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Abstract: The global warming of 1.5 ◦C and 2.0 ◦C proposed in the Paris Agreement has become
the iconic threshold of climate change impact research. This study aims to assess the potential
impact of 1.5 ◦C and 2.0 ◦C global warming on water balance components (WBC) in a transitional
climate basin—Chaobai River Basin (CRB)—which is the main water supply source of Beijing.
A semi-distributed hydrological model SWAT (Soil and Water Assessment Tool) was driven by climate
projections from five General Circulation Models (GCMs) under three Representative Concentration
Pathways (RCPs) to simulate the future WBC in CRB under the 1.5 ◦C and 2.0 ◦C global warming,
respectively. The impacts on annual, monthly WBC were assessed and the uncertainty associated
with GCMs and RCPs were analyzed quantitatively, based on the model results. Finally, spatial
variation of WBC change trend and its possible cause were discussed. The analysis results indicate
that all the annual WBC and water budget are projected to increase under both warming scenarios.
Change trend of WBC shows significant seasonal and spatial inhomogeneity. The frequency of flood
will increase in flood season, while the probability of drought in autumn and March is expected to
rise. The uneven spatial distribution of change trend might be attributed to topography and land use.
The comparison between two warming scenarios indicates that the increment of 0.5 ◦C could lead to
the decrease in annual surface runoff, lateral flow, percolation, and the increase in annual precipitation
and evapotranspiration (ET). Uncertainties of surface runoff, lateral flow, and percolation projections
are greater than those of other components. The additional 0.5 ◦C global warming will lead to larger
uncertainties of future temperature, precipitation, surface runoff, and ET assessment, but slightly
smaller uncertainties of lateral flow and percolation assessment. GCMs are proved to be the main
factors that are responsible for the impact uncertainty of the majority assessed components.
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1. Introduction

Global warming is one of the greatest climate issues that human beings face. The latest researches
of Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report Working Group
I [1] showed that global mean surface temperature (GMT) has increased 0.85 ◦C over the period of
1880–2012 and will likely increase 0.3 ◦C to 0.7 ◦C in the near-term. Due to the changes in various
meteorological elements, global warming has the potential to significantly alter hydrologic cycle and
influence river flow regimes consequently [2–5]. An additional threat is also posed to water security as
a result of significant changes in water supply in many regions. Therefore, in the interest for effective
water resource management and planning, impact assessment of the future climate change on the
hydrological response is crucial [6–9], especially for water-scarce areas.

Recent studies [10–13] have used physically-based distributed hydrological models (HMs) driven
by General Circulation Models (GCMs) to understand the impact of climate change on hydrological
process on the basin scale. In addition, the uncertainties in impact assessments were also explored and
discussed [14–17]. From the previous research, the main factors that are responsible for the uncertainty
were concluded as follows: Scenarios of economic development, greenhouse gas emission scenarios
and aerosol emissions scenarios, GCM, downscaling technique, the hydrological model structure and
parameterization. Among these main factors, the uncertainties associated with GCMs are the largest
source of impact uncertainty on the global scale. However, the dominant factors which contribute
to the largest degree of uncertainty vary across climate regions. Therefore, multiple combinations of
GCMs and emission scenarios should be used to assess the regional hydrological response to climate
change [18]. After RCPs were proposed by IPCC AR5 in 2014, researches on the hydrology and water
resource prediction has also been carried out using the new scenario [19,20].

The 2015 Paris Agreement set out a global action plan that includes two long-term temperature
goals. One is to avoid dangerous climate changes by limiting global average temperature increase
to well below 2.0 ◦C above pre-industrial levels, and the other is pursuing efforts towards a target
of 1.5 ◦C for a sustainable future. On 8 October 2018, the IPCC special report on global warming
at 1.5 ◦C has been released in Inchon, South Korea. The report assesses the climate impact under
global warming of 1.5 ◦C and 2.0 ◦C and points out that the global warming of 1.5 ◦C is likely to reach
as soon as 2030. Thus far, 1.5 ◦C and 2.0 ◦C has become the iconic threshold and has been used as
a politically useful marker for global scale mitigation strategies. The evaluation of climate change
impacts at warming of 1.5 ◦C and 2 ◦C was first provided by Schleussner et al. in 2016 [21] on the
global scale along with many similar studies [22,23].

