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Abstract: The interaction between surface and subsurface water flows plays an important role
in surface irrigation systems. This interaction can effectively be simulated by the physical-based
models, which have been developed on the basis of the numerical solutions to the Saint-Venant
and Richards’ equations. Meanwhile, the spatial variability of field physical properties (such as soil
properties, surface micro-topography, and unit discharge) affects the interaction between surface and
subsurface water flows and decreases the accuracy of simulating surface irrigation events at large
scales. In this study, a new numerical methodology is developed based on the physical-based model
of surface irrigation and the Monte Carlo simulation method to improve the modeling accuracy
of surface irrigation performance at a field scale. In the proposed numerical methodology, soil
properties, unit discharge, surface micro-topography, roughness, border length, and the cutoff time
for the unit discharge are used as the stochastic parameters of the physical-based model, while
field slope is assumed as the constant value because of the same field tillage and management
conditions at a field scale. Monte Carlo simulation is used to obtain the stochastic parameter
sample combinations of the physical-based model to represent the spatial variability of field physical
properties. The updated stochastic simulation model of surface micro-topography, which is developed
to model the spatial distribution of surface elevation differences (SED), is used to obtain the surface
micro-topography samples at a field scale. Compared with the distributed-parameter modelling
methodology and the field experimental data, the proposed numerical methodology presents the
better simulation performance.

Keywords: field scale; border irrigation; spatial variability; Monte Carlo; numerical simulation

1. Introduction

Representing surface irrigation processes and evaluating surface irrigation performance (e.g.,
distribution uniformity, irrigation efficiency) at large spatial scales is a major challenge in farmland
hydrology. Difficulties arise mainly from the spatial variability of field physical properties which create
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uncertainties when the spatial scale changes. Numerical simulation can capture this spatial variability,
quantifying surface irrigation performance for a range of different physical settings.

Surface irrigation processes are mainly simulated by various models developed on the basis
of the Saint-Venant [1] and Richards’ equations [2] or the empirical functions. These models can be
divided into two levels according to the description method of the infiltration term of the Saint-Venant
equations. The first level, called the semi-theoretical model, involves the surface flow expressed by the
Saint-Venant equations and the infiltration described by the empirical infiltration functions, such as the
Kostialov and the modified Kostialov functions [3,4]. These models can improve the computational
efficiency of the surface irrigation models, but lack the capacity to describe soil water dynamics and
cannot account for the effects of changes in flow depth and antecedent soil water content on the
infiltration because of the parameters of the empirical functions being event-specific [5]. The second
level, called the fully physical-based model, involves the surface flow expressed by the Saint-Venant
equations and the subsurface flow described by the Richards equation [2,5,6]. These models not
only can describe the effects of changes in flow depth and antecedent soil moisture content on the
infiltration, but also can simulate soil water redistribution processes over a given time following one
irrigation event [5].

Given that the real hydrologic system is usually composed of a complex and changing boundary
and heterogeneous and stratified formations [7], the fully physical-based models are more popularly
employed in many complicated surface irrigation flow problems because of their flexibility in
complex boundaries and initial conditions, and they can offer a realistic concept of infiltration as
the subsurface flow system is described using the Richards equation, the parameters of which can
be directly determined from soil properties [8–13]. However, the physical-based surface irrigation
models are limited in their ability to model surface irrigation processes and predict surface irrigation
performance with respect to the spatial variability of field physical properties (e.g., soil properties,
surface micro-topography, unit discharge, and border length). This limitation does not allow for
field-scale surface irrigation performance to be well simulated using the above-mentioned fully
physical-based models (deterministic numerical models) as they are not feasible to measure the filed
physical properties of each irrigated plot at a field scale to assess surface irrigation performance.

The spatial variability of field physical properties at a field scale complicates the assessment of
surface irrigation performance. Modeling methods which incorporate the spatial variability must be
used to estimate surface irrigation performance at a field scale. However, a significant challenge is
determining how we consider all the physical variables involved in surface irrigation processes and
how to integrate these physical variables at a field scale where the surface irrigation performance can
be improved. Two methods are used to incorporate field physical variability into the deterministic
numerical models: distributed-parameter modeling and stochastic parameter modeling [14–17].
In distributed-parameter modeling, the study area is partitioned into spatially discrete computational
sub-areas in horizon mainly according to the spatially distributed input data (e.g., soil material, crop
types, and management practices), the model parameter values representing each sub-area are input
to the deterministic numerical models, and all of the sub-area outputs are aggregated at a field scale
in a geographic information system (GIS) framework. Distributed-parameter modeling presents the
stronger mechanism and the higher simulation accuracy than the deterministic numerical modeling.
Recently, this method is widely used in hydrology modeling and irrigation system modeling [18–21].
However, the input parameter values and model output values can be affected by the spatial extent of
sub-area and the model parameter values may not faithfully represent the influence of field physical
properties of field scale on field hydrologic responses [22]. In stochastic modeling, statistical probability
distribution is used to express the parameter variability and is propagated through a deterministic
numerical model within the stochastic framework. The stochastically generated input data to the
deterministic numerical model resemble an ensemble of field physical properties and the simulated
statistically distributed output data are used to predict hydrologic responses. Hydrologic responses
are often nonlinearly related to field physical characteristics. Stochastic parameter modeling can
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satisfactorily capture the field physical characteristics and display a better distribution uniformity
of model parameters than the distributed-parameter modeling. However, the stochastic parameter
modeling method has been rarely used in border irrigation simulation of the field scale.

The purpose of this paper is to develop a stochastic parameter model for evaluating the impact
of the spatial variability of field physical properties on border irrigation performance at a field scale.
The proposed stochastic parameter model is developed on the basis of a hybrid coupled model of
border irrigation [23] and Monte Carlo simulation framework. The proposed stochastic parameter
model is applied and tested in the Mawan irrigation district in Guangrao Country, Shandong Province,
China, and the Yehe irrigation district in Shijiazhuang City, Hebei Province, China.

