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Abstract: This study assessed the performances of 34 Coupled Model Intercomparison Project
Phase 5 (CMIP5) general circulation models (GCMs) in reproducing observed precipitation over the
Lower Mekong Basin (LMB). Observations from gauge-based data of the Asian Precipitation-Highly
Resolved Observational Data Integration Towards Evaluation of Water Resources (APHRODITE)
precipitation data were obtained from 1975 to 2004. An improved score-based method was used
to rank the performance of the GCMs in reproducing the observed precipitation over the LMB.
The results revealed that most GCMs effectively reproduced precipitation patterns for the mean
annual cycle, but they generally overestimated the observed precipitation. The GCMs showed good
ability in reproducing the time series characteristics of precipitation for the annual period compared
to those for the wet and dry seasons. Meanwhile, the GCMs obviously reproduced the spatial
characteristics of precipitation for the dry season better than those for annual time and the wet season.
More than 50% of the GCMs failed to reproduce the positive trend of the observed precipitation for
the wet season and the dry season (approximately 52.9% and 64.7%, respectively), and approximately
44.1% of the GCMs failed to reproduce positive trend for annual time over the LMB. Furthermore,
it was also revealed that there existed different robust criteria for assessing the GCMs’ performances
at a seasonal scale, and using multiple criteria was superior to a single criterion in assessing the
GCMs’ performances. Overall, the better-performed GCMs were obtained, which can provide useful
information for future precipitation projection and policy-making over the LMB.
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1. Introduction

Precipitation is a key climate variable in studying the effects of climate change [1]. Changes
in precipitation patterns induced by climate change directly or indirectly cause variations in the
hydrological cycle and ecological system, as well as in socioeconomic development and human
health [2–5]. Under the business-as-usual (BAU) scenario, the world will face a 40% water
deficit by 2030 [6]. Therefore, climate change poses severe challenges for humans in facing their
existence and development. Thus, climate change assessments have been conducted through
precipitation simulations, and the response measures to climate change effects have appeared to
be particularly significant.
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General circulation models (GCMs) are valuable tools for studying past, present, and future
climate trends and variability [7,8]. The fifth phase of the Coupled Model Intercomparison Project 5
(CMIP5) of the World Climate Research Programme (WCRP) provided numerical numbers of GCMs
compared to CMIP3 GCMs to enhance the understanding of the mechanisms of climate system
change and to improve the capability to simulate climate change [9–12]. For example, Sperber et al.
2013 [9] showed that the CMIP5 multimodel mean (MMM) had better skills in simulating pattern
correlations with respect to observations than the CMIP3 MMM did. Sillmann et al. 2013 [10] found
that there existed some improvements of the CMIP5 ensemble in the representation of the magnitude
of precipitation indices compared to the CMIP3. Meher et al. 2017 [12] showed that CMIP5 GCMs
were more skillful in simulating the annual cycle of interannual variability of precipitation compared
to CMIP3 GCMs over the Western Himalayan Region. Additionally, a study by Hasson et al. 2016 [13]
showed that CMIP5 GCMs had improved skills in describing the seasonality of precipitation regimes
compared to their predecessors over the Asian monsoon region, which includes the Mekong River
Basin, but the performance of the GCMs varied for different river basins. Because of the existence
of uncertainty in precipitation simulations, it is necessary to know how well GCMs can effectively
simulate precipitation on a regional scale such as the river basin before projecting future climate change.

Numerous scholars have assessed the performance of the CMIP5 GCMs in simulating precipitation
at the global scale [14–18], regional scale [11,19–21], and subregional scale [12,22–24]. Thus far, the
multimodel ensembles of CMIP5 for projection of climate variables have been effectively used [20],
and some authors consider these ensembles to be better than individual GCM [25]. However, some
studies have suggested that multimodel ensembles are deficient in their projection [14,26], and thus it
may be essential to consider acceptable GCMs for specific assessments rather than simple multimodel
ensembles [8]. Moreover, ensemble methods could be applied on the best-performing GCMs [21].
Thus, assessing the performance of GCMs also provided useful information for future climate change
studies with respect to the application of multimodel ensembles.

Climate change may increase the frequency and intensity of extreme hydrological events, as
well as the frequency of years with above-normal monsoons or extremely low precipitation [27]. In
the past few decades, the demand for water resources has increased with population growth and
economic development [28]. Moreover, further increases in population and accelerated urbanization
have exacerbated the demand for water resources [29]. Additionally, changes in precipitation are
likely to have great impacts on the water cycle system, water resources, and agricultural production
of the Lower Mekong Basin (LMB) [5,30,31]. Therefore, assessing GCM performances in simulating
precipitation is essential for future precipitation change and policy-making over the LMB. In previous
studies, assessing GCM performance has been mainly based on satellite data rather than gauge-based
data [17,24,32,33], and the same for the LMB [13]. However, satellite data likely underestimated
observed precipitation over the Mekong River Basin [34]. Thus, we used gauge-based data of the Asian
Precipitation-Highly Resolved Observational Data Integration Towards Evaluation of Water Resources
(APHRODITE) [35] as the observational data for assessing GCM performance over the LMB.

In addition, few studies have focused on the CMIP5 GCM assessments at a river basin of the Asian
monsoon regions such as the LMB, as well as dividing the time scales into the wet season, dry season,
and annual time to make comprehensive assessments. Therefore, this study assessed the performance
of CMIP5 GCMs in simulating observed precipitation over the LMB to provide useful guidance for the
assessment of climate change effects.