As discussed before, the changes of the hydrological cycle caused by the temperature increase and
its corresponding uncertainties are regionally dependent [24]. Therefore, in order to make the global
warming of 1.5 ◦C and 2.0 ◦C a helpful metric to provide reliable information for regional adaptation
policies, climate impacts should be projected on regional scales. CRB is located on the transitional
climate region where the climate ranges from semi-arid to sub-humid [25]. The topography, land use,
and soil type, as well as weather condition of CRB have great spatial variability, which will influence
the response of the hydrological cycle to climate change [26]. Due to the complexity of this issue
and limited data, few researches have been conducted and the understanding of hydrological cycle
response under 1.5 ◦C and 2.0 ◦C global warming in this transitional climate basin is still incomplete.
Nevertheless, the impact assessment is of utmost importance for CRB, which provides two-thirds
of fresh water resource for Beijing, the capital of China. Therefore, assessment of climate change
effect on WBC, which can reflects water resources more comprehensively than the river runoff is of
great significance in CRB under 1.5 ◦C and 2.0 ◦C global warming. During the past few years, most
researches mainly focused on river discharge response [21–23], the potential effect of global warming
on water balance components was relatively less explored. Recently, the possible changes in WBC
in many regions and basins under different global warming scenarios have been studied. Most of
them were based on SRES (Special Report on Emissions Scenarios) scenarios proposed by AR4 (the
4th Assessment Report) [27–30]. There are only few researches use the latest released RCPs [31,32],
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and even fewer researches focused on the impact of 1.5 ◦C and 2.0 ◦C global warming. Similar to the
results in the river discharge [19,22,23], change trends of water balance components also vary from
regions and exhibit uncertainties associated with scenarios and GCMs.

This study focused on the following issues, can a hydrological model be applied in a transitional
climate basin for water balance analysis? How different are WBC projections from different GCMs and
RCPs and which is the main source of uncertainty? What are the future possible changes of WBC to
climate forcing under 1.5 ◦C and 2 ◦C global warming in CRB?

The issues were addressed in three steps in this study:

(1) Evaluate the applicability of the SWAT model for ET as well as discharge simulations in the CRB;
(2) The difference and uncertainties of projected impacts associated with GCMs structure and RCPs

scenarios were estimated and compared quantitatively;
(3) Assess the impact of 1.5 ◦C and 2 ◦C global warming on WBC by multi-GCMs and multi-RCPs

approach. The differences of the impact between 1.5 ◦C and 2.0 ◦C global warming was
highlighted. Besides, the possible effects of topography, land use and soil type on WBC change
were analyzed.

2. Materials and Methods

2.1. Study Area

The CRB with the catchment area of 13846 km2 is located in the northern part of North China plain
(115◦25′ E~117◦45′ E, 39◦10′ N~41◦40′ N). It originated from Yanshan Mountain and pass through
Hebei, Beijing, and Tianjin provinces with the total length of 458 km. Chaobai River basin consists
of two major tributaries, Chao River and Bai River, which converge into Miyun Reservoir in the
downstream. CRB is characterized by complex topography, mountainous area, and alluvial plain
constitute 87% and 13% of the basin, respectively. The CRB featuring semi-humid semiarid climate
regime has four distinctive seasons, that is, cold and dry in winter and hot and rainy in summer.
The annual mean temperature and precipitation are 9.11◦C and 559.3 mm, respectively. However,
precipitation has uneven seasonal distribution and concentrated in flood season (June to September)
accounts for 80.2% of annual rainfall.

2.2. Data

2.2.1. Geographic Data of CRB

The SWAT model was built up based on the following geographic data:

• Digital elevation model (DEM) with a scale of 1:50,000 obtained from the national database of
China Fundamental Geographic Information Center.

• The soil property data used herein provided by Harmonized World Soil Database by Food and
Agriculture Organization (http://www.fao.org/).

• Land use data with resolution of 1 km from the Environmental and Ecological Science Data Center
for West China (http://westdc.westgis.ac.cn). Due to limited data, changes of land use were not
considered in the WBC simulation during reference period and in the future.

2.2.2. Hydrological Data

Hydrological observations used for calibration and validation of the SWAT model were collected
from the Water Year Book of Haihe Basin. The measured monthly discharges at the Zhangjiafen
hydrological gauge along Bai River and the Xiahui hydrological gauge along Chao River during
1961–1990 were available for calibration, and data during 1991–2001 was utilized for validation.