2. Materials and Methods

2.1. The Case Study Area

2.1.1. Site Description

The first field experiment was conducted in the spring of 2012 at the Mawan irrigation district
(MW) in Dongying City, Shandong Province, China and the second field experiment was conducted in
the fall of 2012 at the Yehe irrigation district (YH) located in Shijiazhuang City, Hebei Province, China,
as shown in Figure 1. The experimental field areas are 76.2 ha2 in MW and 43.4 ha2 in YH, respectively.
MW is located in the coastal area of the lower reaches of the Yellow River, which has a typical warm
temperate zone continental monsoon climate, with an average annual rainfall of 537.4 mm. The soils
are alluvial sediments with primary textures of silt loam and sandy loam. YH is located in the North
China Plain, which has a typical temperate zone monsoon climate, with the average annual rainfall of
444.1 mm. The experimental soil is classified as sandy loam in the root zone.
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2.1.2. Data Collection

The border fields with 272 plots in MW and 154 plots in YH were used to irrigate the winter
wheat by the Yellow River water and Gangnan reservoir water, respectively. Before the beginning of
border irrigation, soil samples were collected at four depths (0 cm to 20 cm, 20 cm to 40 cm, 40 cm to
70 cm, 70 cm to 100 cm) from the middle of border field with 100 plots selected randomly to analyze
soil bulk density, soil particle size distribution, and initial soil water content. After the end of border
irrigation with a period of 48 h, soil samples were collected at four depths (0 cm to 20 cm, 20 cm to
40 cm, 40 cm to 70 cm, 70 cm to 100 cm) from the top, middle, and bottom of the border fields, with
100 plots selected randomly to analyze soil water content.

The relative surface elevation values of border field with 100 plots selected randomly were
observed using a water level gauge, and the space between two adjacent measured points was
10 m for all experiments. Three lines were set at the left, middle, and right sides along the border
width (Figure 2). The border length and width were measured using an engineering measure ruler.
The observational tests for the surface flow advance processes were carried out at the beginning of
surface irrigation (Figure 2). The surface flow depth was measured using water depth measuring
devices [24], which were placed at every observation point before the irrigation was initiated. The water
depth was used to estimate Manning’s roughness coefficient n [25]. The recorded data were then
transferred to a computer at the end of the experiments.
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Figure 2. The observed sites of the surface flow advance.

2.1.3. Statistical Analysis of Field Physical Properties at a Field Scale

Border irrigation performance at a field scale is mainly affected by the spatial variability of
field physical properties and field management measures. According to the same field tillage and
management conditions, the frequency distribution histograms of border length in MW and YH are
shown in Figure 3. It can be seen that border length in MW and YH presents the normal distribution
characteristic and can be fitted by the normal distribution function. The mean values and standard
deviations for the normal distribution of border length in MW and YH are 120, 33.6 m and 200, 30.2 m,
respectively. Similarly, two parameters of the fitting distribution of border width in MW and YH are 9,
1.98 m and 6, 1.44 m, respectively.

Water 2018, 10, x FOR PEER REVIEW  4 of 19 

 

2.1.2. Data Collection  

The border fields with 272 plots in MW and 154 plots in YH were used to irrigate the winter wheat 

by the Yellow River water and Gangnan reservoir water, respectively. Before the beginning of border 

irrigation, soil samples were collected at four depths (0 cm to 20 cm, 20 cm to 40 cm, 40 cm to 70 cm, 70 

cm to 100 cm) from the middle of border field with 100 plots selected randomly to analyze soil bulk 

density, soil particle size distribution, and initial soil water content. After the end of border irrigation 

with a period of 48 h, soil samples were collected at four depths (0 cm to 20 cm, 20 cm to 40 cm, 40 cm 

to 70 cm, 70 cm to 100 cm) from the top, middle, and bottom of the border fields, with 100 plots selected 

randomly to analyze soil water content. 

The relative surface elevation values of border field with 100 plots selected randomly were 

observed using a water level gauge, and the space between two adjacent measured points was 10 m for 

all experiments. Three lines were set at the left, middle, and right sides along the border width (Figure 

2). The border length and width were measured using an engineering measure ruler. The observational 

tests for the surface flow advance processes were carried out at the beginning of surface irrigation 

(Figure 2). The surface flow depth was measured using water depth measuring devices [24], which 

were placed at every observation point before the irrigation was initiated. The water depth was used to 

estimate Manning’s roughness coefficient n [25]. The recorded data were then transferred to a computer 

at the end of the experiments. 

 

Figure 2. The observed sites of the surface flow advance. 

2.1.3. Statistical Analysis of Field Physical Properties at a Field Scale 

Border irrigation performance at a field scale is mainly affected by the spatial variability of field 

physical properties and field management measures. According to the same field tillage and 

management conditions, the frequency distribution histograms of border length in MW and YH are 

shown in Figure 3. It can be seen that border length in MW and YH presents the normal distribution 

characteristic and can be fitted by the normal distribution function. The mean values and standard 

deviations for the normal distribution of border length in MW and YH are 120, 33.6 m and 200, 30.2 m, 

respectively. Similarly, two parameters of the fitting distribution of border width in MW and YH are 9, 

1.98 m and 6, 1.44 m, respectively. 

  

0

10

20

30

40

60 100 150 200

F
re

q
u

en
cy

 (
%
)

Border length  in MW (m)

0

5

10

15

20

25

4 7 10 13 16 19

F
re

q
u

en
cy

 (
%

)

Border width in MW (m)

Point inflow

10 m  10 m  10 m 10 m  10 m  10 m  10 m  10 m 

Figure 3. Cont.



Water 2018, 10, 1770 5 of 19
Water 2018, 10, x FOR PEER REVIEW  5 of 19 

 

  

Figure 3. The frequency distribution of border length and width at the Mawan and Yehe irrigation 

districts. MW indicates the Mawan irrigation district; YH indicates the Yehe irrigation district. 