2. Materials and Methods

2.1. Study Area

The Lower Mekong Basin (Figure 1) is located in Southeast Asia within the countries of Laos,
Thailand, Cambodia, and Vietnam [36]. It has a catchment area of about 630,000 km2, with a total
length of about 2668 km. The climate of this area belongs to the tropical monsoon climate, with the
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wet season from May to October, and the dry season from November to the following April. Mean
annual precipitation ranges from less than 1000 mm in northeast Thailand to more than 3500 mm in
north-central Laos [37]. High terrain is predominant in the Laos, whereas flat terrain is predominant
in northeast Thailand, Cambodia, and the delta in Vietnam (Figure 1).
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Figure 1. Location of the Lower Mekong Basin (LMB) and observed stations of the Global Surface
Summary of the Day (GSOD), the Global Historical Climatology Network (GHCN), and the 21 selected
grids over the LMB (shade of blue).

2.2. GCM Data

Thirty-four GCMs from CMIP5 were used in this study [38], including precipitation outputs,
specific humidity, and wind (eastward wind and northward wind) data from 1975 to 2004. Table 1
gives an overview of the home institution of the models and their resolution. Further details can be
found at the CMIP5 website (http://cmip-pcmdi.llnl.gov/cmip5/index.html).

http://cmip-pcmdi.llnl.gov/cmip5/index.html
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Table 1. Basic information of the Coupled Model Intercomparison Project 5 (CMIP5) models used in this study.

Model Name ID Institution Resolution
(Lon × Lat) Time Range

ACCESS1.0 1 Commonwealth Scientific and Industrial Research Organization/Bureau of Meteorology, Australia 1.88◦ × 1.25◦ 1850–2005
ACCESS1.3 2 1.88◦ × 1.25◦ 1850–2005

BCC-CSM1.1 3 Beijing Climate Center, China Meteorological Administration, China 2.81◦ × 2.79◦ 1850–2012
BNU-ESM 4 College of Global Change and Earth System Science, Beijing Normal University, China 2.81◦ × 2.79◦ 1850–2005
CanESM2 5 Canadian Centre for Climate Modelling and Analysis, Canada 2.81◦ × 2.79◦ 1850–2005
CCSM4 6 National Center for Atmospheric Research, USA 1.25◦ × 0.94◦ 1850–2005

CESM1(CAM5) 7 1.25◦ × 0.94◦ 1850–2005
CESM1(WACCM) 8 2.50◦ × 1.88◦ 1850–2005

CMCC-CMS 9 Centro Euro-Mediterraneo sui Cambiamenti Climatici, Italy 1.88◦ × 1.88◦ 1850–2005
CNRM-CM5 10 Centre National de Recherches Météorologiques Centre Européen de Recherche et Formation Avancée en Calcul Scientifique, France 1.41◦ × 1.40◦ 1850–2005

CSIRO-Mk3.6.0 11 Commonwealth Scientific and Industrial Research Organization/Queensland Climate Change Centre of Excellence, Australia 1.88◦ × 1.88◦ 1850–2005
EC-EARTH 12 EC-EARTH consortium published at the Irish Centre for High-End Computing, Netherlands/Ireland 1.13◦ × 1.13◦ 1850–2009
FGOALS-g2 13 Institute of Atmospheric Physics, Chinese Academy of Sciences, China 2.81◦ × 2.81◦ 1850–2005

FIO-ESM 14 The First Institute of Oceanography, SOA, China 2.80◦ × 2.80◦ 1850–2005
GFDL-CM3 15 NOAA Geophysical Fluid Dynamics Laboratory, USA 2.50◦ × 2.00◦ 1860–2005

GFDL-ESM2G 16 2.00◦ × 2.02◦ 1861–2005
GFDL-ESM2M 17 2.50◦ × 2.02◦ 1861–2005

GISS-E2-H 18 NASA/GISS Goddard Institute for Space Studies, USA 2.50◦ × 2.00◦ 1850–2005
GISS-E2-R 19 2.50◦ × 2.00◦ 1850–2005

HadGEM2-AO 20 National Institute of Meteorological Research, Korea Meteorological Administration, Korea 1.88◦ × 1.25◦ 1860–2005
HadGEM2-CC 21 Met Office Hadley Center, UK 1.88◦ × 1.25◦ 1859–2005
HadGEM2-ES 22 1.88◦ × 1.25◦ 1859–2005

INMCM4.0 23 Russian Academy of Sciences, Institute for Numerical Mathematics, Russia 2.00◦ × 1.50◦ 1850–2005
IPSL-CM5A-LR 24 Institute Pierre-Simon Laplace, France 3.75◦ × 1.89◦ 1850–2005
IPSL-CM5A-MR 25 2.50◦ × 1.27◦ 1850–2005
IPSL-CM5B-LR 26 3.75◦ × 1.89◦ 1850–2005

MIROC4h 27 Atmosphere and Ocean Research Institute (the University of Tokyo), National Institute for Environmental Studies, and Japan Agency
for Marine-Earth Science and Technology, Japan 0.56◦ × 0.56◦ 1950–2005

MIROC5 28 1.41◦ × 1.40◦ 1850–2012
MIROC-ESM 29 2.81◦ × 2.79◦ 1850–2005

MIROC-ESM-CHEM 30 2.81◦ × 2.79◦ 1850–2005
MPI-ESM-LR 31 Max Planck Institute for Meteorology, Germany 1.88◦ × 1.87◦ 1850–2005
MPI-ESM-MR 32 1.88◦ × 1.87◦ 1850–2005
MRI-CGCM3 33 Meteorological Research Institute, Japan 1.13◦ × 1.12◦ 1850–2005
NorESM1-M 34 Bjerknes Centre for Climate Research, Norwegian Climate Center, Norway 2.50◦ × 1.89◦ 1850–2005
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2.3. Precipitation Data