http://www.fao.org/
http://westdc.westgis.ac.cn


Water 2018, 10, 1863 4 of 17

2.2.3. Meteorological Data

Daily precipitation and temperature data at 0.5◦ resolution for the period of 1958 to 2001 was
derived from WATCH reanalysis data according to the European Water and Global Change Project and
used as climate forcing (http://www.eu-watch.org/data_availability). In order to assess the quality
of WATCH data over CRB, long-term (1961–2001) precipitation and temperature observations from
two meteorological stations (Fengning and Miyun) were used to calculate correlation coefficient (r).
Results show that r of annual mean precipitation, annual mean maximum temperature, and minimum
temperature at Fengning and Miyun are 0.99/0.81, 0.85/0.88, and 0.85/0.86, respectively, which
indicates that WATCH data is reliable in the CRB and has good potential to be used as an alternative
data to drive hydrological model [33,34]. The locations of the meteorological observation stations and
the grid points of the WATCH reanalysis are shown in Figure 1. In order to evaluate the simulation
performance of SWAT for ET, Global monthly land surface evapotranspiration (ET) data with a spatial
resolution of 1.0◦ × 1.0◦ from 1983 to 2001 were obtained from NASA Hydrology and Earth Sustem
Science Fellowship programs (http://www.ntsg.umt.edu/project/global-et.php). The research results
of Zhang et al. showed that the monthly ET estimates are in favorable agreement with observations
(RMSE = 13.0–15.3 mm month−1; R2 = 0.80–0.84) from globally representative land cover types.
Besides, the estimated global ET capture observed spatial and temporal variations at basin-scale
(RMSE = 186.3 mm·yr−1; R2 = 0.80) as well as the global scale. Despite the uncertainties of ET
calculations associated with tower eddy flux measurements and remote sensed NDVI, this long-term
global ET record can be used for climate change assessment of terrestrial water with well-quantified
accuracy [35,36].
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Figure 1. (a) Location of the CRB in China; (b) overview map of the CRB, DEM (shade), hydrological
gauges (triangles), meteorological stations (green circles), and grid notes of climate forcing (black dots);
and (c) the land use of the CRB.

http://www.eu-watch.org/data_availability
http://www.ntsg.umt.edu/project/global-et.php
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2.2.4. Climate Projections

Climate projections from five GCMs (GFDL-ESM2M, HaDGem2, IPSL_CM5A_LR, MIROC-ESM-
CHEM, NorESM1-M, abbreviated as GFDL, HAD, IPSL, MIROC, and NOR, respectively) of the
CMIP5 project in the framework of ISIMIP [37–39] under three Representative Concentration Pathways
(RCP4.5, RCP6.0, and RCP8.5) were used to drive the SWAT model for future projection. The FRC index
(Fractional range coverage) of the five GCMs in ISI-MIP project is 0.75 and 0.59, respectively, which is
better than the five GCMs randomly selected from CMIP5, and can reasonably represent the changes
of regional average temperature and precipitation [38]. The climate dataset provide daily projected
precipitation and temperature data covering the period from 1950 to 2099. The aforementioned climate
projections data were bias corrected using trend-preserving bias correction approach and downscaled
to 0.5◦ × 0.5◦ resolution to match with WATCH’s resolution [13,40].

In this study, a baseline period from 1986 to 2005, which is consistent with Schleussner,
C.F. et al. [21] was selected to compare with the projections. The GMT during the baseline period
is 0.61 ◦C warmer than preindustrial levels (1850–1900) [1]. Therefore, the warming of 0.89 ◦C and
1.39 ◦C above reference period correspond to the commonly accepted threshold of 1.5 ◦C and 2 ◦C
above preindustrial, respectively.

2.3. Methodology

2.3.1. Climate Change Scenarios

The combination of 5 GCMs and 3 RCPs produces 15 climate change scenarios (referred to as
the GCM-RCP combination hereafter). The 30 years moving averaged surface temperatures of the
15 scenarios were calculated and compared with the baseline to specify the future time horizon that
surpasses 1.5 ◦C and 2.0 ◦C global warming. The results indicated that the projected GMT of all
scenarios surpass the warming of 1.5 ◦C above pre-industrial level, while 14 out of 15 scenarios surpass
the threshold of 2.0 ◦C.

2.3.2. Soil and Water Assessment Tool (SWAT) Model

SWAT is a semi-distributed, physically-based hydrological model developed by United States
Department of Agriculture for long-term continuous watershed scale simulation [41]. The model
integrates the state-of-the-art of remote sensing (RS), geographic information system (GIS), and digital
elevation model (DEM) technologies and is able to simulate the water cycle with a high level of
spatial detail. SWAT was widely applied on medium to large scale basins to assess the impact of
management measure and climate change on hydrological processes, agricultural chemical yield,
and sediment [42–45]. The water cycle simulated by SWAT is based on water balance equation which
includes precipitation, surface runoff, lateral flow, actual evapotranspiration, percolation, baseflow,
and change of soil water content [42]. In CRB, the annual mean value of the aforementioned WBC
during reference period are 489.59, 21.08, 15.06, 437.22, 25.03, 7.81, and 0.48 mm, respectively. Change
of soil water content and baseflow are much smaller than other variables, so five water balance
components (precipitation, surface runoff, lateral flow, ET, and percolation) were selected for this study.
The runoff that flows laterally within the soil body is called lateral flow. Percolation is the amount of
water that percolates past the root zone during the time step.