The unit discharge is calculated on the basis of border width and inflow observed at the field 

experiments. The unit discharge presents the obvious statistical characteristics of normal distribution by the 

Kolomogorov–Smirnov test and the corresponding parameters and normal test results are shown in Table 1.  

Table 1. Statistical characteristics and normal test results of unit discharge of border field at a field scale. 

Experiment Site  Minimum (L/(s·m)) Maximum (L/(s·m)) Mean (L/(s·m)) S.D. K-S Test 

MW 2.84 3.25 3.12 0.47 N 

YH 3.03 3.53 3.30 0.56 N 

N indicates normal distribution, K-S Test indicates Kolmogorov-Smirnov test, S.D. indicates Standard 

Deviation. 

The same field tillage and management methods are conducted at a field scale. Therefore, the 

standard deviations of surface elevation differences from the fields of 100 plots are assumed as the 

same in this study. The surface elevation differences (SED) values are checked for normality by the 

Kolmogorov–Smirnov test and a normal distribution with a significance level of 0.05 is obtained. The 

mean values and coefficients of the standard deviation for the two experiments are 4.06, 0.12 cm and 3.5, 

0.21 cm, respectively, calculated through the method of Bai et al. [26]. The spatial variability of the SED 

values is analyzed through the experimental semivariogram function, which can be fitted by the 

spherical semivariogram model [26]. The parameters of the spherical semivariogram model are 

calculated from the two sets of field-observed data (Table 2). These parameters are used for the 

stochastic modeling of surface micro-topography. In addition, the field slopes in MW and YH are about 

0.6‰ and 2.4‰, respectively. 

Table 2. The parameter values of the pherical semivariogram model for surface relative elevation at a field scale. 

Tests 
The Pherical Semivariogram Parameters 

C0 (cm2) C0 + C (cm2) R (m) 

MW 3.46 16.48 23.13 

YH 3.31 15.76 37.53 

MW indicates the Mawan irrigation district; YH indicates the Yehe irrigation district. C0 indicates the nugget;  

(C0 + C) indicates the still; R indicates the range. 

The probability distribution characteristics of soil sandy loam, silt loam, clay loam, bulk density 

and organic carbon content can be obtained on the basis of the field-observed data. Each variable of soil 

properties in MW and YH is checked for normality by the Kolmogorov–Smirnov test. A log 

transformation is conducted if the statistical distribution of the raw data is highly skewed. The primary 

statistical parameters, such as the mean, maximum, minimum, and standard deviation values, are 

calculated. The statistical results of the soil properties, each variable of which represents the normal or 

log-normal distribution at a significance level of 0.05, are shown in Table 3. 

0

10

20

30

40

50

60

70

80

180 190 200 210 220 230

F
re

q
u

en
cy

 (
%
)

Border length in YH (m)

0

5

10

15

20

25

30

35

40

8 10 12 16

F
re

q
u

en
cy

 (
%

)

Border width in YH (m)

Figure 3. The frequency distribution of border length and width at the Mawan and Yehe irrigation
districts. MW indicates the Mawan irrigation district; YH indicates the Yehe irrigation district.

The unit discharge is calculated on the basis of border width and inflow observed at the field
experiments. The unit discharge presents the obvious statistical characteristics of normal distribution
by the Kolomogorov–Smirnov test and the corresponding parameters and normal test results are
shown in Table 1.

Table 1. Statistical characteristics and normal test results of unit discharge of border field at a field scale.

Experiment Site Minimum (L/(s·m)) Maximum (L/(s·m)) Mean (L/(s·m)) S.D. K-S Test

MW 2.84 3.25 3.12 0.47 N
YH 3.03 3.53 3.30 0.56 N

N indicates normal distribution, K-S Test indicates Kolmogorov-Smirnov test, S.D. indicates Standard Deviation.

The same field tillage and management methods are conducted at a field scale. Therefore,
the standard deviations of surface elevation differences from the fields of 100 plots are assumed as
the same in this study. The surface elevation differences (SED) values are checked for normality by
the Kolmogorov–Smirnov test and a normal distribution with a significance level of 0.05 is obtained.
The mean values and coefficients of the standard deviation for the two experiments are 4.06, 0.12 cm
and 3.5, 0.21 cm, respectively, calculated through the method of Bai et al. [26]. The spatial variability
of the SED values is analyzed through the experimental semivariogram function, which can be fitted
by the spherical semivariogram model [26]. The parameters of the spherical semivariogram model
are calculated from the two sets of field-observed data (Table 2). These parameters are used for the
stochastic modeling of surface micro-topography. In addition, the field slopes in MW and YH are
about 0.6h and 2.4h, respectively.

Table 2. The parameter values of the pherical semivariogram model for surface relative elevation at a
field scale.

Tests
The Pherical Semivariogram Parameters

C0 (cm2) C0 + C (cm2) R (m)

MW 3.46 16.48 23.13
YH 3.31 15.76 37.53

MW indicates the Mawan irrigation district; YH indicates the Yehe irrigation district. C0 indicates the nugget;
(C0 + C) indicates the still; R indicates the range.

The probability distribution characteristics of soil sandy loam, silt loam, clay loam, bulk density
and organic carbon content can be obtained on the basis of the field-observed data. Each variable
of soil properties in MW and YH is checked for normality by the Kolmogorov–Smirnov test. A log
transformation is conducted if the statistical distribution of the raw data is highly skewed. The primary
statistical parameters, such as the mean, maximum, minimum, and standard deviation values, are
calculated. The statistical results of the soil properties, each variable of which represents the normal or
log-normal distribution at a significance level of 0.05, are shown in Table 3.
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Table 3. Summary statistics of soil properties from the two experimental fields.