This study used gauge-based data of the APHRODITE precipitation data as the observational
data. APHRODITE precipitation data are gauge-based daily data, with a high horizontal resolution
of 0.25◦ × 0.25◦ [35]. APHRODITE has been proven to be a better-gridded precipitation product
for the Mekong River Basin, contributing to studies such as climate change, Asian water resources,
statistical downscaling, forecast improvements, verification of numerical model simulation, and
satellite precipitation estimates [34]. Daily precipitation data of the observed stations from the Global
Surface Summary of the Day (GSOD) and the Global Historical Climatology Network (GHCN) were
obtained from the National Climatic Data Center (https://gis.ncdc.noaa.gov). Precipitation of the
APHRODITE, GSOD, and GHCN were calculated for monthly data. As shown in Figure 2, monthly
precipitation of GSOD and GHCN showed significant correlation with APHRODITE precipitation at a
significance of 0.01, with an R-squared (R2) of 0.834, indicating that APHRODITE precipitation was
suitable for assessing the GCMs’ performances over the LMB.
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Figure 2. Correlation of the Asian Precipitation-Highly Resolved Observational Data Integration
Towards Evaluation of Water Resources (APHRODITE) and the observed stations for monthly
precipitation over the LMB during the period of 1975–2004.

Due to the various resolutions of the GCMs and the observations, monthly precipitation outputs
for all of the GCMs and APHRODITE precipitation data were converted to 2.5 × 2.5 grid using bilinear
interpolation, and 21 grids were selected for comparison (Figure 1). In this study, we considered
1975–2004 as the reference period, including the periods of annual time, January to December; the wet
season, May to October; and the dry season, November to the following April. As for the APHRODITE
precipitation, precipitation of the mean wet season and dry season was 1213.8 mm and 216.9 mm,
which accounted for approximately 86.1% and 13.9% the annual precipitation over the LMB. The
sample size for the annual time, the wet season, and the dry season were 360, 180, and 180, respectively.
The LMB precipitation data were calculated by taking the arithmetic mean of the 21 grids.

2.4. National Centers for Environmental Prediction (NCEP) Reanalysis Data

Monthly specific humidity and wind data were used from NCEP reanalysis data (https://www.
esrl.noaa.gov/psd/) from 1975 to 2004. In order to explain the differences of precipitation simulation
over the LMB, we explored the three best-ranked GCMs (overall results) in reproducing the main
features of atmospheric circulation over the LMB. Spatial distributions of mean monthly specific
humidity and wind at the 850 hPa level for the wet season and the dry season of the period 1975–2004

https://gis.ncdc.noaa.gov
https://www.esrl.noaa.gov/psd/
https://www.esrl.noaa.gov/psd/
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over the LMB were calculated to make comparisons with the corresponding results from the NCEP
reanalysis data.

2.5. Methods

Multiple criteria were used for the assessment, including root mean square error (RMSE),
percentage bias (PBIAS), linear correlation coefficient (r) for monthly series and for spatial distribution,
the Mann–Kendall test statistic (Z), Sen’s slope, the Brier score (BS), and the significance score (Sscore).
The main assessment steps were as follows:

First, we calculated the statistics of the eight criteria. Then, based on the statistics of the criteria,
we used an improved rank score (RS) method [39] to calculate the ranking scores of the GCMs’
performances by a single criterion. Finally, the overall ranking scores of the GCMs’ performances
were calculated using ranking scores of the GCMs’ performances by multiple criteria. The specific
calculation methods were as follows:

RMSE, a common way for representing the difference between the GCM and the observed values,
was defined as follows:

RMSE =

√
∑n

i=1(pmi− poi)2

n
(1)

where pmi and poi represent the monthly precipitation for the GCM and the observed value of the
LMB at i time step, respectively, and n represents the total number of the time steps. A smaller RMSE
value indicated a relatively better performance of a GCM.

The PBIAS was used to represent the tendency of the difference between the GCM and the
observed values, and was defined as follows:

PBIAS(%) =
∑n

i=1(pmi− poi)
∑n

i=1 poi
×100 (2)

The variables in the formula are the same as those described in Equation (1). A PBIAS value closer
to zero indicated a relatively better performance of a GCM.

The linear correlation coefficient (r) was used to assess both the monthly series and spatial
distribution of precipitation between the observation and GCMs. For the monthly series correlation
coefficient (r), the correlation coefficient was calculated between observed and modeled long-term
monthly mean values, and the sample sizes were 6, 6, and 12 for the wet season, dry season, and annual
time, respectively. For the spatial distribution correlation coefficient (r), the sample sizes were 21 for all
the three time periods, and r was calculated according to the 21 grids based on the observation and
GCMs, including the mean annual values, mean values for the annual wet season, and mean values
for the annual dry season. The formula was defined as follows:

r = ∑n
i=1(pmi− pm)(poi− po)√

∑n
i=1(pmi− pm)2 ×∑n

i=1(poi− po)2
(3)

Here, for the monthly series correlation coefficient (r), pmi and poi represent the monthly
precipitation for the GCM and the observation of the LMB at i month, respectively, and the pm
and po represent the mean values for precipitation of the GCM and the observation, respectively.
For the spatial distribution correlation coefficient (r), pmi and poi represent precipitation for the GCM
and the observation of the mean annual values, mean values for the annual wet season, or mean values
for the annual dry season at i grid, respectively, and pm and po represent the corresponding mean
values for precipitation of the GCM and the observation of all grids, respectively. A larger value of r
indicated a relatively better performance of a GCM.

The Mann–Kendall test statistic (Z) and Sen’s slope were used to obtain the trends and their
magnitudes for GCMs and observation. Thus, the effectiveness of the GCMs in representing the
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observed trends could be determined. We used the annual time series for the analysis, which included
the annual wet season values, annual dry season values, and annual values, which we attributed to
the wet season, dry season, and annual time for this analysis, respectively.