In this study, the latest SWAT version, that is ArcGIS compatible ArcSWAT2012 [46] was used for
assessment. The CRB was divided into 64 sub-basins based on DEM and 363 hydrological response
units were further sub-divided according to soil type, land use and slope class. The Penman-Monteith
method [47] was used to calculate the evapotranspiration. The improved Soil Conservation Service
Curve Number (SCS-CN) method [48] was used to estimate the surface runoff, and the Muskingum
method [49] was applied to calculate the river course.
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2.3.3. Model Calibration and Validation

The WATCH dataset from 1958 to 2001 were used to drive the SWAT model. The 44 years data
were split into three periods according to their usages in SWAT, the warming-up period (1958–1960),
the calibration period (1961–1990) and the validation period (1991–2001). In order to evaluate the
performance of water balance components simulation, both discharge observations (1961–2001)
and the global monthly ET data (1983–2001) were used to calibrate and validate the SWAT model.
Prior to calibration, a Latin Hypercube one-at-a-time (LH-OAT) technique, proposed by Morris [50],
and implemented in SWAT-CUP (SWAT Calibration and Uncertainty Programs) was applied to
investigate the sensitivity of parameters [51]. Sequential Uncertainty Fitting (SUFI2) algorithm in
SWAT-CUP generic interface was applied for automatic calibration and parameter optimization [51].
To make the evaluation statistics robust, multiple criteria for goodness-of-fit, namely coefficient of
determination (R2), Nash-Sutcliff efficiency coefficient (NSE) [52], and percentage of bias (PBIAS) were
selected to quantify the performance of SWAT model by comparing monthly modeling results with
in-situ observations. In general, the model simulation is considered acceptable when the R2 and NSE
values are greater than 0.5.

2.3.4. Hydrological Projections

Projected annual and monthly mean surface runoff, lateral flow, percolation, and ET in the CRB
were simulated by SWAT driven by 15 climate change scenarios. Changes in annual mean temperature
and WBC at the two warming levels are presented by the percentage change relative to the baseline.
As the small value of WBC in winter during baseline period may lead to abnormally large percentage
change, so absolute change is used for monthly WBC analysis. Aridity index (AI) [53] and water budget
(WB) were also calculated to assess the degree of water deficiency quantitatively in CRB. In order
to quantify projection uncertainty, standard deviation (SD) was used to measure the dispersion of
different GCMs and RCPs prediction results

AI = P/PET (1)

where P is the average annual precipitation (mm), PET is the average annual potential
evapotranspiration (mm). AI is further divided into 5 levels, hyper-arid (AI < 0.05), arid (0.05 <
AI < 0.2), semi-arid (0.2 < AI < 0.5), dry sub-humid (0.5 < AI < 0.65) and humid (AI > 0.65) regions,
that means the larger the AI, the humid the region.

WB = P− ET (2)

where P is the average precipitation (mm), ET is the average evapotranspiration (mm).

3. Results

3.1. Sensitivity Analysis

Table 1 shows the sensitivity analysis of SWAT model parameters. Generally, ESCO, HRU_SLP,
SOL_K, CN2, CANMX, SOL_AWC, and SLSUBSN which show larger absolute values of t-statistics
and smaller p-values (surpass 5% level of significance) are the most sensitive parameters for the basin.
Soil evaporation compensation factor (ESCO) that is related with the main hydrologic processes of
evapotranspiration is the most sensitive parameter. HRU_SLP, SOL_K and SOL_AWC are particularly
sensitive due to their effect on lateral flow [30,54]. This should be expected because 87% of the
catchment is mountainous area with higher lateral flow contribution. As the primary parameter for
runoff yield, the SCS curve number at moisture condition II (CN2) is found to be the 4th ranked critical
parameter. Maximum canopy storage (CANMX) ranks the 5th sensitive parameter. This could be
partly explained by high coverage of forest in CRB.
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Table 1. SWAT parameter sensitivity to monthly discharge in CRB.

Parameter Description Unit T-Stat p-Value

ESCO Soil evaporation compensation factor 21.285 0.000
HRU_SLP Average slope steepness −9.535 0.000

SOL_K Soil hydraulic conductivity mm·h−1 −8.739 0.000
CN2 Curve number for moisture condition II −7.838 0.000

CANMX Maximum canopy storage mm 7.263 0.000
SOL_AWC Soil water available capacity 6.417 0.000
SLSUBBSN Average slope length 2.490 0.013
GWQMN Minimum depth for groundwater flow occurrence mm 1.867 0.063

ALPHA_BF Baseflow alpha factor Day−1 −1.052 0.293
CH_N2 Manning’s roughness coefficient 0.884 0.377