Tests Indicators

Soil Properties

SOC Clay (<0.002 mm) Silt (0.002–0.05 mm) Sand (0.05–2 mm) BD

% % % % g cm−3

MW

Minimum 0.36 6.99 56.77 3.42 1.15
Maximum 2.59 35.74 79.04 36.23 1.68

Mean 1.13 19.91 65.97 14.12 1.38
SD 0.42 5.18 4.22 4.66 0.36

K-S test N N N N N

YH

Minimum 0.75 9.17 18.47 15.38 1.14
Maximum 1.78 33.87 61.38 64.89 1.62

Mean 1.11 22.34 38.14 39.52 1.37
S.D. 0.37 4.47 7.89 8.67 0.30

K-S test N N N N N

MW indicates the Mawan irrigation district; YH indicates the Yehe irrigation district. N indicates normal data distributions; SOC indicates soil organic carbon; BD indicates soil bulk
density; S.D. indicates Standard Deviation; K-S test indicates Kolmogorov-Smirnov test.
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According to the results of Agricultural Drought Research Center in the United States, the surface
roughness coefficient can be determined by the crop growth situations and soil properties. The surface
roughness coefficient values are checked for normality by the Kolmogorov–Smirnov test and a normal
distribution with a significance level of 0.05 is obtained. The mean values and coefficients of the
standard deviation for the two experiments are shown in Table 4.

Table 4. Statistical characteristics and normal test results of surface roughness coefficient of border
field at a field scale.

Experiment Site Minimum (−) Maximum (−) Mean (−) S.D. K-S Test

MW 0.09 0.17 0.13 0.03 N
YH 0.08 0.14 0.10 0.02 N

MW indicates the Mawan irrigation district; YH indicates the Yehe irrigation district. N indicates normal distribution;
S.D. indicates Standard Deviation; K-S Test indicates Kolmogorov-Smirnov test.

2.2. Numerical Modeling Methodology

Stochastic parameter model for surface irrigation is usually developed on the basis of deterministic
irrigation model and stochastic parameter modeling method. In this section, we mainly introduce
the physical-based surface irrigation model proposed by Dong et al. [23], which is a surface irrigation
system model for the border irrigation simulation and implemented by coupling a one-dimensional
surface flow model that uses the complete hydrodynamic form of the Saint-Venant equation with a
one-dimensional subsurface flow model, and Monte Carlo simulation method, which is used to obtain
the stochastic parameter values of the surface irrigation model.

2.2.1. Coupled Modeling of Surface-Subsurface Water Flow for Border Irrigation

Numerical simulation can be used to quantify surface irrigation application efficiency and surface
irrigation distribution uniformity from irrigating fields and to design surface irrigation scheme based
on controlling variables such as soils, border length, unit discharge, and surface micro-topography.
In the proposed paper, the equations that govern the flow of water for surface irrigation modeling are
presented below and the processes that describe water movement in the surface flow and subsurface
flow domains are discussed.

Border irrigation water flow can be characterized by the complete hydrodynamic form of the
one-dimensional Saint-Venant equations, which can accurately describe the non-steady water flow of
surface irrigation. The continuity and momentum equations in the complete hydrodynamic model are
taken as the governing equations:

∂U
∂t

+
∂F
∂x

= S (1)

where t is the time (s), x is the spatial coordinate (m), U is the vector of the conserved dependent
variables, F is the physical flux, and S is the source vector that comprises bottom elevation vector S1,
bed roughness vector S2 and infiltration vector S3, which are expressed as:

U =

(
hs

q

)
, F =

(
q

qu + 1
2 gh2

s

)
, S =

 −I

−ghs
∂z
∂x − g n2u|u|

h1/3
s

+ u
2 I

 (2)

S1 =

(
0

−ghs
∂z
∂x

)
, S2 =

 0

−g n2u|u|
h1/3

s

, S3 =

(
−I
u
2 I

)
(3)

where hs is the water depth (m), q denotes the unit discharge along coordinate direction x (m3/s/m),
g is the acceleration due to gravity (m/s2), z is the bottom elevation (m), n denotes the Manning’s
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roughness coefficient (m1/6), and u is the vertically averaged flow velocity (m/s), I represents the
infiltration rate (m/s).

Infiltration and soil water dynamics are simulated using the one-dimensional Richards
equation, which describes vertical one-dimensional and non-hysteretic flow in a variably saturated
porous medium

C(h)
∂h
∂t

=
∂

∂z

[
K(h)

∂h
∂z

]
− ∂K(h)

∂z
(4)

where h is the pressure head (m), K(h) is the vertical hydraulic conductivity (m/min), C(h) = dθ/dh is
the hydraulic capacity (−), z denotes the vertical coordinate(m), and t is the time (min).

The curve of soil water retention characteristics is described using the van Genuchten
(1980) equations:

θ(h) =

{
θr +

θs − θr

(1 + |αh|n)m h < 0

θs h ≥ 0
(5)

and

K(h) =

 KsS1/2
e

[
1−

(
1− S1/m

e

)m]2
h < 0

Ks h ≥ 0
(6)

where θs is the saturated soil water content (−), θr is the residual soil water content (−), α (1/m), n (−)
and m (−) denote the soil water retention curve parameters, m = 1 − 1/n, and KS is the saturated
hydraulic conductivity (m/min), and Se = (θ(h) − θr)/(θs − θr) is the effective saturation (−).

The hydraulic capacity is derived from van Genuchten’s model:

C(h) =

{
αmn|αh|n−1(1 + |αh|n

)−(m+1)
(θs − θr) h < 0

0 h ≥ 0
(7)

2.2.2. Numerical Solution

The various components of the mass and momentum conservation equations are solved by a
hybrid numerical method to improve simulation accuracy and reduce computational effort. The details
on the numerical solution of the complete hydrodynamic form of the one-dimensional Saint-Venant
equations were previously discussed by Zhang et al. [20] and Dong et al. [23]; hence, only a brief
description of it is provided.