The Mann–Kendall test statistic (Z) is defined as follows [40]:

Z =


S−1√
var(S)

, S > 0

0, S = 0
S+1√
var(S)

, S < 0

(4)

S =∑ n−1
i=1 ∑ n

k=i+1sgn(xk − xi) (5)

Here xk and xi are the sequential precipitation values, n is the length (29) of the dataset,

sgn(θ) =


1, θ > 0
0, θ = 0
−1, θ < 0

(6)

and

var[S] =

[
n(n− 1)(2n + 5)−∑

t
t(t− 1)(2t + 5)

]
/18 (7)

where t is the extent of any given tie, and ∑ denotes the summation over all ties.
Sen’s slope was defined as follows [41,42]:

β = Median
(

xi − xj

i− j

)
, ∀j < i (8)

where 1 < j < i < n, and the slope estimator β represents the median of the entire data set.
The BS and Sscore were used to assess the GCM probability density functions (PDFs) of monthly

precipitation. The formulas were defined as follows:

BS =
∑n

i =1(Bmi− Boi)2

n
(9)

Sscore = ∑ n
i=1Minimum(Bmi,Boi) (10)

Here, Bmi and Boi represent the probability of the GCM and observed values at the ith of each
bin, respectively, and n is the number of bins, which was set as 30 according to the data range. BS is a
measurement of mean squared error for probability prediction [43], and Sscore is a measurement of the
degree of overlap between the simulated probability distribution and the observed value [44]. Thus,
a smaller BS value and a larger Sscore value indicated relatively better performance of a GCM [45].

As for the RS method, a smaller RMSE value for the relative error indicates better performance
of a GCM, as does a larger r value of the non-error index for the correlation coefficient (r), which can
easily lead to inconsistent assessment results [39,45]. The improved RS distinguished the inconsistency
between the relative error index and the nonrelative error index, which could be used for the assessment
of multiple criteria and climatic variables to synthetically assess the performance of GCMs in applicable
regions [39]. The improved RS of each assessment criterion could be calculated according to its statistic
as follows [39]:

RSi =

 1− Ti−Tmin
Tmax−Tmin

, T represents the relative error index

Ti−Tmin
Tmax−Tmin

, T represents the non-relative error index
(11)
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Here, RSi represents the GCM score calculated by the assessment criterion i. For the relative
error indices of RMSE, PBIAS, and BS, Ti represents the absolute value of the statistic for a GCM,
and Tmin and Tmax represent the corresponding minimum and maximum values, respectively, in all
GCMs. For the relative error indices of Z and Slope, Ti represents the absolute error of the statistic
calculated between GCM and observation, and Tmin and Tmax represent the corresponding minimum
and maximum values, respectively, in all GCMs. For the nonrelative error index of correlation
coefficient (r) and Sscore, Ti represents the absolute value of the statistic for a GCM, and Tmin and Tmax

represent the corresponding minimum and maximum values, respectively, in all GCMs.
Then, the RS for precipitation could be calculated as follows:

RSpw = ∑ n
i=1

RSi ×Wi

Ws
, RSpd = ∑ n

i=1
RSi ×Wi

Ws
, RSpa = ∑ n

i=1
RSi ×Wi

Ws
(12)

Here, RSpw, RSpd, and RSpa represent the RS of precipitation for the wet season, the dry season,
and the annual time, respectively. Where n = 8, i represents an assessment criterion, with 1-RMSE,
2-PBIAS, 3-Z, 4-Slope, 5-r for monthly distribution, 6-r for spatial distribution, 7-BS, and 8-Sscore,
respectively. Wi represents the weight for an assessment criterion, and Ws represents the sum weight
of all assessment criteria. Z and Slope were part of the trend analysis, and BS and Sscore were part of
the PDF analysis. Thus, we set a 0.5 weight for Z, Slope, BS, and Sscore, and a 1.0 weight for RMSE,
PBIAS, r for monthly distribution, and r for spatial distribution.

According to RSi, the overall RS for the criterion RSio could be calculated as follows:

RSio =
RSiw × 0.5 + RSid × 0.5 + RSia × 1

2
(13)

Here, RSiw, RSid, and RSia represent the RSi for the wet season, dry season, and annual time,
respectively. We set 0.5, 0.5, and 1 as their respective weights.

Then, the overall RS for precipitation (RSpo) could be calculated as follows:

RSpo = ∑ n
i=1

RSio ×Wi

Ws
(14)

Here, the variables are the same as those defined for Equation (12).

3. Results

3.1. Annual Cycle of Precipitation

Precipitation variation for the observation and 34 GCMs in the mean annual cycle of the period
1975–2004 over the LMB is shown in Figure 3. Most of the GCMs effectively reproduced the single-peak
pattern of precipitation for the mean annual cycle, with the mean maximum precipitation of the
observation occurring in August (247.1 mm), whereas the mean minimum occurred in January
(12.6 mm) over the LMB. The mean annual precipitation of the observation over the LMB was
1430.7 mm, whereas the values for the GCMs ranged from 1379.7 mm to 2022.9 mm. Of the 34 GCMs,
29 (approximately 85.3%) had higher mean annual precipitation than the observation. Precipitation of
the mean wet season and dry season for the observation for the LMB was 1213.8 mm and 216.9 mm,
whereas the values for the GCMs ranged from 1083.5 mm to 1701.9 mm, and 115.1 mm to 559.6 mm,
respectively. Of the 34 GCMs, 29 and 21, or approximately 85.3% and 61.8%, had higher precipitation
than the observation for the wet season and the dry season, respectively. This indicated that the GCMs
tended to overestimate precipitation compared to the observation, especially for the wet season.
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3.2. Characteristics of the Statistics of the Criteria