GW_DELAY Groundwater delay day −0.712 0.477
SOL_Z Soil depth mm 0.363 0.716

3.2. SWAT Performance Evaluation

The comparison between the simulated and measured flow duration curves indicates that the
SWAT model well captures the inner and inter-annual variations of the observed discharge at both
Xiahui (Figure 2) and Zhangjiafen (Figure 3) stations. However, SWAT always underestimates peak
discharge. The various evaluation statistics during the calibration and validation periods are listed in
Table 2. During the calibration period (1961–1990), the simulated monthly discharge at Xiahui station
along the Chao River correlates well with the corresponding observed records with a R2 value of 0.68,
NSE values of 0.67, a PBIAS value of 11.8%. The performance of SWAT at the Zhangjiafen station
along the Bai River is similar with a R2 value of 0.71, a NSE value of 0.66, a PBIAS value of 31.7%.
During the validation period, the observed and simulated discharge show good agreement with R2 of
0.70 (0.71), NSE of 0.50 (0.51), and PBIAS of 5.8% (13.6%) at the Xiahui (Zhangjiafen) station. There
was good agreement between remote sensing based and simulated ET duration curves (Figure 4).
Calibration and validation results of the ET at CRB were proved to be quite satisfactory. During
calibration (validation) period, the values of R2, NSE and PBIAS are 0.90 (0.84), 0.87 (0.69), and 12.5%
(8.8%), respectively. Both SWAT simulated and remote sensed annual mean ET decline from East to
West and show similar spatial pattern. However, simulated ET exhibits more inhomogeneous with the
probable cause of land use (Figure 5)
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Figure 2. Monthly observed and simulated discharge at Xiahui station along Chao River.

Table 2. The results of statistical evaluation indices during calibration and validation at Xiahui station
along Chao River and Zhangjiafen station along Bai River.

Tributary Hydrological
Station

Catchment
Area/km2

Calibration Validation

R2 NSE PBIAS R2 NSE PBIAS

Chao River Xiahui 6960.6 0.68 0.67 11.8% 0.70 0.50 5.8%
Bai River Zhangjiafen 8827.4 0.71 0.66 31.7% 0.71 0.51 13.6%
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3.3. Changes in Annual mean Temperature

In summary, the statistics illustrated that the historical WBC in CRB can be reproduced with an
acceptable accuracy and ensured the successful application of SWAT model for climate change impact
assessment in this study.

The annual mean temperature of the GCM-RCP combination in CRB is expected to increase by
1.3 ◦C and 2.0 ◦C under global warming of 1.5 ◦C and 2.0 ◦C relative to the baseline, respectively.
As we mentioned before, the global mean temperature in the baseline period is 0.61 ◦C warmer than
pre-industrial, which means that the projected annual mean temperature in CRB is 1.91 ◦C and 2.61 ◦C
warmer than pre-industrial level for two warming levels. However, the increase of annual mean
temperature differs among GCMs and RCPs. The lowest (highest) increase is 1.04 ◦C and 1.62 ◦C (1.52
◦C and 2.50 ◦C) for 1.5 ◦C and 2.0 ◦C global warming, respectively. Among the five GCMs, the NOR
and MIROC show the highest increase and HAD has the smallest increase (Table 3). The variation
of projected change in annual mean temperature among different RCPs is smaller with a value of
1.27–1.30 ◦C (1.97–2.01 ◦C) for 1.5 ◦C (2.0 ◦C) global warming.
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Table 3. Changes in annual mean temperature in CRB under the 1.5 ◦C and 2.0 ◦C global warming (◦C).

Global Warming RCP GFDL HAD IPSL MIROC NOR Mean GCMs

1.5 ◦C

4.5 1.51 1.06 1.23 1.39 1.33 1.30
6 1.27 1.11 1.05 1.53 1.43 1.28

8.5 1.04 1.04 1.25 1.47 1.52 1.27
Mean RCPs 1.27 1.07 1.18 1.46 1.43 1.28

2.0 ◦C

4.5 * 1.62 1.82 2.07 2.50 2.00
6 1.93 1.64 1.68 2.39 2.20 1.97

8.5 1.77 1.65 1.95 2.31 2.37 2.01
Mean RCPs 1.85 1.63 1.82 2.26 2.36 1.99

* Indicates that the change in global mean surface temperature projected by GFDL under RCP4.5 will not surpass
the threshold of 2 ◦C.

The uncertainty of annual mean temperature projection in the GCM-RCP combination is accessed
by its SD. The GCM-RCP combination has a SD of 0.18 ◦C and 0.30 ◦C under two global warming
scenarios, respectively, which implies that the increment of 0.5 ◦C could lead to larger uncertainty.
The SDs among different GCMs is 2.0 and 3.3 times against that of different RCPs for the 1.5 ◦C and
2.0 ◦C warming level, respectively. This result indicates that different GCMs are the main source
of uncertainty.