At the time discretization used for the governing equations, the Crank-Nicolson implicit time
scheme is used for ∂U/∂t, ∂F/∂x, and S2 at an unknown time (w + 1) and a known time w.
Then, S1 and S3 are discretized using the explicit time scheme at a known time w. At the space
discretization of the governing equations, the finite difference scheme is used to discretize the
space derivative of the physical flux linear approximation generated by the implicit time scheme.
The advection upstream splitting method is used to discretize the space derivative of the advection
physical flux, S2 and S3 are then calculated according to the corresponding space-node values. After
spatio–temporal discretization processes of the governing equation of the one-dimensional complete
hydrodynamic model, the discretization equations of mass conservation and momentum conservation
are distinguished shown in Dong et al. [23]. The final format of surface flow equations can be
expressed by:

BX = D⇒
[

BMA 0
0 BMO

]
·
{

XMA

XMO

}
=

{
DMA

DMO

}
⇒
{

BMAXMA = DMA

BMOXMO = DMO (8)

where B is the coefficient matrix consisting of the coefficient of ∆U of cell (j − 1), j, (j + 1), respectively;
at a known time w; BMA is the coefficient matrix consisting of the coefficient of hs of cell (j− 1), j, (j + 1),
respectively, at a known time w; BMO is the coefficient matrix consisting of the coefficient of u of cell
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(j − 1), j, (j + 1), respectively, at a known time w; X is the matrix of ∆U of each cell at a known time w;
XMA is the matrix of hs of each cell; at a known time w; XMO is the matrix of u of each cell at a known
time w; D is the coefficient matrix of numerical flux vector of interface of cell j, bed roughness vector
S2, infiltration vector S3, and the averaged form of bottom elevation vector S1 of cell j at a known
w; DMA is the coefficient matrix about hs and u at a known w; and DMO is the coefficient matrix of
numerical fluxes of interface of cell j, bed roughness, infiltration, and bottom elevation at a known w.

A finite volume method with fourth-order accuracy is used for the solution of the one-dimensional
Richards equation in space, and the implicit second-order accurate finite difference scheme is used for
the solution in time [23]. Then, the Picard iteration scheme [27] is applied to cope with the nonlinearity
of the spatio-temporal discretization equation. Finally, the linearized algebraic equation obtained
by spatio-temporal discretization processes is numerically solved. The discretized subsurface flow
equation is as follows:

C(h)k+1,m
i

3hk+1.m+1
i −3hk+1,m

i
2(∆t) ∆zi − F(h)k+1,m·

(
hk+1,m+1 − hk+1,m

)
= −C(h)k+1,m

i
3hk+1,m

i −4hk
i +hk−1

i
2(∆t) + F(h)k+1,m·hk+1,m − K(h)k+1,m

i+1/2 + K(h)k+1,m
i−1/2

≡ Rk+1,m
p

(9)

where hk+1,m
i is the approximate value of the h of the ith cell at the mth discrete time level of the

(k + 1)th time step, and RP is the residual associated with the Picard iteration. If Rk+1,m
P

≤ 10−5 and∣∣∣hk+1,m+1
i − hk+1,m

i

∣∣∣/hk+1,m
i ≤ 10−2, the iteration stops, the soil pressure heads of every spatial point

at the (k + 1)th time step are calculated. The calculation then proceeds to the next time step.
For the surface flow system, the initial water depth hs,initial and water flow velocity uinitial in each

cell are zero before surface irrigation modeling is initiated. However, the numerical procedure requires
all depths to be greater than zero to avoid undefined terms in Equation (1). Therefore, a small and
positive value (0.0001 m) is initially assigned to the depth of flow at all cells in the flow domain. At the
upstream end, the unit inflow rate is q = q0. If irrigation stops, the water flow velocity at the field
head is zero. The field end is closed. The initial time step for the subsurface flow system is given by
users and the size of time step changes in accordance with the one used for the surface flow model.
Time-variable surface pressure head hs is set as the upper boundary condition; the bottom boundary
conditions can be assumed as free drainage. The uniform pressure head throughout the soil profile is
set as the initial condition in the computational domain.

This model can describe the impact of the interactions among soil, surface microtopography, field
slope, roughness, border length and unit discharge on surface irrigation performance on a second
time-step basis and exhibits the satisfactory simulation accuracy, low total volume balance error and
high computational efficiency. Surface irrigation processes are described using the individual modules,
which can be custom-configured to simulate soil water redistribution processes after surface irrigation.
Further details on this model can be found in Dong et al. [23].

2.2.3. Monte Carlo Modeling

The proposed numerical methodology of modeling surface irrigation is also developed on the
basis of stochastic parameter modeling method of controlling variables. In this section, Monte Carlo
simulation method is used as the stochastic parameter simulation methodology.

Probability Distribution Functions of Model Parameters

Stochastic parameters, such as border length, unit discharge, soil hydraulic properties, surface
micro- topography, field slope, and roughness, are input to the hybrid coupled model proposed by
Dong et al. [23] as the initial conditions. Soil hydraulic properties are often nonlinearly related to soil
sand content, clay content and organic carbon content. Therefore, soil hydraulic properties can be
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indirectly obtained from soil sand content, clay content, and organic carbon content using Pedo-Transfer
Functions (PTFs). In order to assess border irrigation performance of field scale, the normal or
logarithmic normal distribution functions are used to describe the distribution characteristics of
controlling variables because of their spatial uncertainty. Border length, border width, unit discharge,
soil sand content, soil clay content, and soil organic carbon content are of approximately normal
distribution at a field scale. The probability distribution function of normal distribution can be
expressed as follows:

f (x, u, σ) =
1

σ
√

2π
exp

(
−1

2
(x− u)2

σ2

)
u− 3σ ≤ x ≤ u + 3σ (10)

where x is the controlling variable, u is the mean value of the controlling variable, and σ is the standard
deviation of the controlling variable.

