁𝑂3

𝑁𝑂3 + 𝐾𝑁𝑂3

 (A35) 

𝑑𝑁𝐻4

𝑑𝑡
|

𝐷𝐸𝑇

𝑑𝑒𝑛𝑖𝑡

=
𝑑𝑁𝑂3

𝑑𝑡
|

𝑁2

𝑑𝑒𝑛𝑖𝑡

⋅ 𝑑𝑁𝑁 (A36) 

𝑑𝑃𝑂4

𝑑𝑡
|

𝐷𝐸𝑇

𝑑𝑒𝑛𝑖𝑡

=
𝑑𝑁𝑂3

𝑑𝑡
|

𝑁2

𝑑𝑒𝑛𝑖𝑡

⋅ 𝑑𝑃𝑁 (A37) 

𝑑𝑆𝑖

𝑑𝑡
|

𝐷𝐸𝑇

𝑑𝑒𝑛𝑖𝑡

=
𝑑𝑁𝑂3

𝑑𝑡
|

𝑁2

𝑑𝑒𝑛𝑖𝑡

⋅ 𝑑𝑆𝑁 (A38) 
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𝑑𝐷𝐸𝑇

𝑑𝑡
|

𝐶𝑂2

𝑑𝑒𝑛𝑖𝑡

=
𝑑𝑁𝑂3

𝑑𝑡
|

𝑁2

𝑑𝑒𝑛𝑖𝑡

⋅ 𝑑𝐷𝑁 (A39) 
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