3.4. Changes in Water Balance Components

3.4.1. Annual Water Balance

The annual mean precipitation anomalies of the GCM-RCP combination relative to preindustrial
baseline (1986–2005 mean) over CRB are shown in Figure 6. The annual mean precipitation is projected
to increase by 5.3% and 7.1% under 1.5 ◦C and 2.0◦C global warming, respectively. However, the
directions and magnitudes of projected changes differ from GCMs and RCPs. GFDL projected the most
significant increasing tendency of annual precipitation (11.1%/13.7% under two warming scenarios,
respectively), followed by IPSL which showed increases of 7.8% and 13.0%. MIROC and NOR, which
ranked third and fourth, also projected an evident increasing trend. Contrary to the aforementioned
four GCMs, HAD projected a decrease tendency with the magnitude of -2.8% and -2.2% at two
warming levels, respectively. For all three RCPs, the increasing tendencies were projected under two
warming scenarios and the magnitudes of change increase with the temperature except for RCP8.5.
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Figure 6. Percentage change in annual mean precipitation in CRB.

The SDs of annual mean precipitation among the whole ensemble are 6.9% and 7.1% for the 1.5 ◦C
and 2.0 ◦C warming scenarios. The GCMs are still the main source of uncertainty with SDs among
different GCMs 1.4 and 2.0 times larger than those among different RCPs for the 1.5 ◦C and 2.0 ◦C
warming period, respectively.

Percentage changes of annual mean surface runoff, lateral flow, percolation, and ET refer to
baseline are shown in Figure 7. The ensemble mean results indicate that the annual mean surface
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runoff, lateral flow, percolation, and ET in CRB will increase by 25.8%, 19.9%, 29.0%, and 2.5%,
respectively, compared to the baseline for the 1.5 ◦C warming scenarios. Under the 2.0 ◦C global
warming, the annual mean surface runoff, lateral flow, and percolation are projected to increase by
smaller amplitudes with an average of 23.3%, 18.3%, and 23.8%, respectively. However, the increasing
tendency of the projected annual mean ET become more dramatic with an average of 4.7% than that
for 1.5 ◦C warming. The results imply that the additional 0.5 ◦C increase could lead to a decrease in
the annual surface runoff, lateral flow, percolation, and increase in the annual ET. The water budget is
projected to increase by 15.8 mm (13.1 mm) under the 1.5 ◦C (2.0 ◦C) warming scenario. The mean arid
index (AI) of GCM-RCP combination is 0.54 at the 1.5 ◦C warming level, which is 0.01 higher than
baseline. When at the 2.0 ◦C warming level, the AI is 0.001 higher than baseline. The above analysis
indicate that the CRB may become wetter under both warming scenarios, especially under global
warming of 1.5 ◦C.
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Figure 7. Percentage change in annual surface runoff (a), annual lateral flow (b), annual percolation (c),
and annual ET (d) under 1.5 ◦C and 2 ◦C global warming in CRB.

The magnitudes and directions of changes in WBC generated from the five GCMs are different
from one another. Under the 1.5 ◦C warming scenario, the changes of surface runoff driven by the
five GCMs has large variation, ranging from 0.9% (HAD) to 53.0% (GFDL). Under the 2.0 ◦C warming
scenario, the increase tendency of surface runoff modeled by GFDL is still the largest (58.4%), while
HAD projected a slightly negative tendency (−1.9%). The increase rates projected by other three GCMs
under 2.0 ◦C global warming vary from 20.3% (MIROC) to 30.4% (IPSL). The changes in the lateral
flow range from 11.2% (NOR) to 35.1% (GFDL) under 1.5 ◦C warming and from 7.9% (HAD) to 30.1%
(GFDL) under 2.0 ◦C warming, respectively, which is relatively smaller than those in the surface runoff.
For percentage changes in the annual mean percolation, projections driven by GFDL under 1.5 ◦C
warming scenario still show the maximum increase rate (48.1%), while IPSL shows the minimum
increase rate (11.9%). Under the 2.0 ◦C warming scenario, the increase tendencies of annual percolation
range from 12.2% (HAD) to 44.1% (GFDL). Compared with the aforementioned four water balance
components, the variation of annual mean ET projected by five GCMs was the smallest, ranging from
-5.0% (HAD) to 5.9% (IPSL) under the 1.5 ◦C global warming and from -3.5% (HAD) to 10.8% (IPSL)
under the 2.0 ◦C global warming.