Surface micro-topography is one of the most important factors affecting the irrigation performance
of a border irrigation system and it significantly affects the advance and recession processes of an
irrigation event [28]. Micro-topography varies spatially along both the longitudinal and transversal
directions of a border, thus the spatial distribution of surface elevation differences (SED) also affects the
advance and recession processes and system performance. Therefore, the spatial variability of surface
micro-topography includes the degree of unevenness of SED expressed by the standard deviation Sd
and the spatial distribution of SED between the actual and the target design elevations. Under the
same field tillage and management conditions, all of the Sd values of SED at a field scale are assumed
as the same [26]. For a same Sd the spatial distribution of SED may vary, which makes it difficult to
describe the impacts of the spatial variability of SED on surface irrigation performance. Therefore,
surface micro-topography at a field scale can be represented by a set of elevation distributions of SED
for the same Sd. Based on the field geometry (length and width) and the statistical characteristics of
observed SED, the surface elevation nodes can be expressed by the following distribution:

fzmt(zmt) =
1√

2πσmt
exp

(
−1

2
(zmt − umt)

2

σ2
mt

)
umt − 3σmt ≤ zmt ≤ umt + 3σmt (11)

where zmt is SED (cm), umt is the mean value of SED (cm), and σmt is the standard deviation of
SED (cm).

Monte Carlo Simulation

Monte Carlo method is developed on the basis of probability and statistics theory and can be
used to analyze most of the uncertainty issues. It is assumed that the probability distribution function
of the random variable is known and a set of input parameter samples are obtained using the random
sampling method. Thus, numerical models run based on the input parameter samples and output the
corresponding simulation results. Finally, the performance indicators are calculated on the basis of the
output data and their probability distribution characteristics are fitted, respectively.

In the proposed paper, it is assumed that all of the border slope, surface roughness and the
standard deviation Sd of surface micro-topography at a field scale are the same under the same
filed tillage and management conditions and the spatial variability of soil properties, border length,
unit discharge, and the spatial distribution of SED are the main factors that affect surface irrigation
performance of field scale and the spatial distribution characteristics. The Monte Carlo simulation
process of border irrigation at a field scale shown in Figure 4 is discussed as follows:
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Figure 4. Monte Carlo simulation processes of border irrigation at a field scale. Ea indicates application
efficiency; CU indicates the uniformity coefficient; SPAW indicates Soil Plant Atmosphere Water model.

(1) The probability and statistical analysis of soil sand content, soil clay content, soil organic
carbon, border length, unit discharge and SED are conducted on the basis of the field test data of field
scale. The roughness coefficients of 100 plots selected randomly are calculated based on the surface
elevation data and field slope values of 100 plots selected randomly are obtained based on surface
water depth and crop growth situation.

(2) The probability distribution functions of soil sand content, clay content, silt content, and organic
carbon content are obtained on the basis of the field test data of field scale and a set of random samples
are obtained through their probability distribution functions by means of Monte Carlo simulation.
If the parameter sample combinations of soil properties do not satisfy the given condition of Equation
(12), the sample combination is replenished. Then, soil bulk density, field water holding capacity
and wilt water content are obtained when the random samples of soil sand content, clay content and
organic carbon content satisfying Equation (12) are input to Soil Plant Atmosphere Water (SPAW)
software [29]. Finally, the random samples of soil sand content, soil clay content, soil organic carbon,
soil bulk density, field water holding capacity and wilt water content are input to Rosetta software and
the corresponding samples of soil hydraulic properties are obtained.

Si + C + S + SOC = 100% (12)
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where Si is soil silt content, %, C is soil clay content, %, S is soil sand content, %, and SOC is soil organic
matter content, %.

(3) A set of border length and unit discharge samples are obtained through their probability
distribution functions by means of Monte Carlo simulation, respectively.

(4) The number of surface elevation node in a single border is determined by field length, field
width and the length of surface cell which is divided along the basin length direction. Surface elevation
distribution data are generated by the stochastic simulation model of basin micro-topography, which is
developed to simulate two-dimensional surface micro-topography on the basis of Monte Carlo method
and Kriging interpolation method [26]. To simulate the one-dimensional border micro-topography,
Equation (13) is used to update the above-mentioned surface elevation distribution data for border
irrigation simulation:

zy,j =
1

Nx

Nx

∑
k=1

zx,k (j = 1, 2, . . . , Ny) (13)

where zy,j is the average value of SED at the grid j along the basin length direction, representing the
new SED value (cm), zx,k is the SED value at the grid k along the basin width direction (cm), Nx is the
grid number along the basin width direction (−), and Ny is the grid number along the basin length
direction (−).

(5) Steps (2) to (4) are repeated to obtain a set of random sample combinations, including
border length, unit discharge, soil hydraulic properties, and surface micro-topography. These sample
combinations and the constant parameters such as the mean values of field slope and roughness
coefficient are input to the hybrid coupled model. Then, the hybrid coupled model runs repeatedly
based on a set of stochastic parameter combinations and the border irrigation uniformity coefficient
(CU) and border irrigation application efficiency (Ea) of each irrigation event are calculated based on
the simulation values of soil water content along the border length direction. In the proposed paper,
the maximum number of randomly selected samples is set to 272, which is the field-observed number.

(6) If the mean values of CU and Ea of the iteration (n + 1) and mean values of CU and Ea of the
iteration n cannot satisfy the convergence criterion of Equations (14) and (15) (shown in Section 2.3),
the iterative process continues. Otherwise, the iteration is terminated.

(7) The probability and statistical analysis method is used to analyze the changing trend of each
evaluation indicator at a field scale, assess the impacts of spatial variability of field physical properties
on border irrigation performance of field scale and optimize surface irrigation management plan at a
field scale.

2.3. Evaluation Indicators of Surface Irrigation Performance

The application efficiency (Ea) and the uniformity coefficient (CU), as defined by Walker (1987),
are selected as surface irrigation performance indicators. The application efficiency Ea (%) is defined as:

Ea =
(θa − θb)× RD

Zavg
× 100% (14)

and the uniformity coefficient CU (%) is given by:

CU =

1−

N
∑

i=1

∣∣Zi − Zavg
∣∣

N × Zavg

× 100% (15)

where θa and θb are the average soil volumetric water content in the root zone before and after irrigation
event, cm3/cm3, RD is the depth of root zone, cm, Zavg is the average infiltrated depth of water applied
to the field (mm) and determined from the cut-off time and the inflow rate, Zi is the infiltrated depth
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of water in the ith field unit along the field length direction. N is the number of field units along the
border length direction.