The statistics of the criteria for precipitation concerning the observation and the GCMs simulation
were calculated and are shown in terms of scatter plots for the wet season, dry season, and annual
time (Figure 4, Figure 5, and Figure 6, respectively). The RMSE was 36.0–97.5 mm, 19.2– 48.8 mm, and
45.4–100.4 mm for the wet season, dry season, and annual time, respectively, with maximum mean and
median values of 61.0 mm and 55.5 mm for the annual time, followed by 53.5 mm and 47.4 mm for the
wet season, and the minimum values of 27.7 mm and 25.2 mm for the dry season. MIROC-ESM-CHEM,
HadGEM2-ES, and IPSL-CM5A-MR had the smallest RMSE values, whereas BCC-CSM1.1, INMCM4.0,
and BCC-CSM1.1 had the largest RMSE values for the wet season, dry season, and the annual time,
respectively. The PBIAS was −10.7–40.2%, −46.9–158.0%, and −3.6–41.4% for the wet season, dry
season, and annual time, respectively, with positive mean and median values for the three time periods
of 9.2% and 5.5%, 31.8% and 22.1%, and 12.6% and 11.3%, respectively. In the same respective periods,
28, 21, and 29 (approximately 82.4%, 61.8%, and 85.3%, respectively) of the 34 GCMs had positive
PBIAS values, indicating that most of the GCMs overestimated the observation for the wet season
and the annual time and a small majority of the GCMs overestimated the observation for the dry
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season. CESM1(CAM5), ACCESS1.3, and HadGEM2-CC had the lowest absolute PBIAS values at
0.2%, 0.003%, and 0.8%, respectively, for the wet season, dry season, and annual time, indicating good
simulation of the observed precipitation. However, MIROC4h, INMCM4.0, and MIROC4h had the
highest PBIAS values for the wet season, dry season, and annual time, at 40.2%, 158.0%, and 41.4%,
respectively, which represented poor simulation of the observed precipitation.
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The monthly series r was obviously high in the annual time and lower for the wet and dry seasons,
with mean absolute values of 0.96, 0.86, and 0.84, respectively. Moreover, no obvious difference was
noted among GCMs for the annual time due to the absolute r values range of 0.89 to 0.99, indicating
that GCMs had good ability in simulating the time series characteristics of precipitation for the annual
time. Of the 34 GCMs, 28 and 25, or approximately 82.4% and 73.5%, had relatively higher absolute r
values higher than 0.8 for the wet and dry seasons, indicating that GCMs represented a relatively better
ability in reproducing the time series characteristics of precipitation for the dry season compared to
those for the wet season. NorESM1-M, IPSL-CM5A-LR, and IPSL-CM5A-LR had the highest absolute
r values for the wet season, dry season, and annual time, at 0.99, 0.99, and 0.99, respectively, but
showed the lowest values for GISS-E2-H, MIROC-ESM, and IPSL-CM5B-LR, at 0.36, 0.50, and 0.89,
respectively. The spatial correlation r for the dry season was obviously higher than that for the annual
time and the wet season, with mean absolute values of 0.69, 0.44, and 0.34, respectively. Of the
34 GCMs, all had an absolute r value higher than 0.5 for the dry season, whereas 5 and 12 of the GCMs,
or approximately 14.7% and 35.3%, had absolute r values higher than 0.5 for the wet season and the
annual time, respectively. This phenomenon was also detected in a monsoon region that exhibited
low spatial correlation for the wet season [12]. CMCC-CMS, EC-EARTH, and EC-EARTH had the
highest absolute r values for the wet season, the dry season, and the annual time, at 0.63, 0.90, and
0.71, respectively, whereas the lowest were shown by MIROC4h, INMCM4.0, and IPSL-CM5B-LR, at
0.02, 0.51, and 0.03, respectively.

The observed precipitation showed positive trends for the wet season, the dry season, and the
annual time, with a Z statistic of 0.21, 1.28, and 0.75, and a Sen’s slope of 0.61 mm/year, 1.32 mm/year,
and 1.71 mm/year, respectively, without showing the trend at the 0.05 or 0.01 significance level. Of the
34 GCMs, 16, 12, and 19 were able to reproduce the positive trend of observed precipitation for the wet
season, the dry season, and the annual time. INMCM4.0, GISS-E2-H, and MPI-ESM-LR showed the
smallest absolute error of the Z statistic compared to the observation, with 0, 0.07, and 0, respectively,
whereas IPSL-CM5B-LR, GFDL-CM3, and GFDL-CM3(FGOALS-g2) showed the largest absolute error
at 2.0, 4.0, and 2.7 (2.7), respectively. GISS-E2-H, IPSL-CM5A-LR, and BNU-ESM showed the smallest
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absolute error of the Sen’s slope compared to the observation, with 0.06, 0.51, and 0.02, respectively,
whereas FGOALS-g2, MIROC4h, and FGOALS-g2 showed the largest absolute error at 7.44, 5.19, and
10.73, respectively.

The BS was 0.011–0.021, 0.023–0.052, and 0.017–0.038 for the wet season, dry season, and annual
time, respectively, with maximum mean and median values of 0.033 and 0.031 for the dry season,
followed by 0.025 and 0.024 for the annual time, and minimum values of 0.015 and 0.014 for the wet
season. The range ability was small for the wet season and the annual time and relatively large for
the dry season. CESM1(WACCM), BNU-ESM, and BNU-ESM had the smallest BS values, whereas
IPSL-CM5B-LR, CSIRO-Mk3.6.0, and CSIRO-Mk3.6.0 had the largest BS values for the wet season, dry
season, and the annual time, respectively. The Sscore was 0.578–0.764, 0.643–0.787, and 0.703–0.825 for
the wet season, dry season, and annual time, respectively, with maximum mean and median values of
0.766 and 0.772 for the annual time, followed by 0.735 and 0.743 for the dry season, and minimum
values of 0.682 and 0.684 for the wet season. IPSL-CM5B-LR, INMCM4.0, and IPSL-CM5B-LR had the
smallest Sscore values, whereas CESM1(WACCM), MIROC4h, and NorESM1-M had the largest Sscore

values for the wet season, dry season, and annual time, respectively. All of the Sscore values of the
GCMs were more than 0.5, and of the 34, 32 (approximately 94.1%), 34 (100%), and 34 (100%) GCMs
were more than 0.6 for the wet season, dry season, and annual time, respectively. This indicated that
most of the GCMs had good ability in reproducing the characteristics of the probability distribution of
the observed precipitation.