Generally, all the three RCPs agree on an increase tendency of change in WBC in CRB. However,
the magnitudes under three RCPs are different from one another. For the global warming of 1.5 ◦C,
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the WBC shows a significant increase under RCP4.5 and RCP8.5, while the results projected under
RCP6.0 shows a relatively smaller increase. For the global warming of 2.0 ◦C, the projections of WBC
under RCP4.5 are still proved to have the maximum increase rate, followed by RCP6.0, the simulations
under RCP8.5 show the minimum increase rate.

The SD of percentage changes of GCM-RCP combination in surface runoff, lateral flow,
and percolation are 26.1%, 25.6%, and 20.5%, respectively, under the 1.5 ◦C warming, which implies
a considerable uncertainty. Uncertainty in the ET projection is relatively smaller with a SD of 4.6%.
For the global warming of 2.0 ◦C the uncertainty of the surface runoff and ET projections is slightly
larger than that under the 1.5 ◦C warming with SDs of 27.3% and 5.5%, respectively. Nevertheless,
the uncertainty of lateral flow and percolation projections decrease slightly. For the changes in
the surface runoff and ET, the GCMs are the main source of uncertainty for the climate change
impact. Uncertainty associated with different GCMs is 2.4/2.0 (surface runoff) and 5.6/8.4 (ET) times
larger than those with different RCPs for 1.5 ◦C and 2.0 ◦C warming levels, respectively. For the
projected lateral flow and percolation, the uncertainty from GCMs is similar to that from RCPs for two
warming scenarios.

3.4.2. Monthly Water Balance

The box-whisker plots (Figures 8–12) show change in monthly mean WBC forced by five GCMs
under three RCPs under 1.5 ◦C and 2.0 ◦C global warming, respectively. Generally, the largest changes
are observed for the ET, which implies the high sensitivity of ET to rainfall and temperature inputs.
Meanwhile, the monthly change of lateral flow under two warming scenarios show the smallest
difference in reference to baseline.
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In summer and early autumn (from June to October), the monthly mean precipitation is projected
to increase significantly. However, surface runoff, later flow and percolation will only increase
significantly between July and September which is flood season. This could be related to a pronounced
positive change in June and little or negative change from July to September for the ET component.
It should be noted that the most significant increases of surface runoff, lateral flow, and percolation are
observed in August.

The water budget shows a slight increase from April to June and a significant increase from
July to August under both global warming scenarios (Figure 13). The largest positive change in
water budget is observed in July with an average of 43.6 mm (45.7 mm) at 1.5 ◦C (2.0 ◦C) warming
level. In autumn and March, water budget exhibits slightly negative change at both warming levels.
The above observations imply that frequency and strength of flood during flood season is likely to
increase. Meanwhile, the probability of drought occurrence is expected to increase in autumn and
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March in CRB. Generally, the change magnitudes of WBC under 1.5 ◦C warming scenario will be larger
than those under 2.0 ◦C warming scenario.
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Figure 13. Monthly water budget under global warming scenarios (a) 1.5 ◦C; (b) 2.0 ◦C.

GCMs were proved to be the main source of uncertainty for all the five water balance components.
The uncertainty of WBC monthly change associated with GCMs is 2.0~4.1, 1.7~3.8 times larger than
those with RCPs under 1.5 ◦C and 2.0 ◦C global warming, respectively. Additionally, among five
water balance components, projected results of monthly change in precipitation show the largest
variation between different GCMs and RCPs, followed by ET. The simulated monthly change in lateral
flow is proved to have the smallest uncertainty with the average deviation of 0.45 mm under both
global warming periods. The uncertainty in summer and autumn is much larger than that in spring
and winter.

4. Discussion

It is found that the change trends of WBC under global warming feature uneven spatial
distribution in this transitional climate basin. Figures 14 and 15 show that the percentage changes of
annual precipitation and ET are larger in mountainous area (Northwest) and smaller in alluvial plain
(Southeast) under both two warming scenarios. However, spatial distribution of percentage change
in surface runoff, lateral flow and percolation has no obvious relation with topography (not shown).
In order to find out the potential causes for the spatial inhomogeneity of change in WBC, the correlation
coefficients of WBC percentage change and proportion of land use, soil type in 65 sub-basins were
calculated, respectively. The result (Table 4) indicates that deciduous forest always show significant
positive tendency of lateral flow, surface runoff, and percolation under both 1.5 ◦C and 2.0 ◦C global
warming, while pasture has lower increasing tendency. Under 1.5 ◦C global warming, the effect of
land use on the change of abovementioned three components is more apparent than that under 2.0 ◦C
global warming. The annual surface runoff at mixed forest and ET at agriculture land are expected to
increase by smaller amplitudes under 2.0 ◦C global warming.
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Table 4. Correlation coefficient of percentage change in WBC and land use, soil type.