2.4. Model Performance Criteria of Field Scale

A numerical experiment is developed to assess the number of sets of generated stochastic
parameter samples aiming at representing the spatial variability of field physical properties to be
analyzed through simulation for assessing the impacts of the spatial variability of field physical
properties on border irrigation performance at a field scale. Based on the probability distribution
function of each variable of field physical properties, stochastic parameter samples are selected and
input to the hybrid coupled model proposed by Dong et al. [23]. In these simulations with the hybrid
coupled model, the same roughness, filed slope, and initial soil water content are used. When stochastic
parameter samples are generated using the above-mentioned numerical methodology, more than one
set of stochastic parameter sample can be generated. Different sets of stochastic parameter samples
generated with the same condition will produce different values for the border irrigation performance
at a field scale. Thus, it is necessary to determine how many stochastic parameter sample sets need to
be generated for a given condition to appropriately analyze the impacts of the spatial variability of
field physical properties on border irrigation performance at a field scale.

The number of stochastic parameter sample generations can be determined by analyzing the
change trend of mean values of Ea and CU resulting from the simulation data of the different irrigation
event through a set of stochastic parameter sample combinations. M sets of irrigation performance
indicators can be obtained by modeling the different irrigation event with M sets of stochastic parameter
samples for a given condition. The number m (m < M) of stochastic parameter sample generations
required to characterize the spatial variability of field physical properties may be determined by
analyzing the changes of border irrigation performance with the number of stochastic parameter
samples generations. The irrigation performance simulation experiment is conducted through the
hybrid coupled model. Statistical analysis is carried out by using Equations (16) and (17) (m < 272),
which can reflect the effect of the stochastic parameter distribution on the border irrigation performance.
If the MAREk < 0.5% and RAREk < 5% of six consecutive data points are used as the discriminant
indicators that the mean value and standard deviation reach the steady state, the mean values of
border irrigation performance indicators and the corresponding standard deviations can be determined.
MAREk and RAREk can be calculated as follows:

MAREk =

∣∣∣∣Xk+1 − Xk

Xk

∣∣∣∣× 100% (16)

RAREk =

∣∣∣∣∣Sk+1
d − Sk

d

Sk
d

∣∣∣∣∣× 100% (17)

where MAREk is the relative error between the (k + 1)th and the kth mean values of border irrigation
performance indicators, RAREk is the relative error between the (k + 1)th and the kth standard deviations
of border irrigation performance indicators, Sk

d represents the kth standard deviations of border
irrigation performance indicators, and Sk+1

d represents the (k + 1)th standard deviations of border
irrigation performance indicators.

2.5. Data Analysis

The spatial variability of soil properties, border length, unit discharge and surface
micro-topography results in the uncertainty of model input parameters. In order to represent the
effects of the spatial variability of field physical properties on border irrigation performance at a field
scale, the probability distribution and the classical statistical method are used in the proposed paper to
verify the proposed stochastic model.
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3. Results and Discussion

The proposed numerical methodology of assessing surface irrigation performance at a field scale
is verified in this section.

3.1. Total Water Volume of Surface Irrigation

The total water volume of surface irrigation is defined as the sum of surface irrigation water
volume applied to the experimental field at a field scale, calculated as,

Vs =
A

L×W × n
×

n

∑
i=1

Vi (18)

where Vs is the total water volume of surface irrigation (m3), Vi is the irrigation water volume of the
ith basin (m3), A is the total area of the experimental field (m2), L is the basin length (m), W is the basin
width (m), and n is the number of basins in the experimental field (−).

The relative error of the total water volumes of surface irrigation between the simulation values
and the observed values (REV) is calculated as,

REV =
|Vs −Vo|

Vo
× 100% (19)

where Vs is the simulation value of the total water volume of surface irrigation (m3), Vo is the observed
value of the total water volume of the surface irrigation (m3).

To assess the simulation performance of the proposed numerical methodology (PNM),
the distributed numerical methodology (DNM) is employed. In distribution simulation, the experiment
areas in MW and YH are divided into 16 and 12 sub-areas, respectively, according to soil properties,
border length and unit discharge. The model parameters from each sub-area are input to the hybrid
coupled model proposed by Dong et al. [23] and then the results of the sub-area level simulation are
aggregated at a field scale to evaluate border irrigation performance in MW and YH, respectively.
In the numerical modeling of the border irrigation, the considered surface spatial step along the
border length is 2.5 m, and the considered subsurface spatial step along the vertical direction is 0.01 m.
The time step of the surface and subsurface is 1 s. The initial soil water contents in MW and YH are
0.21 and 0.20 cm3 cm−3, respectively. Table 5 presents the relative error of the total water volumes of
the border irrigation between the model-predicted values and the field-observed values. The REV of
the PNM is lower than that of the DNM. This result indicates that the PNM for scaling up the border
irrigation performance at a field scale exhibits the more satisfactory simulation accuracy.

Table 5. The relative errors of the total water volumes from the model-predicted and the
field-observed data.

Tests Vo/m3
PNM DNM

Vs/m3 REV/% Vs/m3 REV/%

MW 127,100 115,200 9.36 109,900 13.53
YH 72,300 65,900 8.85 62,300 13.83

MW indicates the Mawan irrigation district; YH indicates the Yehe irrigation district. PNM indicates proposed
numerical methodology; DNM indicates distributed numerical methodology. Vo indicates the observed value of the
total water volume of the surface irrigation; Vs indicates the simulation value of the total water volume of surface
irrigation; REv indicates the relative error of the total water volumes of surface irrigation between the simulation
values and the observed values.

3.2. Surface Flow Advance

The surface flow advance time changes with the border length increasing and the maximum value
appears at the bottom of the border. A power function curve such as described by Equation (19)
is fitted successfully to the surface flow advance trajectories of the field-observed and the
model-predicted, respectively.
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T = aXb (20)

where T is the time of the surface flow advance (min), X is the length of the surface flow advance (m),
and a and b are fitting parameters. Parameter a represents the change range of the whole surface flow
advance trajectories and parameter b reflects the change in the speed of the surface flow advance rate.