3.3. Comparison of Ranking Scores of the GCMs’ Performances by a Single Criterion

For the different criteria at the same time period, a GCM may have performed well for one
criterion but poor for another (Figure 7). For example, MIROC-ESM-CHEM had the highest-ranking
score of 1 based on the RMSE criterion for the wet season, but a low-ranking score of 0.467 for the
Sscore. Although CESM1(WACCM) had the highest-ranking scores, both 1, for the BS and Sscore, it had
a low-ranking score of 0.321 for the Z for the wet season. The same characteristics were also found
for the dry season and the annual time. Moreover, for the same criterion at different time periods,
a GCM may have performed well for one time period but poor for another period or for an overall
result (Figure 7). For example, ACCESS1.3 had the highest-ranking score of 1 by the PBIAS criterion
for the dry season, but low-ranking scores of 0.419 and 0.529 for the wet season and the annual time,
respectively. Additionally, a GCM may not have performed the best for one period, two periods,
or three periods, but showed the best performance for the overall result (Figure 7). For example,
MPI-ESM-LR did not obtain the highest-ranking scores by the Sen’s slope criterion for the three time
periods, but had the highest-ranking score of Sen’s slope for the overall result. This indicated that
the results of GCMs’ performances relied mainly on the assessment of the criterion, and the GCMs’
performances varied as the criterion changed. Thus, it is essential to comprehensively assess GCMs by
using a multiple criteria method, rather than a single criterion method.

3.4. Overall Ranking Scores of the GCMs’ Performances by Multiple Criteria

As shown in Table 2, the top five ranking scores of the GCMs over the LMB were MPI-ESM-LR
(0.879), CMCC-CMS (0.864), HadGEM2-CC (0.847), CESM1(CAM5) (0.842), and HadGEM2-ES
(0.791) for the wet season; MRI-CGCM3 (0.853), IPSL-CM5A-MR (0.821), CCSM4 (0.780), BNU-ESM
(0.760), and MPI-ESM-MR (0.751) for the dry season; and MPI-ESM-LR (0.882), IPSL-CM5A-MR
(0.844), CMCC-CMS (0.841), CESM1(CAM5) (0.832), and BNU-ESM (0.814) for the annual time.
Additionally, the top five overall ranking scores of the GCMs over the LMB were MPI-ESM-LR
(0.844), IPSL-CM5A-MR (0.824), CMCC-CMS (0.820), CESM1(CAM5) (0.795), and BNU-ESM (0.786).
Figure 8 shows that the mean ranking scores of the GCMs of the wet season were slightly higher than
those of the annual time, the dry season, and the overall results. However, the range ability of ranking
scores of the GCMs showed the smallest for the dry season compared to the others. This indicated
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that the GCMs performed relatively better for the wet season, and the seasonal performance was
comparatively different.Water 2018, 10, x FOR PEER REVIEW  14 of 24 
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Table 2. Ranking scores of the GCMs’ performances for the wet season, dry season, annual time, and
overall results over the LMB.

GCMs ID Wet Dry Annual Overall

ACCESS1.0 1 0.753 0.633 0.640 0.667
ACCESS1.3 2 0.546 0.614 0.429 0.505

BCC-CSM1.1 3 0.310 0.740 0.464 0.494
BNU-ESM 4 0.757 0.760 0.814 0.786
CanESM2 5 0.726 0.595 0.743 0.702
CCSM4 6 0.720 0.780 0.762 0.756

CESM1(CAM5) 7 0.842 0.672 0.832 0.795
CESM1(WACCM) 8 0.779 0.468 0.781 0.702

CMCC-CMS 9 0.864 0.735 0.841 0.820
CNRM-CM5 10 0.698 0.613 0.694 0.675

CSIRO-Mk3.6.0 11 0.430 0.622 0.451 0.489
EC-EARTH 12 0.738 0.690 0.779 0.746
FGOALS-g2 13 0.379 0.540 0.248 0.353

FIO-ESM 14 0.738 0.745 0.764 0.753
GFDL-CM3 15 0.747 0.656 0.731 0.716

GFDL-ESM2G 16 0.447 0.622 0.560 0.548
GFDL-ESM2M 17 0.481 0.670 0.476 0.526

GISS-E2-H 18 0.571 0.606 0.547 0.568
GISS-E2-R 19 0.602 0.511 0.569 0.563

HadGEM2-AO 20 0.754 0.621 0.694 0.691
HadGEM2-CC 21 0.847 0.634 0.800 0.770
HadGEM2-ES 22 0.791 0.741 0.785 0.776

INMCM4.0 23 0.763 0.244 0.440 0.472
IPSL-CM5A-LR 24 0.726 0.738 0.804 0.768
IPSL-CM5A-MR 25 0.790 0.821 0.844 0.824
IPSL-CM5B-LR 26 0.331 0.661 0.219 0.358

MIROC4h 27 0.491 0.623 0.424 0.491
MIROC5 28 0.640 0.688 0.701 0.682

MIROC-ESM 29 0.743 0.515 0.737 0.683
MIROC-ESM-CHEM 30 0.745 0.592 0.794 0.731

MPI-ESM-LR 31 0.879 0.733 0.882 0.844
MPI-ESM-MR 32 0.709 0.751 0.807 0.769
MRI-CGCM3 33 0.609 0.853 0.473 0.602
NorESM1-M 34 0.734 0.684 0.791 0.750Water 2018, 10, x FOR PEER REVIEW  16 of 24 
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As shown in Figure 9, except Z, Sen’s slope, and BS showing no significant correlations between 
ranking scores of the GCMs obtained from multiple criteria and ranking scores of the GCMs obtained 
from a single criterion over the LMB for the dry season, all the criteria showed significant correlations 
(p < 0.05 or 0.01) for the wet season, the annual time, and the overall results. The RMSE and PBIAS 
showed relatively high r values compared to other criteria, whereas the monthly series correlation 
showed the lowest r for the wet season, the annual time, and the overall results. The results indicated 
that the criteria were robust criteria for assessing performance of the GCMs. However, there existed 
different robust criteria for assessing performance of the GCMs at a seasonal scale. 