Factors Detailed Classification Surface Runoff
(1.5 ◦C/2.0 ◦C)

Lateral Flow
(1.5 ◦C/2.0 ◦C)

Percolation
(1.5 ◦C/2.0 ◦C)

ET
(1.5 ◦C/2.0 ◦C)

land use

Agriculture land −0.10/0.14 −0.25/−0.07 −0.25/−0.13 −0.29/−0.34 *
Deciduous Forest 0.63 */0.37 * 0.44 */0.21 0.51 */0.38 * 0.17/0.15

Pasture −0.35 */−0.35 * −0.47 */−0.36 * −0.41 */−0.35 * 0.04/0.21
Mixed Forest −0.19/−0.35 * −0.16/−0.25 −0.16/−0.25 0.24/0.27

Soil type

luvisol 0.20/−0.09 0.03/−0.24 0.14/−0.11 0.23/0.33 *
Semi-luvisol −0.05/0.19 0.04/0.23 0.02/0.20 −0.11/−0.23

Calcicsols −0.23/−0.13 −0.09/0.02 0.19/0.22 0.23/0.11
Initial develop soil 0.00/−0.02 −0.01/−0.01 −0.06/−0.05 0.15/0.12

semi-hydromorphic soil −0.07/−0.10 −0.12/−0.11 −0.25/−0.24 −0.23/−0.13

* Illustrates r passed the significant test at 0.01 level.

Generally, compared with land use, soil type has little impact on change trend of WBC. However,
when the soil type is luvisol, ET shows more significant increase, especially under the 2.0 ◦C
warming scenario.

Responses of WBC to climate change are influenced by many factors, except for topography,
land use and soil type. Our study can reach some preliminary conclusions as follows. Topography and
land use might be factors that have an important impact to increasing magnitude of WBC. Percentage
changes of annual precipitation and ET are larger in mountainous area and smaller in alluvial plain
under both two warming periods. Deciduous forest always show significant positive tendency of
lateral flow, surface runoff and percolation under both 1.5 ◦C and 2.0 ◦C global warming, while pasture
has lower increasing tendency. Generally, soil type has little impact on change trend of WBC.

5. Conclusions

The WATCH data during 1961 to 2001 was utilized to drive the SWAT model and the simulation
results were compared with the observed monthly discharge and remote sensing based ET during
the calibration and validation periods. The results show that the historical stream flow and ET in the
CRB can be reproduced with an acceptable accuracy and ensured the successful application of SWAT
model for climate change impact assessment in this study. The future possible hydrological responses
to climate forcing was assessed quantitatively under three RCPs for 1.5 ◦C and 2 ◦C global warming
scenarios. The main conclusions are as follows.

(1) The annual mean temperatures of GCM-RCP combination are projected to increase by 1.3 ◦C and
2.0 ◦C respectively for global warming of 1.5 ◦C and 2 ◦C relative to the baseline. All the water
balance components in CRB are expected to increase under both warming scenario. The additional
0.5◦C increase could make decrease in annual surface runoff, lateral flow, percolation, water
budget, and increase in precipitation, ET. CRB will become wetter under 1.5 ◦C warming scenario
than under 2.0 ◦C warming scenario. However, the change does not have apparent effect on
arid index.
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(2) Projected changes in monthly water balance illustrate that the significant increase trend of surface
runoff, lateral flow in flood season will lead to more flood events in CRB. CRB is likely to face
more droughts in autumn and March due to the decrease of water budget. The magnitudes
of WBC monthly change are larger under 1.5 ◦C warming scenario than those under 2.0 ◦C
warming scenario.

(3) Generally, compared with land use, soil type has little impact on change trend of WBC. However,
when the soil type is luvisol, increasing trend of ET will be more significant, especially under
2.0 ◦C global warming.

(4) Generally, the increase tendencies of WBC modeled by GFDL and IPSL are the largest, while HAD
projected the lowest positive or slightly negative tendency for two warming scenarios. Contrast
to GCMs, almost all projected annual temperature, precipitation and WBC under three RCPs
agree on a positive tendency under both two global warming scenarios. The WBC simulation
results projected under RCP4.5 show higher increase amplitudes, while the relative lower increase
amplitudes are projected under RCP8.5 and RCP6.0.

(5) Quantitative uncertainty analysis indicated that, although the additional 0.5 ◦C global warming
will lead to larger uncertainties of most WBC assessment, but the gap of uncertainty between
two warming scenarios is not significant. The results also showed that comparing with the
uncertainty of ET and precipitation projection, uncertainties of surface runoff, lateral flow,
and percolation projection are much greater. GCMs were proved to be the most important
contributor to uncertainty of majority assessed components in both warming scenarios with the
exception of percolation and lateral flow. Therefore, the selection of climate forcing input is of
vital importance.
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