The change trend of the surface flow advance trajectories within the surface irrigation processes
can be expressed through parameters a and b of Equation (20). The parameter values obtained from
each experimental field are checked respectively for normality through the Kolmogorov–Smirnov
test statistics. They yielded a normal distribution with a significance level of 0.05. The relative errors
of the average a and b values from the model-predicted and field-observed data were respectively
calculated as

REp =
|Ps − Po|

Po
× 100% (21)

where REp is the relative error of the average p value from the model-predicted data and the
field-observed data, p represents the fitting parameters a and b, and Ps and Po are the average values of
the fitting parameters from the field-observed data and the model-predicted data, respectively (−).

Table 6 presents the relative error of the average a and b values calculated from the model-predicted
values and field-observed values, showing that the PNM has the better simulation performance
compared with the FNM and SNM.

Table 6. The relative error of the fitting parameter values from the model-predicted and the
field-observed data.

Tests Parameters Po
PNM DNM

Ps REp (%) Ps REp (%)

MW
a 0.1054 0.1017 3.51 0.1145 8.63
b 1.3324 1.2928 2.97 1.2484 6.30

YH
a 0.1826 0.1742 4.60 0.1982 8.54
b 1.2137 1.1718 3.45 1.1287 7.01

MW indicates the Mawan irrigation district; YH indicates the Yehe irrigation district. PNM indicates proposed
numerical methodology; DNM indicates distributed numerical methodology. REp indicates the relative error of
the average fitting parameter value from the model-predicted data and the field-observed data; Ps and Po are the
average values of the fitting parameters from the field-observed data and the model-predicted data.

3.3. The Irrigation Time of Surface Flow Advance

The irrigation time of surface flow advance (FT) is defined as the time of the surface flow arriving
at the bottom of the border. The average absolute differences between the field-observed and the
model-predicted values of the PNM and DNM are about 1.03 min, 1.46 min and 1.49 min, 2.1 min
for the two experimental fields, respectively. The relative error of the average FT values of the field-
observed and model-predicted data (REt) is calculated as,

REt =
|ts − to|

to
× 100% (22)

where ts is the average FT value under the model-predicted conditions (min) and to is the average FT
value under the field-observed conditions (min).

The statistical characteristics of the FT derived from the field-observed data and model-predicted
data of the PNF for the two experimental fields are shown in Figure 5. The statistical characteristics
of the FT from the field-observed data and model-predicted data of the PNM present the similar
results, which indicate that the PNM performs satisfactorily. The relative errors of the average FT
values from the field-observed and model-predicted data of the PNM and DNM are shown in Table 7,
which illustrates that the PNM has the better simulation accuracy compared with the DNM.
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Figure 5. The statistical distribution of the irrigation time of surface flow advance.

Table 7. The relative error of the average irrigation time from the field-observed and the
model-predicted data.

Tests to (min)
PNM DNM

ts (min) REt (%) ts (min) REt (%)

MW 62.70 57.12 8.90 54.21 13.54
YH 116.50 108.36 6.99 102.86 11.71

PNM indicates the proposed numerical methodology; DNM indicates the distributed numerical methodology; MW
indicates the Mawan irrigation district; YH indicates the Yehe irrigation district. ts indicates the average irrigation
time under the model-predicted conditions; to indicates the average irrigation time under the field-observed
conditions; REt indicates relative error of the average irrigation time of the field- observed and model-predicted data.

3.4. Soil Water Content

In this case, soil water content is used to assess the modeling accuracy of the proposed numerical
methodology. The average soil water content of each sampling site is calculated based on those of
three depths (0 cm to 20 cm, 20 cm to 40 cm, and 40 cm to 70 cm), using the weight average method.
The spatial distribution of the average soil water content in MW and YH after the ending of the surface
irrigation is intuitively presented in Figure 6. The spatial distribution data of the average soil water
content were statistically analyzed to obtain the cumulative probability distribution of the average
soil water content, as shown in Figure 6. The cumulative probability of the average soil water content
of the model-predicted data with PNM, which is calculated using the soil water content data along
the vertical direction of soil profile, is also shown in Figure 7. The agreement between the cumulative
probability curves of the field-observed and the model-predicted data with the PNM is satisfactory.
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Figure 6. The spatial distribution of the average soil water content of the field-observed after the
ending of surface irrigation. MW indicates the Mawan irrigation district; YH indicates the Yehe
irrigation district.
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Figure 7. The cumulative probability of the average soil water content for the field-observed and the
model-predicted data with the PNM. MW indicates the Mawan irrigation district; YH indicates the
Yehe irrigation district.

4. Conclusions

To assess the impact of the spatial variability of field physical properties on the surface irrigation
performance at a field scale, a numerical methodology is proposed on the basis of the hybrid
coupled surface-subsurface flow model of surface irrigation and Monte Carlo simulation method.
The hybrid coupled surface-subsurface flow model is developed from the numerical solution of the
one-dimensional Saint-Venant equations using an improved hybrid numerical method and from
the one-dimensional Richards equation using a finite volume method with fourth-order spatial
accuracy. Monte Carlo simulation method is used to obtain the stochastic samples of field physical
properties, and the stochastic simulation model of surface micro-topography is used to obtain a set of
surface micro-topography samples for the same standard deviation of surface elevation differences.
The proposed numerical methodology is tested in terms of the total water volumes of the surface
irrigation, surface flow advance trajectories, irrigation time of each border, and soil water contents from
the model-predicted and the field-observed data. Compared with the distributed-parameter modeling
methodology, the proposed numerical methodology shows the better simulation performance in
total water volume of surface irrigation, surface flow advance trajectories and soil water content
redistribution. In conclusion, the proposed numerical methodology presents the satisfactory simulation
performance and can be used as a tool for analyzing surface irrigation performance and similar
hydrologic patterns at large scales.
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