Figure 8. Box plots of ranking scores (ascending orders) for the performance of GCMs over the LMB:
a, b, c, and d represent the wet season, dry season, annual time, and the overall results, respectively.
The red and black lines in the box represent the mean value and the median value, respectively. The top
and bottom horizontal lines represent the maximum value and the minimum value, respectively.
The top and bottom horizontal lines on the borders of the box represent the upper quartile and the
lower quartile, respectively.
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3.5. Sensitivity Analysis of Ranking Scores of the GCMs’ Performances

As shown in Figure 9, except Z, Sen’s slope, and BS showing no significant correlations between
ranking scores of the GCMs obtained from multiple criteria and ranking scores of the GCMs obtained
from a single criterion over the LMB for the dry season, all the criteria showed significant correlations
(p < 0.05 or 0.01) for the wet season, the annual time, and the overall results. The RMSE and PBIAS
showed relatively high r values compared to other criteria, whereas the monthly series correlation
showed the lowest r for the wet season, the annual time, and the overall results. The results indicated
that the criteria were robust criteria for assessing performance of the GCMs. However, there existed
different robust criteria for assessing performance of the GCMs at a seasonal scale.Water 2018, 10, x FOR PEER REVIEW  17 of 24 
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Figure 9. Correlation between ranking scores of the GCMs obtained from multiple criteria and ranking
scores of the GCMs obtained from a single criterion over the LMB: (a), (b), and (c) represent the
time periods of the wet season, the dry season, and the annual time, respectively; (d) represents the
correlation between the overall ranking scores and the weight criteria ranking scores; ** represents that
correlation was significant at the 0.01 level; * represents that correlation was significant at the 0.05 level.

3.6. Atmospheric Circulation

As shown in Figures 10 and 11, the three best-ranked GCMs (overall results) generally represented
similar distributions of specific humidity and wind compared to the NCEP reanalysis for the wet
season and the dry season, suggesting that a good representation of the regional circulation pattern
could also indicate efficiency of model performance [46]. However, the distributions were entirely
different between the wet season and the dry season. For the wet season, specific humidity was higher
than the dry season, and the prevailing wind direction was dominated by a westerly wind, with large
amounts of moisture brought to the LMB from the Bay of Bengal. For the dry season, the prevailing
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wind direction showed an easterly wind originating from inland, which was characterized by dry
weather over the LMB. This indicated that precipitation amounts for the wet season were much higher
compared to the dry season, and therefore it was also more likely that the GCMs had larger absolute
errors for the wet season compared to the dry season over the LMB.Water 2018, 10, x FOR PEER REVIEW  18 of 24 
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4. Discussion

In this paper, we obtained the better-performing GCMs in reproducing the observed precipitation
over the LMB for the wet season, the dry season, the annual time, and the overall results. A previous
study by Sperber et al. 2013 [9] showed that the IPSL-CM5A-LR and IPSL-CM5A-MR models were
top performers in representing the interannual variability of the Indian monsoon. Research by
Kadel et al. 2018 [23] showed that ACCESS1.0, CNRM-CM5, EC-EARTH, and HadGEM2-ES were
the four best models for precipitation simulation in the central Himalayas. Additionally, a study by
Hasson et al. 2016 [13] showed that CCSM4, GFDLCM3, MIROC-ESM-CHEM, MIROC-ESM, MIROC5,
and NorESM1-M simulated mostly a realistic active duration of the monsoon due to a rapid fractional
accumulation (RFA) slope similar to that of the observations in the Mekong River Basin. In our study,
we highlighted similarly good performances from HadGEM2-ES, CCSM4, and IPSL-CM5A-MR over
the LMB, which is part of the Asian monsoon region, and part of the Mekong River Basin, which
are both affected by the southwest monsoon. However, our results showed differences from the
above studies, which indicated that it is significant to assess GCM performance not only at a large
scale, but also at a regional scale: A river basin such as the LMB should especially be taken into
important consideration due to its special geographical position and climatic characteristics, as well as
its significant effects [30,31].

The results showed that there existed different abilities in reproducing the observed precipitation,
such as the different statistics of criteria and ranking scores of the GCMs, especially for the differences
at the seasonal scale. Actually, this may have really reflected the ability of reproducing the South Asian
summer monsoon, which can be caused by issues related to large-scale atmospheric circulations and
underrepresentation of real orography [13]. Moreover, previous studies have shown that atmospheric
circulation was a good indicator for explaining the discrepancies of simulations by GCMs [33,47]. Thus,
how well the GCMs performed in reproducing atmospheric circulation aids in understanding the
performance of the GCMs in precipitation simulation. More than 50% of the GCMs failed to reproduce
the positive trend of the observed precipitation for the wet season and the dry season (approximately
52.9% and 64.7%, respectively), and approximately 44.1% of the GCMs failed to reproduce positive
trend for the annual time over the LMB. Other studies of southeastern Australia by Fu et al. 2013 [45]
and the Western Himalayan region by Meher et al. 2017 [12] reported that trend analysis was not
a robust criterion for assessing the performance of GCMs. However, our results showed that the
Z and Sen’s slope were robust criteria for assessing the performance of GCMs except for the dry
season, indicating that the trend analysis method could be used as a robust criterion for assessing
GCM performance over the LMB. Nevertheless, in fact more than 50% of the GCMs failed to reproduce
a positive trend for the wet season and the dry season. This can be attributed to the parameter we
used for assessment and that the ranking scores of the Z and Sen’s slope were based on absolute
error between precipitation of the observation and precipitation of the GCM simulation. As shown
in Figure 12, the absolute errors of the Z and Sen’s slope showed a significant correlation at the 0.01
significance level with ranking scores of the GCMs except for the dry season, which showed the same
significant correlation at the 0.01 significance level between the ranking scores of the GCMs obtained
by the Z and Sen’s slope and the ranking scores obtained by multiple criteria (Figures 9 and 12).
These results indicated that although the trend analysis method was a robust criterion for assessing
the GCMs’ performances except for the dry season, it did not mean a high ability to reproduce the
observed precipitation trend. Furthermore, using multiple criteria to assess GCM performance was
superior to a single criterion method.

A score-based method proved to be applicable for assessing GCM performance [39,45]. In this
paper, we used APHRODITE precipitation data as the observations based on an improved score-based
method to provide more detailed assessment results of the GCMs under the three time periods over
the LMB. The results provided useful information for further studies related to multimodel ensemble
method application and future climate change over the LMB and for monsoon regions that have
geographic and climatic features similar to those of the LMB. Although the APHRODITE precipitation
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data have high resolution and have proven to be a better-gridded precipitation product for the Mekong
River Basin, it is important to make a comparison to other gridded precipitation products, such as
precipitation data from the Climate Research Unit (CRU) [48], the Global Precipitation Climatology
Project (GPCP) [49], and others. In addition, because of the release of a new generation of climate
models (CMIP6) in the near future, the improved score-based method can be used for assessing their
performance in climatic variables simulation and for their comparison with CMIP5 GCMs.Water 2018, 10, x FOR PEER REVIEW  20 of 24 
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5. Conclusions

This study focused mainly on the assessment of the performance of 34 CMIP5 GCMs in simulating
observed precipitation over the LMB. The performance was assessed through RMSE, PBIAS, monthly
series correlations, spatial correlations, Z, Sen’s slope, BS, and Sscore under three periods including
the wet season, the dry season, and annual time. The overall ranking scores were obtained for GCM
performance over the LMB. The main results of this study are presented in the following points.

Precipitation in the observations were 1430.7 mm, 1213.8 mm, 216.9 mm for the mean annual,
the mean wet season, and the mean dry season, whereas the precipitation of the GCMs ranged
from 1379.7 mm to 2022.9 mm, 1083.5 mm to 1701.9 mm, and 115.1 mm to 559.6 mm, with higher
precipitation than the observation at GCM numbers of 29, 21, and 29 (approximately 85.3%, 61.8%,
and 85.3%, respectively). This indicated that the GCMs tended to overestimate precipitation compared
to the observation, especially for the wet season.

The GCMs showed good ability in reproducing the time series characteristics of precipitation for
the annual period compared to those for the wet and dry seasons, and the GCMs obviously reproduced
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the spatial characteristics of precipitation for the dry season better than those for the annual time and
the wet season. More than 50% of the GCMs failed to reproduce the positive trend of the observed
precipitation for the wet season and the dry season (approximately 52.9% and 64.7%, respectively),
and approximately 44.1% of the GCMs failed to reproduce the positive trend for the annual time over
the LMB. However, most showed good ability in reproducing the characteristics of the probability
distribution function of the observed precipitation.

The results showed that a GCM may perform well for one criterion but poorly for another
criterion at the same period. Moreover, for the same criterion at different periods, a GCM may
perform well for one time period but poorly for another period or for the overall result. For example,
MIROC-ESM-CHEM had the highest-ranking score of 1 based on the RMSE criterion for the wet
season, but a low-ranking score of 0.467 for the Sscore. Moreover, for the same criterion at different
time periods, ACCESS1.3 had the highest-ranking score of 1 by the PBIAS criterion for the dry season,
but low-ranking scores of 0.419 and 0.529 for the wet season and the annual time, respectively. This
indicated that the results of GCM performances relied mainly on the assessment of the criterion, and
GCM performance varied as the criterion changed. Thus, it is essential to comprehensively assess the
GCMs by using a multiple criteria method, rather than a single criterion method.

Based on the ranking scores of the GCMs, the top five ranking scores of the GCMs over the
LMB were MPI-ESM-LR (0.879), CMCC-CMS (0.864), HadGEM2-CC (0.847), CESM1(CAM5) (0.842),
and HadGEM2-ES (0.791) for the wet season; MRI-CGCM3 (0.853), IPSL-CM5A-MR (0.821), CCSM4
(0.780), BNU-ESM (0.760), and MPI-ESM-MR (0.751) for the dry season; and MPI-ESM-LR (0.882),
IPSL-CM5A-MR (0.844), CMCC-CMS (0.841), CESM1(CAM5) (0.832), and BNU-ESM (0.814) for the
annual time. Additionally, the top five overall ranking scores of the GCMs over the LMB were
MPI-ESM-LR (0.844), IPSL-CM5A-MR (0.824), CMCC-CMS (0.820), CESM1(CAM5) (0.795), and
BNU-ESM (0.786). This indicated that it should be realized that the well-performing GCMs changed as
the time periods changed.

Assessing performances of the GCMs in reproducing observed precipitation is significant for
projecting future climate change. The results of this study can provide useful information for further
study related to multimodel ensemble methods application and future climate change over the LMB
and for monsoon regions that have geographic and climatic features similar to those of the LMB.
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